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Abstract: We present a density functional approach to quantitatively evaluate the microscopic
conformations of polymer chains with consideration of the effects of chain stiffness, polymer
concentration, and short chain molecules. For polystyrene (PS), poly(ethylene oxide) (PEO), and
poly(methyl methacrylate) (PMMA) melts with low-polymerization degree, as chain length increases,
they display different stretching ratios and show non-universal scaling exponents due to their
different chain stiffnesses. In good solvent, increase of PS concentration induces the decline of
gyration radius. For PS blends containing short (m; = 1 — 100) and long (m = 100) chains, the
expansion of long chains becomes unobvious once 1, is larger than 40, which is also different to the
scaling properties of ideal chain blends.
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1. Introduction

The description of macromolecular conformations in various environments is an outstanding
problem in polymer physics [1-8]. The scaling properties may be altered in different media and
polymer ratios. Theoretical concepts of polymer physics have frequently been used to establish the
connection between polymer microstructure and dimension [9-11]. On the other hand, the advances
in experimental techniques, such as neutron scattering methods, allow a direct measurement of the
intramolecular and intermolecular structure, thus providing, in principle, the possibility of testing
these theories [11-14].

The stretching of polymers has been treated exhaustively by a number of Flory-type mean
field theories based on general principles that relate the dimensions and the length of a chain to its
free-energy [15-18]. These theories provide reasonable scaling exponent that correlate the gyration
radius (Rg) of polymer chain to its length (N) via RgocN. A prerequisite for application of these
theories is that Ry at 0-state are known, which serves as an essential reference state. Although
the scaling exponent at 0-state has been determined as v = 1/2, the pre-coefficient of the relational
expression is still unavailable. Moreover, since the free-energy expression is independent of microscopic
inter- and intramolecular structures, the quantitative application of these theories and their comparison
to experimental results in different conditions are still far from satisfactory.

Polymer reference interaction site model (PRISM) integral equation provides a framework
for describing the microscopic structures of uniform polymeric fluids [19,20]. The intermolecular
correlation functions are calculated for a given set of intramolecular correlation functions after the
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equation is formulated and coupled with a closure relation. It has been successfully applied to describe
the intermolecular structure of a broad range of polymeric systems [21-23]. Since the intramolecular
correlation function is typically unknown, the equation suffers from a serious self-consistency problem.
Although this problem can be partially solved by involving a semiflexible chain model or inserting
a single-chain molecular simulation to integrate the intra- and intermolecular correlation functions,
this strategy is restricted to improve the accuracy of intermolecular correlation function, whereas the
intramolecular correlation function cannot be derived from the equation. Besides, the integral equation
approach suffers inconsistency among different routes for thermodynamic properties. As such, the
structure description provided by the PRISM is generally qualitative. In order to present a quantitative
evaluation to the intramolecular correlation function, an explicit free-energy analysis of the system is
undoubtedly necessary.

Classical density functional theory (DFT) provides another route to represent both structural
and thermodynamic properties of polymeric fluids [24-26]. The theory for fluids is based on the
minimization of grand free-energy functional, and gives prediction for the equilibrium free-energy
and microscopic structure of the components. In particular, the theory yields self-contained structural
and thermodynamic properties and employs no molecular simulations as input. In recent years, an
accurate density functional approach has been developed for polymer systems by combining the
modified interfacial statistical association fluid theory [27-30]. The excess Helmholtz free-energy due
to polymerization is related to the association equilibrium through the multibody cavity correlation
functions. In order to characterize the intramolecular correlation function, a test-particle method has
been integrated into a relatively simple DFT to calculate the local inhomogeneous density profile of
the polymeric fluid in the external field of one segment fixed at the origin [31,32]. Such DFT is based
on the first order thermodynamic perturbation theory for polyatomic molecules. It avoids molecular
simulations as input and shows the advantages of self-consistency among inter- and intramolecular
correlation functions, and is very accurate in comparison with simulation data for freely jointed
hard-sphere chains. The drawback of the theory lies in its ideal chain model. In fact, different polymers
in experiments have different degrees of stiffness to their backbones.

There is considerable interest in developing a theory capable of accurately predicting the
microscopic conformation of complicated polymer fluids to decipher the stretching properties. In this
paper, we present a density functional approach by combing the PRISM equation, the test-particle
method, and the modified interfacial statistical association fluid theory [32] to deal with actual
polymer conformations, particularly the intramolecular correlation functions. The radii of gyration of
polystyrene (PS), poly(ethylene oxide) (PEO), and poly(methyl methacrylate) (PMMA) are calculated to
analyze their expansion or contraction under different conditions. We utilize coarse-graining chain for
modeling the conformational behavior of the polymers with chain stiffness, reflecting the dependence
of bending energy on the angle between two nearby bond or tangent vectors. Since all parameters are
taken from the general force field [33-35], all results given by the theory are strict predictions.

The rest of the paper is organized as follows: Section 2 presents the whole molecular model and
the DFT calculation method. Section 3 shows the calculation results of gyration radius and structure
factor. The expansion effects are evaluated for polymer melts, concentration, and blends containing
long and short chains. Section 4 summarizes the final conclusion.

2. Model and Approach

To simplify the complicated polymer conformation, we use a coarse-grained model to describe
polymer chains. Each polymer chain is represented by a series of bonded segments and obeys the
semiflexible chain conformation. The segment diameter is given by repeating unit. Suppose that one
segment from an arbitrarily selected chain is fixed at the origin. The system considered is equivalent to
a mixture of four polymeric components (F, S, C andD) in a symmetric external field due to the fixed
segment, as depicted in Figure 1.
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Figure 1. Schematic of the polymer model used in this work. Here, a middle segment from a polymer
chain (filled black sphere) is fixed at the origin. The density distributions of segments from the
tethered fragments (C and D), free (F), and short (S) chain molecules are related to the intra- and
intermolecular segment-segment correlation functions. In a homogeneous polymer melt, the short
chain no longer exists.

The free molecules are represented by F, composed of mr segments; the chemically identical
short chain molecules are represent by S, composed of mg segments; while the tethered fragments are
represented by C and D, composed of m¢ and mp segments, respectively. At equilibrium, the density
distributions of free chains, short chains, and the tethered fragments satisfy the variational relations
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where () stands for the grand free-energy, pz(l) (r) (I =F, S, C, and D) is the density of the ith segment
on chain / at position r. For a homogeneous polymer melt, the contribution of the S component is
automatically deleted.

The segment distributions of the free (F) and short (S) chains around the fixed segment are related
to the intermolecular site-site correlation function g;;(r) = p; j(r)/pp, where p; ;(r) is the density profile
of segments i on molecule F or S around the fixed segment j, and pj, is the bulk density of segment.
Whereas the distribution of segments from the fragments C and D are related to the intramolecular
correlation function w;;(r) = p; ;(r), where p; ; (r) is the density profile of segment i on the tethered
chain (C or D) around the fixed segment j. There is only one tethered polymer chain, therefore the
normalization condition is § w; ; (r)dr = 1. As a consequence, the site-site intra- and intermolecular
correlation functions specify all detail microscopic structures of a polymeric fluid. In particular, the
gyration radius is a version of the intramolecular correlation function. From the site—site correlation
Mg mg
2 2 &ij(n),

i=1j=1

functions, we can calculate the average intermolecular correlation function with g (r) = ﬁ
F

mp mp
and the average intramolecular correlation function with w (r) = m% > 2 wij(r).
i=1j=1
The system considered above is equivalent to a mixture of four polymeric components
(F + S+ C+ D) in a symmetric external field due to the fixed segment. The grand potential is related

to the Helmholtz free-energy A [p (r)] through the Legendre transform
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The first summation is over all chains [ in the mixture (F, S, C, D), and the second summation is over
all segments of chain I. For any segment that is not immediately bonded with the fixed segment, the
external potential is identical to the Lennard—Jones (L]) interaction potential. While for two segments

gl

where ;" is the chemical potential of that segment i, VeiXt is the external field acting on that segment i.
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that are directly connected to the ﬁxed segment, the external potential includes the bonding potential
Vbond, given by exp[—Bopond (17, 1)] = 8(|x; — 1j| — 0) /47t6?; here segments i and j are nearest neighbors
from the same molecule, and 6 is the Dirac-delta function. The bond length (L), bond angle (8), and
nonbonded parameters (o and ¢) for PS, PEO, and PMMA are summarized in Table 1.

Table 1. Bond and nonbond coarse-grained force field parameters.

Species o (A) e(k) 0(deg) L(A)
PS2 5.08 62.5 140 2.46
PEOP 4.30 405.8 130 3.30
PMMA © 6.50 150.9 122 2.80

2 Reported in Reference [33]; b Reported in Reference [34]; © Reported in Reference [35].

The total Helmholtz free-energy functional can be decomposed into ideal
and excess contributions [27]. The ideal contribution is generally represented by
id — §drd; pl(l) (r) [ln [pl(l) (r)]| — 1]. The excess contribution consists of hard-sphere repulsion,
long-range attraction, chain stiffness, and chain connectivity over the ideal gas state of the
atomic mixture.
The free-energy due to hard-sphere repulsion is given by the fundamental measure theory [24]

Ahs . J drd™[n (3)

where ®"[n,,(r)] is the free-energy density, which stems from the modified fundamental theory [36],
including both the scalar and vector contributions

—ny, - 2 3_3 .

NS [y, ()] = [—noln (1—ng) + "2 52 4 L <n31n (1—n3) + (133)2) 2 n‘; “VZ] 4)
where 1 (r) withy =0, 1, 2, 3, Vj, V; are the weighted densities. The details have been given
elsewhere [36].

The long-range attractive contribution to the free-energy functional can be simplified as

Aatt[ ZZZJerdrﬁ M)l ( N — ) ®)

where ua]tt( r) is the interaction potential between any two species i and j, and can be represented by a
cut-and-shifted L] potential with a Weeks—Chandler—Anderson separation [37,38].

The functional A1 is constructed to account for the contribution of conformational entropy
given by the polymer stiffness, which is implemented to improve the accuracy for description of real
polymer chains

At [ o0 ZZ J dr J dr ol () o) ()5 (| — v )

with the approximation ctiff(r) = csemiflexible () _ (flexible ;) Fere csemiflexible (1) and cflexible (1) denote
the direct correlation functions of semiflexible and flexible polymer chains. They are calculated from
the PRISM integral equation [39]

—/ —/ —
r

h(r) = d7’fd7”w<|7— Ne(| 7 =7 Dw(r”) + ph(r")] @)
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where h(r) is the total correlation function and w(r) is the intramolecular correlation function. w(r)
is cursorily represented by the Koyama model [40] for flexible or semiflexible chains. To solve the
equation, we adopt the Kovalenko-Hirata approximation [41].

To compute the free-energy contribution due to chain connectivity, we use the Tripathi-Chapman
functional [27], in which the chains are treated as a sequence of m bonded monomers, enforced by
giving each segment a label and allowing segments to exclusively bond to their specific matching
segments. It is indicated as

il
c am l i, Xi(r) 1
actin [p(e)] - | erp < ¥ <1nXAl(r’)— A +2> ®)

Aer(®)

in which the first summation is over all the segments 7, and the second is over all the association sites
on segment i as I'()), representing the set of all associating sites on segment i. Xf&l is the fraction of
segment i that are not bonded at their association site A.

1

il 0] Q)
1+ [drXg ( (')A (x,x')p; " (1)

XE(r) = €)

where j denotes the neighboring segment that will bond to segment i, and

Afjl) (rr) = KFIS.I) (r,¥) yl(jl) (r,1'). Here K is a geometric constant that accounts for the volume

available for bonding between segments, and Figl) (r,') = exp ({5&0 — ng ond (01 )) — 1 represents
0]

the association Mayer f-function. y:;

i (r, r ) is the cavity correlation function. The details have been

given elsewhere [27].
The functional derivatives of the free-energies are required to obtain the equilibrium density

profiles, which are given as 00}/ &pl(l) (r) = 0. As aresult, the Euler-Lagrange Equation is written as

e Ay vy s g Ahs tt stiff
np’(1) + ¥ XY (r) -} XX el )"“‘f W gy 4 S84 4 SBAT 4 SBAT _ g Vi)  (10)
Aer() q=FSCDy=1 7/ ) Sp; () 8p; () 8p; ()

where {Y'} is the set of all segments bonded to segment . This equation can be rewritten to give the
density profile

p’(l)(r) - exp (ﬁuMl) exp [Dl( )( r) — BVéxlt( )] 11(11)( 1)l 2(11)( r) (11)
with
D'(l)(r) :% M {Y/}J (q 5lny2;;/( )dr’_ 6[3(;;1*15 B 5(3(lf)latt - 5[3(I?)sﬁff W
q=F, 5p; /(1) 5o (1) sp(r)  p ()

In Equation (11), pyy, is the bulk chemical potential of chain /. The multiple integrals Il(ll) (r) and

12(11.) (r) for the free and short chains (I = F, S) are solved in a recursive fashion and are given by

1) =1
l'zl(r) I I I / / (13)
1) = J 1) (exp [ DY () - BV ()| A, (v ) (POl ) ar

{12(9 = [ 15 @exp [ DI () — Ve )| A (n ) (FELSE= )

(14)
B, =1
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where O(r) is the Heaviside step function. When applied to the tethered chains (I = C, D), Il(fi) (r) and
10,

5 ; (r) can be expressed as

(o) =1

! ! O oO—|0—r

1)) = exp [ DY (0) ~ BVA(0)] A (0,1) (22 lo=r) )
1) = §1i) exp [ D) () - svgxt“ )] 0, 1) (<o) gy

(o) = {15 1“ Vexp [ DY ()~ BYZ4E)] Al (o >( roletol) gy
12(11) S 21+1 exp[ (l) ( Vel;tll r ] 11+1 (M) dr’ (16)
| zgfgﬂ]@ -1

The chemical potentials of the tethered fragments C and D can be determined using the

normalization conditions f47'cr2 (c )( )dr = 1 and f4ﬂrzpl(D)(r)dr = 1, where i = 1,2,3,...m,
forI = C or D. For the first tethered segment (segment “1” of [ = C or D),

[ 472 {exp (B exe | D00 - Vi | Kl 0 0} ar =1 17)

which yields exp(Buy,) = 1/ [exp(D(l)( ))Il( 1)(0) Iz(ll)(cf)] Using other segments yields equivalent
results for p; . Substituting this into Equation (11), we obtain

Slr—
o () = of?) (1) = 200 )

which matches the known condition for the tethered segment. Solving for the other segments
(i=12,3,..m;) gives

1
exp o] {0 e

o () = exp [D{ (1) - BV | 1) (03]} (1) 19)

In calculating inter- and intramolecular correlation functions, we fix the segments of a polymer
chain one by one and the density distributions around the fixed segment are calculated with Equations
(11)-(19). Because of symmetry, mp/2 (if mr is even) or (mp + 1)/2 (if mr is odd) calculations are
required for predicting the detailed local structures of polymer chains consisting of mp identical
segments. The density profiles are solved using the Picard-type iterative method. In the theoretical
calculations, the computation domain is divided into equally-spaced grid points along the dimension
normal to the surface. The grid spacing of 0.020 is used in our calculation. At every iteration step, a
new estimate to the density profiles is calculated with Equation (11), and then is mixed with the old
one. The result acts as the new guess for the next iteration. This procedure is iterated until numerical
self-consistency is achieved, in the sense that the difference of density profile between the preceding
step and the present step is less than 5.0 x 10~ #. All the convolution results of the equations are directly
evaluated in the real space. In order to save computational time, we focus on those low-polymerized
systems, where the monomer number is not more than 120. Unless noted otherwise, all calculations
are performed at a total packing fraction of 0.40, which corresponds to a typical dense melt value with
a realistic dimensionless isothermal compressibility.

3. Results and Discussion

Figure 2 presents the inter- and intramolecular correlation functions for the PS chain given by the
DFT, along with the simulation results that are attainable from the literature [42]. It is shown that the
overall shape of theoretical curves and the positions of the main peaks can match the simulation results,
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indicating that the current theoretical model is suitable to quantitatively evaluate the microscopic
structure of polymer melts. The deviations are probably due to the approximation of the model,
in which the tacticity or torsional angle effects are overlooked. As shown in Figure 2a, on short
length scales, the local structure of the PS chain is seen to have “liquid-like” tendency, displaying
shells of first-nearest neighbors. Over longer distances, the curves exhibit a spatially slowly varying
“correlation hole”, corresponding to the relative absence of neighboring sites due to intramolecular
screening. Figure 2b presents the corresponding “nonbonded” intramolecular correlation functions.
The discontinuity at 7 = 7 A is due to the direct interaction between next nearest neighbors along the
polymer chain.

12 12
®

09 Lo\
= ° This work
&b b e Simulation data

0.6 | H

This work
0.3} . ® Simulation data 0.3
L]
00 1 ry h? 1 1 1 1 0 0 1 1 1 1
3 6 9 12 15 6 9 12 15
r(angstrom) r(angstrom)

Figure 2. Comparison of the average (a) inter- and (b) intramolecular correlation functions of the PS
chain obtained from theory and molecular simulations [42] at 413.2 K.

As the essential criterion to evaluate polymer structure and dimension, the gyration radius R,
can be calculated from the intramolecular correlation function [40,43]

2 Q0
Ry = \/T:Jo rtw (r) dr (20)

to quantitatively analyze polymer conformation. Figure 3a shows R, for PS chains at T = 500 K as
function of chain length in comparison with the available experimental data [44]. It is clear that both the
PRISM equation and the Flory theory cannot provide reasonable intramolecular structure description.

In contrast, a good agreement has been achieved between DFT calculations and experimental values in
the whole range of chain length. In particular, the scaling exponents derived from the Flory theory
and the DFT are fitted in Figure 3b. The values are 0.50 and 0.63, respectively. It shows clearly that,
at a low degree of polymerization, the exponent from DFT is obviously higher than the universal
value (0.50). In other words, actual polymers at a low degree of polymerization display non-universal
scaling behavior and have a relatively larger scaling exponent, which can be attributed to their rigid
characteristics. Moreover, as the chain becomes stiffer, the excluded volume increases, leading to
increasing Rq. A similar result was also derived from molecular simulations [45,46].
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Figure 3. (a) Gyration radius as a function of chain length for PS chains at 500 K; (b) Determination of
the scaling exponents. The circles are calculated results and the solid line is the best linear regression of

the circles.

Another consequence of the gradual ramp-up of polymer stiffness manifests itself through the
form factor, which is particularly useful for studying the scaling behavior. Generally, the form factor is
derived from light scattering experiments. In the theoretical model, it can be directly calculated from
the Fourier transform of the intramolecular correlation function [47]

SE I IR ) DB el

i=1j=1 i=1j=1

where 7;; is the distance between segments i and j, and g denotes the magnitude of the scattering wave
vector q. The expression for the form factor of a free chain is the well-known Debye equation

2
P(q) = (qué)z(eXP(—qué) -1+ qué) (22)

Figure 4a shows the form factors for PS melt with molecular weight 1 x 10* in  solvent. It seems
that a good agreement can be achieved between DFT calculations and the experimental values [48],
whereas the Debye expression is not always valid in the fractal regime (g > 1.0). This can be seen
by the gradual transition from a slope of —2 for the Debye equation to a slope of —1 for PS chains.
Figure 4b shows the form factor of several different lengths of PS melt. In particular, we are interested
in the so-called fractal regime. This regime provides information related to the chain statistics inside
the coil, which can reveal details about stiffness and self-avoiding behavior. In the regime, the results
given by two equations are closer as the polymerization degree increases. One can expect that on a
scale which is large enough, they will again appear as flexible coils.
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Figure 4. (a) Comparison between experimental data of the form factors and calculated ones for PS
melt with the molecular weight 1 x 10* in 0 solvent; (b) Form factor for different lengths of PS melt at
500 K. Solid lines correspond to DFT calculations in Equation (21). Symbols show the curve obtained
from the Debye expression.

A standard way to examine the structure of a polymeric chain at all distances is through the static
structure factor S (g), which is defined as

S(q)=w(g)+ph(q) =w(q)+plg(q) —1] (23)

and the results for PS chains at different degrees of polymerization are presented in Figure 5. As can
be seen, the general shape of the plots could be divided into three distinct regions. In the small wave
vector regime (7 < 0.2), S (g) is very sensitive to the degree of polymerization, both in magnitude
and functional form. Increase of polymerization degree leads to enhanced S (7). The qualitative
behavior of S (g) at small wave vectors is controlled by a competition between the intramolecular
fluctuation and the intermolecular correlation. As the wave vector increases, there is a plateau-like
regime (0.2 < g < 0.4) for S(g) (self-similar structure of the chains). This regime increases as the
degree of polymerization increases. The plateau regime of high wave vectors is compound in nature,
reflecting both the fixed bond length constraint and local intermolecular structure in the melt. In
the high wave vector regime (7 > 0.4), all the different PS melts have the same structure, i.e., the
same S (7).

0.1 4 1
q (angstrom )

Figure 5. Structure factor of PS chain with three values of polymerization degree at 500 K.
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Figure 6 shows the predicted gyration radii of PEO and PMMA chains in comparison respectively
with the simulation [34] and experimental ones [49]. In Figure 6a, the theoretical predictions are
generally in good agreement with the reported values. The results indicate that the current model is
quantitatively reliable for describing the scaling properties in a broad range of polymeric systems. The
scaling exponents for the two polymers with low polymerization are fitted in Figure 6b. The values
are 0.59 and 0.56, which are smaller than the exponent for low-polymerized PS chains. The scaling
exponents give an indication of stretching ratios. Among these three polymer melts, PS displays the
maximum stretching ratio, whereas PEO has the minimum one. In this regard, the stretching ratio
increases with enhancing chain stiffness.

40 1.6
(®)
-~ 32F =] 4|
g %
g =
%
2 24r 12
=
mbl)
16 1.0 |
—— Theoretical prediction L]
= Experimental data Linear fit of PMMA chain
el e Simulation data 0.8 Linear fit of PEO chain
0 1 1 1 1 1 06 | | | N
20 40 60 80 100 120 0.9 1.2 15 1.8 21
m log m

Figure 6. (a) Gyration radius as a function of chain length for PEO and PMMA melts at 300 K;
(b) Determination of the scaling exponents for the two polymers. The squares and circles are calculated

results and the solid line is the best linear regression.

Figure 7 gives the gyration radii of PS chains with various packing fractions (7). Calculations are
carried out for 7 in the range of 0.04 to 0.40. The highest packing mimics neat melt condition, while
the lowest is more representative of a dilute solution. At low concentrations, the chains are extended
but not rodlike. As the concentration increases, the size of PS chains decreases because of the greater
screening of the intramolecular interactions. Another major result is that the change in averaged chain
dimension is on the order of ~10% due to an incomplete cancellation of the long-range intra-chain
excluded volume and condensed-phase-induced interactions. These modest nonideal effects are of the
same qualitative size as discovered in diblock and triblock copolymer melts [50,51].

28

(angstrom)
N
~

g

R

25 - - ' '
0.0 0.1 0.2 03 0.4

Figure 7. Gyration radius of PS chain as a function of packing fraction at 500 K. The chain length is
fixed at m = 100.
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Finally, we consider the statistical properties of relatively long chains (polymerization degree
m = 100) immersed in a monodisperse melt of shorter, chemically identical chains (polymerization
degree m; = 1 ~ 100). Such systems can act as a fundamental test of the standard model for polymer
conformation. Figure 8 describes the gyration radius of a long chain as a function of chain length
of a short-chain molecule. If m is much larger than m;, one sees that the short chain molecules
acts as a good solvent and the long chains are swollen, owing to the excluded volume effect. As
my increases, the swelling extent of long chains decreases, since the excluded volume effects are
screened by the surrounding polymer chains. The expansion of long chains becomes insignificant as
the segment number of shorter chains is larger than a certain value (17 = 40). In the early theoretical
investigations [9,15], it was predicted that polymer chains (with segment number 1) can be expanded
in its homologue (with segment number ;) in the range of m; < m'/2. However, these investigations
are based on an ideal chains model. Actual polymer chains have larger excluded volume. From the
present theoretical model, we can find that the length range of m; has been enlarged for the stretching
of PS chain when compared to the ideal chain blends.

26.7

[\
o
~

(angstrom)

R
N
=N
-

258

255

252

0 20 40 60 80 100
my
Figure 8. Gyration radius of long chain PS (m = 100) as a function of chain length of short chain PS
(mq =1 —100) at 500 K.

4. Conclusions

We present a density functional approach to study the microscopic conformation of polymer
chains. The form factors, structure factors, and gyration radii have been calculated based on the cited
force field parameters of the coarse-grained model. Firstly, the effects of chain length to the scaling
properties of PS, PMMA, and PEO melts have been compared to clarify the contribution of chain
stiffness to the stretching ratios. The scaling exponents are 0.63, 0.59, and 0.56, respectively. The results
reveal that polymer chains display non-universal behaviors due to their different stiffnesses. On the
other hand, the effects of concentration on the stretching of PS chains have been calculated to evaluate
the influence of medium. As the packing fraction of PS chain increases, the gyration radius of low
polymerized PS declines. Finally, the swelling of PS chains blended with shorter PS chains has been
analyzed, and an enlarged expansion regime has been observed, which is different from the ideal
chain blends.
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