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Figure S1. GPC chromatographs of polymer 1–5. All polymers elute at similar retention volumes 
indicating similar molecular weights. 

 

Figure S2. (A) 31P NMR spectrum of polymer 1–5. A broad peak at about 0 ppm indicates complete 
substitution of the chlorine atoms at polyphosphazene backbone and the absence of degradation 
products. (B) 31P NMR spectrum of the monomer (N-(trimethylsilyl)-trichlorophosphoranimine), the 
precursor polymer (poly(dichlorophosphazene) and polymer 2 to show complete monomer conversion 
and macromolecular substitution of the chlorine atoms at the polyphosphazene backbone. 

 

Figure S3. UV–Vis spectra in acetonitrile of polymer 5 loaded with 2.4 wt % imiquimod (black), of 
imiquimod (red) and of Gly-Phe-Leu-Gly-imiquimod (blue). 
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Figure S4. Normalized FFF analysis illustrating the degradation of polymer 2 at 37 °C in an aqueous 
solution at pH 2. Broadening and decrease in intensity and a shift to earlier retention time of the 
polymer peak are observed. 

 

Figure S5. Hydrolytic and enzymatic release of imiquimod from polymer 5 during 3.5 days shown in 
two different studies to confirm reproducibility. 

 

Figure S6. ATR-FTIR spectra of polymer 1–5. 
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Figure S7. Enzymatic degradation of polymer 2 followed by 31P NMR spectroscopy after 14 days in 
citrate buffer (pH 6) containing L-cysteine and papain (black), hydrolytic degradation of polymer 2 in 
the same buffer system without papain (red), with papain and cystamine as inhibitor (blue). All 
samples were stored at 37 °C. 
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Figure S8. Enzymatic degradation of polymer 2 followed by 31P NMR spectroscopy of two different 
samples a-1 and a-2) under the same conditions (28 days in citrate buffer (pH 6) containing L-cysteine 
and papain). All samples were stored at 37 °C. 
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