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Abstract: Hyperbranched poly(methylene-bis-acrylamide), poly(bis(N,N-propyl acryl amide))
(HPNPAM) and poly(bis(N,N-butyl acryl amide)) were synthesized by reversible addition-
fragmentation chain transfer polymerization. HPNPAMs showed lower critical solution temperature
(LCST) due to an appropriate ratio between hydrophilic and hydrophobic groups. The effects
of reaction conditions on polymerization were investigated in detail. The structure of HPNPAM
was characterized by 1H NMR, FT-IR, Muti detector-size exclusion chromatography (MDSEC) and
Ultravioletvisble (UV-Vis). The α value reached 0.20 and DB was 90%, indicating HPNPAMs with
compact topology structure were successfully prepared. LCSTs were tuned by Mw and the pH value
of the solution. The change of molecular size was assayed by dynamic light scattering and scanning
electron microscope. These results indicated that the stable uniform nanomicelles were destroyed
and macromolecules aggregated together, forming large particles as temperature exceeded LCST. In
addition, after the cells were incubated for 24 h, the cell viability reached 80%, which confirmed this
new dual responsive HPNPAM had low cytotoxicity.

Keywords: hyperbranched; backbone; thermo-pH response; RAFT; poly(bis(N,N-propyl acrylamide))

1. Introduction

Thermo-pH dual-responsive polymers have attracted interest in the stimuli-responsive materials
field for their specific properties of temperature-pH response. Among the past research, there have
been a large number of thermo-pH dual-responsive polymers reported, most of which are linear
polymers, such as poly(N-isopropylacrylamide), poly(N,N-diethylacrylamide), poly-(methylvinylethe),
poly(N-vinylcaprolactam), poly(2-(dimethylamino)ethylmethacrylate) [1]. With the investigation of the
hyperbranched polymer, because of the combination of the advantages of stimulus response and the
unique properties of hyperbranched structure, such as high solubility, low viscosity, and the abundance
of terminal groups, thermo-pH dual-responsive hyperbranched polymers have attracted increasing
interest, and are promising for applications in terms of physical separation [2], biomedical [3–5], and
other fields [6]. Currently, temperature-pH dual-responsive hyperbranched polymers can be divided
into two categories. One is terminal temperature-pH dual responsive polymers, that is, the temperature
and pH sensitive groups or segments are grafted onto the hyperbranched polymer surface, which is the
most widely researched [7–13]. However, the other, called backbone temperature-pH dual responsive
hyperbranched polymers, is almost stagnant. In recent years, Yan et al. have made groundbreaking
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progress in the backbone temperature-sensitive hyperbranched polymers and have prepared a variety
of backbone temperature-sensitive hyperbranched polymers [14–18]. Because of the limitations of
epoxy monomers, only proton transfer or anionic polymerization could be selected to synthesize
backbone temperature response hyperbranched polyethers. Therefore, it is important to find other
monomers that can be adopted to more polymeric methods, such as free radical polymerization and
living control polymerization.

The pioneering work of Sherrington made important progress in the preparation of highly
branched macromolecules by controlled crosslinked of divinyl monomers [19]. In our previous
work, bis(N,N-ethyl acrylamide) was designed and used to synthesize a hyperbranched polymer via
reversible addition-fragmentation chain transfer polymerization (RAFT). Fortunately, the as-prepared
hyperbranched poly(bis(N,N-ethyl acryl amide)) showed temperature and pH response properties due
to the similar structure with NIPAM. Because the monomer has two double bonds, the whole monomer
was blocked into the molecular chain, which resulted in the temperature and pH response coming from
the molecular backbone [20]. Surprisingly, the HPNPAM could be prepared by free radical, ionic and
living radical polymerization under mild reaction conditions due to the high reactivity of acryl group.

Although the hyperbranched poly(bis(N,N-ethyl acryl amide)) showed the backbone temperature
and pH response, whether this means that polymers with similar structure can exhibit the backbone
temperature and pH response is a key question to confirm its value. Herein, methylene-bis-acrylamide,
bis(N,N-propyl acryl amide) and bis(N,N-butyl acryl amide) were selected as the monomers. The
corresponding hyperbranched polymers were synthesized to investigate the backbone temperature and
pH response. The structures of the hyperbranched polymers were characterized by nuclear magnetic
resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR). The molecular
weight and molecular weight distribution of the polymers were determined by muti detector-size
exclusion chromatography (MD-SEC), and the lower critical solution temperature (LCST) was studied
by UV-Visible spectrum. In addition, the effect of reaction conditions on the conversion rate, molecular
weight, molecular weight distribution and the degree of branching was investigated in detail.

2. Experimental Section

2.1. Materials

Methylene-bis-acrylamide(MAM), N,N-dimethylformamide(DMF), ammonium persulfate (APS)
and acetone (95%, Tianjin kemiou chemical reagent Co., Tianjin, China) needed to be purified
before use. The bis(N,N-propyl acryl amide) (NPAM), bis(N,N-butyl acryl amide) (NBAM) and
S,S1-bis(a,a-dimethyl-a11-acetic acid)-trithiocarbonate (BDAAT) were synthesized following a literature
procedure [21]. Distilled deionized water was prepared from a Millipore Filtration System (Millipore,
MA, USA). Concentrated hydrochloric acid was used (Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China).

2.2. Methods

Infrared spectroscopy was measured on a Varian 640-IR Fourier infrared spectrometer (Varian,
Palo Alto, CA, USA) by using KBr pellets. 1H NMR spectra were recorded on a Bruker AVANCE-600
600 MHz spectrometer (Bruker, Germany). The chemical shifts are given in parts per million (ppm).
Light-transmittance of the polymer solution was measured on a temperature-controlled UV-Visible
2550 Spectrophotometer (Shimadzu, Japan) at 500 nm with the heating rate as 0.1 ˝C¨ min´1. LCSTs
were defined as the temperature corresponding to 50% transmittance of an aqueous solution during
the heating process, and the curves of transmittance versus temperature of all samples are inserted
in supplementary files (Figures S4–S6). Molecular weight, polydispersity, Mark-Houwink index (α)
and intrinsic viscosity (IV) were determined by a Viscotek 270-MDSEC (Malvern Instruments Ltd.,
Malvern, PA, USA) equipped with the differential refractive index (RI), viscometer, and two-angle
light scattering (LS, Malvern Instruments Ltd., Malvern, PA, USA) triplet detectors. The eluent was
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0.1 mol¨ L´1 NaNO3 aqueous solution at a flow rate of 1 mL¨ min´1 at 15 ˝C. For MDSEC, narrow
dispersion polyethylene oxide std-PE022K was used to calibrate the instrument. The morphology
of the polymer aggregation was characterized by a JSM-7500 Scanning electron microscope (SEM,
JEOL Ltd., Tokyo, Japan). As a representative example for sample preparation, a drop of solution (L4)
was added on the slide that was frozen quickly by liquid nitrogen to keep the true morphology, then
the sample with solid membrane was obtained by lyophilization. After gold powder was sprayed
onto the surface of sample, SEM was used to study the morphology. Dynamic Light Scattering (DLS)
measurements were performed on a Brookhaven BI-200 goniometer (Brookhaven, New York, NY, USA)
with vertically polarized incident light of wavelength λ = 532 nm supplied by a heliumneon laser
operated at 75 mW and a Brookhaven BI-4700 AT digital autocorrelator (Brookhaven, New York, NY,
USA). Polymer cytotoxicity was detected by MTT assay. The photocytotoxicity of HPNPAM on HeLa
cells was examined as follows: HeLa cells (5 ˆ 103 cells) in 100 µL of DMEM containing 10% FCS
were plated in a 96-well plate and incubated for 24 h in a humidified atmosphere of 5% CO2 in air at
37 ˝C (Sanyo, Model MCO-18AIC, Osaka, Japan) Then, 100 µL of an HPNPAM in DMEM containing
10% FCS and 2% DMSO was added to each well. Incubation was carried out for 6 (12, 24 h) at an
HPNPAM concentration of 0.5 µM (final DMSO content was 1% in all cases). Cells without HPNPAM
treatment were used as the control group. After 6 (12, 24 h) of treatment, MTT dye solution (20 µL,
5 mg¨ mL´1) was added to each cell. Cells were incubated for another 4 h and then analyzed using a
microplate spectrophotometer (BioRad Model 3550, CA, USA) at 570 nm. The percentage cell survival
was calculated by normalization with respect to the value without HPNPAM treatment.

2.3. Synthesis of Hyperbranched Poly(bis(N,N-Propyl Acryl Amide) (HPNPAM)

Taking the hyperbranched poly(bis(N,N-propyl acryl amide) as an example, the monomer,
BDAAT, APS and purified DMF were added to a Schlenk tube. Oxygen was removed by repeated
vacuum-nitrogen cycles. Then, the polymerization was conducted at 70 ˝C in an oil bath for
a desired reaction time. Afterwards, the obtained polymers were precipitated by dropping the
solution into a large excess of acetone to remove the remaining small molecules. The precipitated
polymers were separated by centrifugation, redissolved in a minimum amount of water, and
reprecipitated into acetone. Finally, the products were freeze-dried from water and weighed to
obtain the conversion. Conversion of the resulting polymer was calculated by weighing in accordance
with the following formula:

Conversion% “
polymer

monomer ` CTA ` I
ˆ 100%

3. Results and Discussion

3.1. The Reaction Mechanism of HPNPAM

Taking the HPNPAM as an example, the reaction mechanism of HPNPAM is outlined in Scheme 1.
In the initiating stage, the initiator APS is decomposed to initial free radical under 70 ˝C, then the
monomers are initiated by the initial free radicals that are consistent with the established mechanism
of RAFT polymerization [21]. In the branching propagation stage, the vinyl groups as the side groups
possess reaction activity and can be initiated by the active species (I‚, R‚, and I-m‚). Therefore, the
branched structure or degree of branching (DB) will be increased with the conversion of the vinyl
groups. For the multi vinyl monomer, it will be polymerized, forming a crosslinked polymer rather
than a hyperbranched polymer due to the high reactivity of vinyl groups. Thus, RAFT has to be
occupied for slowing down the growth rate and avoiding rapid cross-linking. Finally, the HPNPAMs
are obtained bearing amount of vinyl groups and thioester.



Polymers 2016, 8, 135 4 of 14
Polymers 2016, 8, 135                x4 of 13 

 

 
Scheme 1. The reaction mechanism of HPNPAM. (1): dormant species 

3.2. The Parameters of HPMAM, HPNPAM and HPNBAM 

Hyperbranched poly(methylene-bis-acrylamide) (HPMAM), poly(bis(N,N-propyl acryl amide)) 
and poly(bis(N,N-butyl acryl amide)) (HPNBAM) were prepared by RAFT. The data are listed in 
Table 1. The parameters of the polymers are similar. The conversion reached around 50%, the 
polydispersity index (PID) shows the characteristics of wide dispersion, and the topology structure 
exhibits the feature of hyperbranched, which is proved by the DB and Mark-Houwink index (α). 
However, the phenomenon we expected that L-a, L-b and L-c would show a lower critical solution 
temperature (LCST) did not appear. L-a is a hydrophilic polymer, L-b is a hydrophobic polymer, only 
L-c is an amphiphilic polymer and shows the LCST. For these three kinds of monomers, the number 
of carbons is the key reason. As the number of carbons increases, the hydrophobic nature of the 
monomer is stronger and the feature of the hyperbranched polymer is changed from hydrophilic to 
amphiphilic, then to hydrophobic. 

Table 1. The parameters of HPMAM, HPNPAM and HPNBAM. 

Samples Monomer:CTA:I (mmol) Temperature Mw (× 104) Mw/Mn Conversion α DB LCST
L-a 20:1:1 70 °C 5.6 2.14 60% 0.43 70% - 
L-b 20:1:1 70 °C 3.5 2.08 48% - 60% - 
L-c 20:1:1 70 °C 4.7 2.21 53% 0.32 74% 13 °C 

L-a: methylene-bis-acrylamide, Time = 0.3 h, DMF = 6 mL; L-b: bis(N,N-butyl acryl amide), Time = 48 h, 
DMF = 6 mL, I = BPO, Mw = 3.5 × 104, Mw was determined by Shodex GPC using 0.01 mol·L−1 LiBr/DMF 
solution at a flow rate of 1 mL·min−1 at 15 °C. A series of narrow dispersion polystyrene was used to 
calibrate a standard curve; L-c: bis(N,N-propyl acryl amide), Time = 48 h, DMF = 4 mL. 

Initiating Stage

70

H
N

H
N

O O H
N

H
N

O O
I

I

(I m )APS
(monomer)

Linear Propagation Stage

(I m )
COOH

S

S

COOH

S

(BDAAT)

COOHSS

S

HN

HN

O

O

I

(monomer)

S C
S

S

NH

NH

O

O

NH

NH

O

O
R

HN

HN

O

O

HN

HN

O

O

R

m

n

COOHSSHOOC

S

HN

HN

O

O

I

Branching Propagation Stage

I(I m )
(monomer)
(BDAAT)

(Linear Polymer) Termination

SCS

S

O

N
H

O

O

S
CS

OS
H
N

RR

HN

HN
O NH
O

NH
O
R

O

S
CS
SR

HN

N
H

O
NH

O

H
N
O

H
N

O

NH

O

NHO

R

NHO

NH
O

H
N

O NH
O I

SHN
O

H
N
OC

S

SR

H
N

O
H
N
O

O

m.I

Scheme 1. The reaction mechanism of HPNPAM. (1): dormant species

3.2. The Parameters of HPMAM, HPNPAM and HPNBAM

Hyperbranched poly(methylene-bis-acrylamide) (HPMAM), poly(bis(N,N-propyl acryl amide))
and poly(bis(N,N-butyl acryl amide)) (HPNBAM) were prepared by RAFT. The data are listed in Table 1.
The parameters of the polymers are similar. The conversion reached around 50%, the polydispersity
index (PID) shows the characteristics of wide dispersion, and the topology structure exhibits the
feature of hyperbranched, which is proved by the DB and Mark-Houwink index (α). However, the
phenomenon we expected that L-a, L-b and L-c would show a lower critical solution temperature
(LCST) did not appear. L-a is a hydrophilic polymer, L-b is a hydrophobic polymer, only L-c is an
amphiphilic polymer and shows the LCST. For these three kinds of monomers, the number of carbons
is the key reason. As the number of carbons increases, the hydrophobic nature of the monomer is
stronger and the feature of the hyperbranched polymer is changed from hydrophilic to amphiphilic,
then to hydrophobic.

Table 1. The parameters of HPMAM, HPNPAM and HPNBAM.

Samples Monomer:CTA:I (mmol) Temperature Mw (ˆ 104) Mw/Mn Conversion α DB LCST

L-a 20:1:1 70 ˝C 5.6 2.14 60% 0.43 70% -
L-b 20:1:1 70 ˝C 3.5 2.08 48% - 60% -
L-c 20:1:1 70 ˝C 4.7 2.21 53% 0.32 74% 13 ˝C

L-a: methylene-bis-acrylamide, Time = 0.3 h, DMF = 6 mL; L-b: bis(N,N-butyl acryl amide), Time = 48 h,
DMF = 6 mL, I = BPO, Mw = 3.5 ˆ 104, Mw was determined by Shodex GPC using 0.01 mol¨L´1 LiBr/DMF
solution at a flow rate of 1 mL¨min´1 at 15 ˝C. A series of narrow dispersion polystyrene was used to calibrate
a standard curve; L-c: bis(N,N-propyl acryl amide), Time = 48 h, DMF = 4 mL.
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3.3. Characterization for HPNPAMs

3.3.1. The Degree of Branching for HPNPAMs

The structure of HPNPAMs was characterized by IR spectra, 1H NMR spectra and MDSEC. The
results of 1H NMR spectra and MDSEC revealed the topology structure information including DB
and α. Frey pointed out that DB was defined as the ratio between the number of dendritic units and
the total number of units. Thus, DB can be calculated according to the integration ratio of different
protons by using 1H NMR. For HPNPAMs, there are three kinds of units as shown in Figure 1. A is the
dendritic unit, B is the linear unit or terminal unit. The different protons are labeled as p1, p2, p3, p4, p5
and p6. Both dendritic units and linear units or terminal units include protons of p3 and p4, therefore
the total number of units can be represented by the area of p3 or p4. However, the chemical shift of p4
is overlapped with p1, thus the area of p3 is used to represent the total number of units in this paper.
Assuming that there is no side reaction, the molecular chain is made up of linear units, therefore the
integration ratio of p3 and p6 should be 2:1. However, the pendant vinyl groups are initiated to form
branched chains, leading to the decrease in area of p6. Obviously, the decrement of the area of p6 is
attributed to the dendritic units, which can be calculated by the equation (p3 ´ 2 ˆ p6). Therefore, the
equation for DB is written as DB = (p3 ´ 2 ˆ p6)/p3. 1H NMR for sample 7 is displayed in Figure 2
(1H NMR spectras for the rest samples are shown in Figure S3). The areas of p6 and p3 are shown
under the corresponding peaks. The DB of sample 7 is 0.66 according to the aforementioned equation.
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3.3.2. α Value of HPNPAMs

Molecular weight of HPNPAMs were determined by a Viscotek 270-MDSEC equipped with RI,
viscometer, and LS triplet detectors. Since this instrument is able to measure Mw and intrinsic viscosity
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Molecular weight of HPNPAMs were determined by a Viscotek 270-MDSEC equipped with 
RI, viscometer, and LS triplet detectors. Since this instrument is able to measure 
\emph{M}\textsubscript{w} and intrinsic viscosity (  ŋ    ) at the same time (L2 α = 0.44, L3 α = 0.31, L4 α = 0.29, L5 α = 0.22).
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3.3.3. FTIR Analysis of Monomer and Polymer

IR spectra were also occupied to characterize the structure of HPNPAMs and are shown in
Figure 5 and Figure S1. Based on the reaction mechanism, part of vinyl groups would disappear
after polymerization. The characteristic absorption peaks of =C–H are located at 963 and 3076 cm´1

in the IR spectra. As expected, compared with monomer, the intensity of peaks located at 963 and
3076 cm´1 obviously become weak, which indicates the number of vinyl groups that took part in the
polymerization. The peaks of 963 and 3076 cm´1 are assigned to pendant vinyl originating from the
linear units and terminal units of HPNPAMs.
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3.4. Effect of Reaction Conditions on Polymerization

3.4.1. Effect of Reaction Temperature on Polymerization

A series of HPNPAMs were prepared to investigate the effect of reaction conditions on the
polymerization. Temperature was selected as one of the factors. The obtained data are shown in
Table 2. When the temperature was set as 40 ˝C, lower than the initiator decomposition temperature,
polymerization was not conducted. When the temperature was higher than the initiator decomposition
temperature, the number of primary radicals in the reaction system gradually increased with
temperature, which resulted in much higher Mw and conversion. In addition, the DB of HPNPAMs also
increased. The activity of the chain transfer agent (CTA) is the key reason. For the RAFT polymerization,
the reversible equilibrium constant is higher as the temperature increases. One one hand, it is helpful
to control the polymerization and avoid the formation of hydrogel. On the other hand, numerous vinyl
groups took part in polymerization, forming a short chain under the initiation of primary radicals
or CTA, which brought a higher DB to HPNPAM. The Mark-Houwink index (α) of HPNPAMs also
reflects the same trend of DB when the α values were gradually decreased over the temperature
range of 60–90 ˝C. The LCSTs decreased from 15 to 9 ˝C as the reaction temperature increased. This
was attributed to Mw or DB. When the reaction temperature reached 120 ˝C, thermo-polymerization
could not be circumvented and broke the reversible equilibrium of RAFT, leading to the formation
of hydrogel.



Polymers 2016, 8, 135 8 of 14

Table 2. Effect of reaction temperature on polymerization.

Samples Temperature Mw (ˆ 104) Mw/Mn Conversion α DB LCST

L1 40 ˝C – – – – – –
L2 50 ˝C 1.4 2.52 41% 0.44 55% 15 ˝C
L3 70 ˝C 4.7 2.21 53% 0.31 74% 13 ˝C
L4 80 ˝C 10.3 1.97 74% 0.29 83% 11 ˝C
L5 90 ˝C 25.7 2.72 89% 0.22 88% 9 ˝C
L6 120 ˝C gel – – – – –

Monomer:CTA:I = 20:1:1 mmol; Time: 48 h; DMF = 4 mL.

3.4.2. Effect of Reaction Time on Polymerization

Reaction time, an important factor for RAFT, was studied in detail and shown in Table 3. The
trends of Mw and Conversion are consistent with the rule of RAFT. With an extension in the reaction
time, much more monomers were initiated by I‚, R‚, and I-m‚, therefore the Conversion, Mw and PID
showed an increasing trend. The trend of DB and α reflected that DB was increased by extending the
reaction time. To graphically display the trend of DB, the data of DB vs Reaction time are shown in
Figure 6. DB increases sharply in the first 48 h and then shows a slow increase in the subsequent 48 h.
Compared with the Conversion, the reason is that the increment of Conversion is decreased during the
period 48–96 h, which means the reaction rate (Rp) is lower. On the one hand, a long reaction time
increases the number of dormant-breaking dormant process, thus more monomers are captured by the
polymer chains, and with the consumption of monomer, the reaction rate decreases, and gel formation
is effectively avoided. On the other hand, the propagation of the main chain and side chain increase
slowly, resulting in the increment of Mw slowing down. The reaction probability of vinyl coming from
hyperbranched polymers is also decreased, which is not conducive to forming much more branch
chains, thus the DB shows a slow increase.

Table 3. Effect of reaction time on polymerization.

Samples Time Mw (ˆ 104) Mw/Mn Conversion α DB LCST

L7 24 h 1.7 1.85 61% 0.33 66% 15 ˝C
L4 48 h 10.3 1.97 74% 0.29 83% 11 ˝C
L8 72 h 19.8 2.43 79% 0.27 85% 8 ˝C
L9 96 h 26,4 2.98 83% 0.22 89% 6 ˝C

Monomer:CTA:I = 20:1:1 mmol; Temperature: 80 ˝C; DMF = 4 mL.

Polymers 2016, 8, 135                x8 of 13 

 

3.4.2. Effect of Reaction Time on Polymerization 

Reaction time, an important factor for RAFT, was studied in detail and shown in Table 3. The 
trends of Mw and Conversion are consistent with the rule of RAFT. With an extension in the reaction 
time, much more monomers were initiated by I•, R•, and I-m•, therefore the Conversion, Mw and PID 
showed an increasing trend. The trend of DB and α reflected that DB was increased by extending the 
reaction time. To graphically display the trend of DB, the data of DB vs Reaction time are shown in 
Figure 6. DB increases sharply in the first 48 h and then shows a slow increase in the subsequent 48 
h. Compared with the Conversion, the reason is that the increment of Conversion is decreased during 
the period 48–96 h, which means the reaction rate (Rp) is lower. On the one hand, a long reaction time 
increases the number of dormant-breaking dormant process, thus more monomers are captured by 
the polymer chains, and with the consumption of monomer, the reaction rate decreases, and gel 
formation is effectively avoided. On the other hand, the propagation of the main chain and side chain 
increase slowly, resulting in the increment of Mw slowing down. The reaction probability of vinyl 
coming from hyperbranched polymers is also decreased, which is not conducive to forming much 
more branch chains, thus the DB shows a slow increase. 

Table 3. Effect of reaction time on polymerization. 

Samples Time Mw (× 104) Mw/Mn Conversion α DB LCST 
L7 24 h 1.7 1.85 61% 0.33 66% 15 °C 
L4 48 h 10.3 1.97 74% 0.29 83% 11 °C 
L8 72 h 19.8 2.43 79% 0.27 85% 8 °C 
L9 96 h 26,4 2.98 83% 0.22 89% 6 °C 

Monomer:CTA:I = 20:1:1 mmol; Temperature: 80 °C; DMF = 4 mL. 

 

Figure 6. The reaction time vs. DB% and the reaction time vs. Conversion%. 

3.4.3. Effect of CTA’s Concentration on Polymerization 

Table 4 is the effect of CTA’s concentration on polymerization. According to the rule of RAFT, 
the activity of free radicals R• can initiate the polymerization; however, the intermediate radicals as 
the dormant radicals in the system cannot initiate monomers. Therefore, the polymerization rate will 
decrease when the CTA’s concentration increases. As the concentration of CTA reached 5 mmol, no 
polymers were collected by using the method of precipitation, which could be attributed to the lower 
polymerization rate that resulted from the chain transfer reaction at high CTA concentration. On the 
contrary, DB displays an increase trend compared with Mw and Conversion. This is consistent with 
our previous work. In the reaction system, the propagating chain free radicals possess large steric 
hindrance; it is much easier to initiate the vinyl of monomers. Compared with propagating chain free 
radicals, steric hindrance of initial free radicals is small, which mitigates the steric hindrance effect 
and improves the reaction probability of pendant vinyl, leading to higher DB. As the RAFT reaction 

Figure 6. The reaction time vs. DB% and the reaction time vs. Conversion%.



Polymers 2016, 8, 135 9 of 14

3.4.3. Effect of CTA’s Concentration on Polymerization

Table 4 is the effect of CTA’s concentration on polymerization. According to the rule of RAFT,
the activity of free radicals R‚ can initiate the polymerization; however, the intermediate radicals as
the dormant radicals in the system cannot initiate monomers. Therefore, the polymerization rate will
decrease when the CTA’s concentration increases. As the concentration of CTA reached 5 mmol, no
polymers were collected by using the method of precipitation, which could be attributed to the lower
polymerization rate that resulted from the chain transfer reaction at high CTA concentration. On the
contrary, DB displays an increase trend compared with Mw and Conversion. This is consistent with
our previous work. In the reaction system, the propagating chain free radicals possess large steric
hindrance; it is much easier to initiate the vinyl of monomers. Compared with propagating chain free
radicals, steric hindrance of initial free radicals is small, which mitigates the steric hindrance effect
and improves the reaction probability of pendant vinyl, leading to higher DB. As the RAFT reaction
mechanism points out, the number of initial free radicals will increase along with the increase in the
CTA’s concentration, which is helpful to improve DB for HPNPAMs.

Table 4. Effect of CTA’s concentration on polymerization.

Samples Monomer:CTA:I (mmol) Mw (ˆ 104) Mw/Mn Conversion α DB LCST

L10 20:0.5:1 14.4 2.68 86% 0.33 72% 7 ˝C
L4 20:1:1 10,3 1.97 74% 0.29 83% 11 ˝C

L11 20:2:1 6.9 1.71 69% 0.27 86% 14 ˝C
L12 20:3:1 1.3 1.54 43% 0.20 90% 17 ˝C
L13 20:4:1 – – – – – –

Temperature: 80 ˝C, Time = 24 h, DMF = 4 mL.

3.5. Temperature Response Performance of HPNPAMs

As shown in Figure 7, at a relatively low temperature, a certain concentration of the polymer
solution is transparent. As the temperature increases, the solution gradually becomes cloudy, and
this change process is reversible. This phenomenon indicates that the HPNPAM has a temperature
sensitive performance. For the kind of poly(acrylamide)s, the phenomenon of LCST is concerned with
the number of carbons or the ratios of hydrophilic and hydrophobic groups as proved by the results of
Table 1. Screening out the data with the same molecular weight and different DB as standard, these
data are listed in Table 5. Their LCST values are closed although there is a big gap between the DB,
which indicates that DB has little influence on LCST. If DB is not the major reason for the different
LCST values, molecular weights will be the key factor. As Zhou pointed out, the macromolecules with
higher Mw will undergo the phase transition first [22]. LCST curves of L4, L7, L8 and L9 are shown in
Figure 8. LCST increased with molecular weights, which is consistent with Zhou’s conclusion. The
same trend also appears in Tables 2 and 4.

Table 5. Effect of DB% on LCST of HPNPAMs.

Samples Mw (ˆ 104) Mw/Mn Conversion α DB LCST

L7 1.7 1.85 61% 0.43 66% 15 ˝C
L2 1.4 2.52 41% 0.44 55% 15 ˝C

L12 1.3 1.54 43% 0.20 90% 17 ˝C
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Figure 8. The curves of transmittance versus temperature of L4, L7, L8 and L9. Solution concentration:
3 mg¨ mL´1; heating rate: 0.1 ˝C¨ min´1; pH = 7.

3.6. pH Response Performance of HPNPAMs

For HPNPAMs, amide groups can combine with acid, leading to the change of the dissolved
condition. Therefore, LCST should be tuned by the pH of the solution. The results are shown in
Figure 9. LCST is tuned from 11 to 23 ˝C when the pH value decreases from 7 to 3. The acidity of
the solution is stronger, the number of protonated amide groups is higher, which provide stronger
hydrophilic property, resulting in LCST gradually increasing.
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3.7. DLS and SEM Analysis

DLS and SEM were further employed to investigate the mechanism for LCST. As previously
reported, nanomicells aggregate to large particles as the temperature is above the cloud point, which
results in the decrease of transmittance for the polymers’ solution. Because backbone-thermoresponsive
hyperbranched polymers are composed of hydrophilic and hydrophobic segments in the backbone,
uniform nanomicelles can be formed when the concentration of the polymers’ solution is high. As
shown in Figure 10, the particle size of L4 in aqueous solution (pH = 4) was kept around 80 nm
when the temperature was below the LCST, which indicates that HPNPAM molecules form uniform
nanomicelles. This conclusion was also supported by the SEM. As described in the Methods section, a
drop of solution (L4) was quickly frozen by liquid nitrogen to keep the true morphology. In Figure 11A,
globular particles with sizes of 60–100 nm were dispersed on the slide surface.Polymers 2016, 8, 135                x11 of 13 
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Figure 11. The SEM of polymer solutions with different temperatures ((A) < LCST, (B) > LCST).

Therefore, for a sample with Mw (1.04 ˆ 105), a reasonable explanation is HPNPAM molecules
form uniform nanomicelles due to the amphiphilic macromolecules backbone. When the temperature
was higher than the LCST, hydrogen bonds between HPNPAM and the solvent were broken. HPNPAM
only showed a hydrophobic property; thus, the stable uniform nanomicelles were destroyed and
macromolecules aggregated together forming large particles. Figures 10 and 11B display the evidence
to support this mechanism. The size could reach 800 nm when the temperature increased to 25 ˝C.
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Compared with the scale length, the particle size was 300–400 nm or even greater when the temperature
was above the LCST.

3.8. Cytotoxicity Test of HPNPAM

In the biomedical field, cell viability is often used to determine the cytotoxicity and
biocompatibility for materials. The cytotoxicity against Hela cells was studied by using the MTT
assay. The resulting HPNPAM is homopolymer, the composition of every sample is the same, only
with different Mw and DB, so it is reasonable that only a sample for the cytotoxicity assays represents
all the samples. Figure 12 shows the cell viability after incubation with L12 at various concentrations.
The cell viability was around 100% for all of the concentrations after 6 h incubation with L12. The
cell viability could reach 80% even when the cells were incubated for 24 h with concentration of
15 µg¨ mL´1. The cytotoxicity test results showed that the toxicity of HPNPAM in a short period of
time was very low. As everyone knows, the half-life of the drug determines its carrier’s residence time
in the cell, and the half-life of the drug is usually less than 24 h; after 24 h, the carrier material may also
be discharged through metabolism. Therefore, the HPNPAM’s low cytotoxicity has initially led to its
potential applications for drug delivery systems.Polymers 2016, 8, 135                x12 of 13 
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4. Conclusions

In conclusion, hyperbranched poly(bis(N,N-propyl acryl amide)) was obtained by using RAFT
polymerization as a method. The correctness of HPNPAM was confirmed by IR and NMR spectroscopy.
We discussed in detail the effects of reaction conditions on the polymer molecular weight, degree
of branching and monomer conversion. The results demonstrated that within a certain range of
temperature and time, molecular weight, degree of branching of the polymer and monomer conversion
gradually increase as the temperature rises. In addition, more chain transfer agents can make the
polymer molecular weight and monomer conversion rates relatively low, as well as narrow the
molecular weight distribution and increase the degree of branching. In addition, the thermo-sensitivity
was also discussed in this paper, and the result showed that the HPNPAM has temperature-sensitive
responsiveness and pH responsiveness. Cytotoxicity tests show that the HPNPAM has low cytotoxicity
and exhibits potential for biomedical applications.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/8/4/135/s1. Figure
S1: FTIR spectra of monomer and hyperbranched polymers; Figure S2: The plots of LogMw vs. Log
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Molecular weight of HPNPAMs were determined by a Viscotek 270-MDSEC equipped with 
RI, viscometer, and LS triplet detectors. Since this instrument is able to measure 
\emph{M}\textsubscript{w} and intrinsic viscosity (  ŋ    ) at the same time (L10 α = 0.44,

L4 α = 0.29, L11 α = 0.276, L12 α = 0.20); Figure S3: 1H NMR spectra of L2, L3, L4, L5, L7, L8, L9, L10, L11, L12;
Figure S4: The curves of transmittance versus temperature of L2, L3, L4 and L5 (Reaction temperature: L2 = 50 ˝C,
L3 = 70 ˝C, L4 = 80 ˝C, L5 = 90 ˝C); Figure S5: The curves of transmittance versus temperature of L7, L4, L8 and L9
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(Reaction time: L7 = 24 h, L4 = 48 h, L8 = 72 h, L9 = 96 h); Figure S6: The curves of transmittance versus temperature
of L10, L4, L11 and L12 ((Monomer:CTA:I): L10 = (20:0.5:1), L4 = (20:1:1), L11 = (20:1.5:1), L12 = (20:2:1)).
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