
polymers

Article

A Heterobimetallic Anionic 3,6-Connected 2D
Coordination Polymer Based on Nitranilate as Ligand

Samia Benmansour * and Carlos J. Gómez-García *

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna,
Valencia, Spain
* Correspondence: sam.ben@uv.es (S.B.); carlos.gomez@uv.es (C.J.G.-G.); Tel.: +34-963-544-423 (S.B. & C.J.G.-G.)

Academic Editors: Félix Zamora and Guillermo Mínguez Espallargas
Received: 12 February 2016; Accepted: 11 March 2016; Published: 16 March 2016

Abstract: In order to synthesize new coordination polymers with original architectures and interesting
magnetic properties, we used the nitranilate ligand (C6O4(NO2)2

2´ = C6N2O8
2´), derived from

the dianionic ligand dhbq2´ (2,5-dihydroxy-1,4-benzoquinone = H2C6O4
2´). The use of this

bis-bidentate bridging ligand led to [(DAMS)2{FeNa(C6N2O8)3}¨CH3CN]n (1) (DAMS+ = C16H17N2
+

= 4-[4-(dimethylamino)-α-styryl]-1-methylpyridinium), a 2D heterometallic coordination polymer
presenting an unprecedented structure for any anilato-based compound. This structural type is
a 3,6-connected 2D coordination polymer derived from the well-known honeycomb hexagonal
structure, where Fe(III) ions alternate with Na+ dimers (as Na2O12 units) in the vertices of the
hexagons and with an additional [Fe(C6N2O8)3]3´ anion located in the center of the hexagons
connecting the three Na+ dimers. The magnetic properties of compound 1 show the presence of
paramagnetic isolated high spin Fe(III) complexes with a zero field splitting, |D| = 8.5 cm´1.

Keywords: anilato ligands; heterometallic; coordination polymers; magnetic properties, high spin
Fe(III) complex

1. Introduction

Coordination polymers, including its subgroup of metal organic frameworks (MOFs) or porous
coordination polymers, represent a very active research area mainly due to the huge structural
diversity [1–6] of these solids and the many interesting and varied properties that they may present.
Thus, properties such as porosity [7], gas adsorption [8], ionic exchange [9], catalysis [10], energy
production [11], gas separation [12], electrical [13] and proton conductivities [14], luminescence [15,16],
ferroelectricity [17], magnetism [18], and non-linear optics [19] have been reported in coordination
polymers. In some cases, the materials are multifunctional and show two or more of these properties
simultaneously [20]. A wise choice of the precursor building blocks (tectons) and their interactions
(synthons) [21] may lead to the formation of many different structures and topologies [22]. Two
important steps forward are the so-called secondary building units (SBU) approach [23] that has
resulted in coordination polymers and MOFs with controlled structures and porosities [23–25] and
the complex-as-ligand approach [26–28], where a pre-formed complex containing additional free
coordinating atoms can play the role of a ligand to coordinate with other metal ions to form homo- or
heterometallic coordination polymers.

In the last two years, we have been using anilato derivatives of the type C6O4X2
2´ (X = H, Cl,

Br, I, and NO2, Scheme 1) to prepare several new families of heterometallic coordination polymers
including: (i) hexagonal honeycomb layers exhibiting porosity and chirality where the magnetic
ordering temperature can be easily tuned by changing X [29]; (ii) paramagnetic honeycomb layers with
alternating M(III) and M(I) ions [30]; and (iii) a chiral paramagnetic 3D network with alternating M(III)
and M(I) ions [30]. All these heterometallic coordination polymers were prepared by using the SBU and
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complex-as-ligands approaches with different M(I) or M(II) ions and pre-formed [MIII(C6O4X2)3]3´

building blocks [31]. In these systems, the open challenge is to achieve a control of the final
structure and topology obtained since the 2D and 3D heterometallic networksare very close in energy,
as evidenced by the simultaneous crystallization of both polymorphs in a single synthesis [30].
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Scheme 1. Structures of (a) nitranilate ligand and (b) DAMS+ cation.

In order to rationalize the synthetic conditions leading to either 2D or 3D lattices, we
explored different synthetic routes, changing the temperature, reagents ratios, presence of
template molecules, and even the addition order. This study has led to the synthesis of a
coordination polymer formulated as [(DAMS)2{FeNa(C6N2O8)3}¨CH3CN]n (1) (DAMS+ = C16H17N2

+

= 4-[4-(dimethylamino)-α-styryl]-1-methylpyridinium). This compound presents an original structure
in an anilato-based compound. Interestingly, the network present in 1 has been observed in
only two examples with the topologically related oxalato ligand [32,33]. In both cases, the
anionic [NaIMIII(C2O4)3]2 layers (MIII = Cr and Fe) are separated by layers with Na+ cations and
water molecules or layers of the organic donor bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF).
This finding constitutes an additional proof that anilato and oxalato are very closely related
ligands and that it is possible to extend all the chemistry performed with the oxalato ligand to
the anilato-based ones.

2. Materials and Methods

All the reagents used were commercially available and were used as received without any further
purification. The sodium salt of the nitranilate ligand, Na2[C6N2O8], was prepared as orange needles
according to a method found in the literature [34].

2.1. Synthesis of the Precursor Salt Na3[Fe(C6N2O8)3]

A solution of FeCl3¨6H2O (21.6 mg, 0.08 mmol) in H2O (2.5 mL) was added drop-wise to
an aqueous solution (20 mL) of Na2[C6N2O8] (65.8 mg, 0.24 mmol). The resulting solution was
heated at 60 ˝C to reduce the volume to 10 mL. The solution was cooled to obtain the precursor salt
Na3[Fe(C6N2O8)3] as a deep orange crystalline powder (42.1 mg, yield 65%). Elemental Anal. Calc.
for C18N6FeNa3O24 (Mw = 809.03): C, 26.72; N, 10.39. Found: C, 26.21; N, 10.18. FT-IR (νmax/cm´1,
KBr pellet): 2962(m), 2934(m), 2874(m), 1624(m), 1560(s), 1396(s), 1316(m), 1270(w), 1099(w), 1047(m),
1022(m), 918(w), 861(m), 775(m), 571(w), 505(w).

2.2. Synthesis of [(DAMS)2{FeNa(C6N2O8)3}¨CH3CN]n (1)

A solution of the precursor salt Na3[Fe(C6N2O8)3] (8.09 mg, 0.01 mmol) and
MnCl2.4H2O (1.98 mg, 0.01 mmol) in 4 mL of acetonitrile was mixed with a solution of
4-[4-dimethylamino)-α-styryl]-N-alkylpyridinium iodide (DAMSI) (3.66 mg, 0.01 mmol) in
4 mL of MeOH. The solution was left to evaporate at room temperature, resulting in the formation
of prismatic red single crystals of 1 suitable for X-ray single crystal determination after four days.
(4.48 mg, yield 35%). Elemental Anal. Calc. for C52H38FeN11NaO24 (Mw = 1279.75): C, 48.80; H, 2.99;
N, 12.04. Found: C, 48.21; H, 3.18; N, 12.18. Electron probe microanalysis excluded the presence of Mn.
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2.3. Single Crystal X-ray Structure Determination

A suitable single crystal of compound 1 was mounted on a glass fiber using a viscous hydrocarbon
oil to coat the crystal and then transferred directly to the cold nitrogen stream for data collection.
X-ray data were collected at 120 K on a Supernova Agilent Technologies diffractometer equipped with
a graphite-monochromated Enhance (Mo) X-ray Source (λ = 0.71073 Å). The program CrysAlisPro,
Agilent Technologies Ltd., was used for unit cell determinations and data reduction. Empirical
absorption correction was performed using spherical harmonics, implemented in the SCALE3
ABSPACK scaling algorithm. Crystal structures were solved with direct methods with the SIR97
program [35], and refined against all F2 values with the SHELXL-2014 program [36], using the WinGX
graphical user interface [37]. All non-hydrogen atoms were refined anisotropically, and hydrogen
atoms were placed in calculated positions and refined isotropically with a riding model. There is a
disorder in the CH3CN solvent molecules that appear with two possible orientations with a common
N atom located on a C2 axis. Data collection and refinement parameters are given in Table 1.

Table 1. Crystal data and structure refinement of compound 1.

Compound 1

Formula C52H41FeN11NaO24
F. Wt. 1,282.80

Crystal system Orthorhombic
Space group Ccca

a (Å) 17.0607(8)
b (Å) 24.6580(12)
c (Å) 26.2191(14)
α (˝) 90
β (˝) 90
γ (˝) 90

V (Å3) 11,029.9(10)
Z 8

T (K) 120
ρcalc (g.cm´3) 1.545

µ (cm´1) 0.379
F(000) 5272

Crystal size (mm3) 0.12 ˆ 0.09 ˆ 0.05
θ range (˝) 2.86–25.06

Total reflections 39,529
Unique reflections 4,885

Rint 0.1194
Data with I > 2σ(I) 2,904

Nv 425
a R1 0.0613

b wR2 0.1214
c GooF 1.057

∆ρmax, min (eÅ´3) +0.626
∆ρmax, min (eÅ´3) ´0.386

a R1 = Σ|Fo ´ Fc|/Fo; b wR2 = {Σ[w(Fo
2 ´ Fc

2)2]/Σ[w(Fo
2)2]}1/2; c GooF = {Σ[w(Fo

2 ´ Fc
2)2]/(Nobs ´ Nvar)}1/2.

CCDC-1457366 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Center at
www.ccdc.cam.ac.uk/data_request/cif.
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2.4. Physical Measurements

IR spectra (400–4000 cm´1) were recorded with a Nexus Nicolet (Madison, WI, USA) FT-IR
spectrophotometer in KBr pellets. Electron probe microanalysis was performed in a Philips SEM XL30
(Philips, Amsterdam, Netherland) equipped with an EDAX DX-4 microprobe.

Magnetic susceptibility measurements were carried out in the temperature range 2–300 K with
an applied magnetic field of 0.1 T on a polycrystalline sample of compound 1 with an MPMS-XL-5
SQUID susceptometer (Quantum Design, San Diego, CA, USA). The susceptibility data were corrected
for the sample holders previously measured using the same conditions and for the diamagnetic
contribution of the salt as deduced by using Pascal’s constant tables (χdia = ´619.1 ˆ 10´6) [38].

3. Results

3.1. Synthesis of Compound [(DAMS)2{FeNa(C6N2O8)3}¨CH3CN]n (1)

The synthesis of the title compound was performed using equimolar amounts of the pre-formed
complex [Fe(C6N2O8)3]3´, prepared as its Na+ salt, Mn(NO3)2¨4H2O, and the cation DAMS+

(=4-[4-(dimethylamino)-α-styryl]-N-alkylpyridinium). It is interesting to note that the Mn(II) ions do
not appear in the final product, but play an important role in the synthesis since all the attempts to
prepare compound 1 without the addition of Mn(II) ions failed. Given the strong affinity of Mn(II)
for the oxygen-containing ligands [39], we presume that the Mn(II) ions may help to the formation
of this original structure by the initial coordination to the NO2 groups of different [Fe(C6N2O8)3]3´

complexes. In this way, the Fe(III) complexes get close, as observed in the structure. The Na+ cations
present in the structure come from the precursor salt of the [Fe(C6N2O8)3]3´ complex.

3.2. Crystal Structure of Compound [(DAMS)2{FeNa(C6N2O8)3}¨CH3CN]n (1)

The asymmetric unit of compound 1 contains one [Fe(C6N2O8)3]3´ unit (Figure 1a), located in a
C2 axis, one Na+ cation located on a C2 axis (Figure 1b), and one DAMS cation located on a general
position (DAMS+ = 4-[4-(dimethylamino)-α-styryl]-N-alkylpyridinium) (Figure 1c).
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Figure 1. Ortep views of the fragments of the structure of compound 1 with the labeling scheme:
(a) structure of the [Fe(C6N2O8)3]3´ unit; (b) structure of the Na2O12 dimer; (c) structure of the
DAMS+ cation.

The structure of compound 1 is formed by cationic and anionic layers parallel to the ab
plane alternating along the c direction (Figure 2). The anionic layers can be formulated as
[Na2Fe2(C6N2O8)6]4´ and are formed by [Fe(C6N2O8)3]3´ anions and Na+ cations. The structure of
these layers can be described as a 3,6-connected 2D coordination polymer derived from the well-known
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hexagonal honeycomb lattice with Fe(III) and pairs of Na+ cations located in alternating vertices and
[C6N2O8]2´ ligands forming the sides of the hexagons (Figure 3). There are, albeit, two important
differences: (i) In 1, the vertices of the hexagons contain dimers of Na+ cations where the Na+ cations
are connected through four oxygen atoms from two [C6N2O8]2´ ligands (Figure 1b); and (ii) there is
an additional [Fe(C6N2O8)3]3´ anion in the center of the hexagons with the three nitranilate ligands
pointing towards the Na+ pairs, (Figure 3), giving rise to a final lattice that can be formulated as
[Na2Fe2(C6N2O8)6]4´ with the Schläfli symbol (43)2(46.66.83). The four negative charges are balanced
by four DAMS+ cations located between the anionic layers (Figure 2). There is one disordered
acetonitrile solvent molecule located in the anionic layer.
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The Fe(III) ions are surrounded by three bis-bidentate [C6N2O8]2´ anions that connect each
Fe(III) with a pair of Na+ cations and two Na+ cations from two different Na2

2+ pairs (Figure 3).
The coordination around the Fe(III) ions is a distorted octahedron with Fe–O bond lengths in the range
1.997–2.018 Å (Table 2), similar to those found in other related [Fe(C6O4X2)3]3´ complexes [29–31].

Table 2. Main bond lengths (Å) and angles (˝) in compound 1.

Atoms Distance Atoms Distance

Fe1–O2 1.995(2) Na1–O1 c 2.876(3)
Fe1–O2 a 1.995(2) Na1–O1 d 2.876(3)
Fe1–O3 2.016(2) Na1–O5 2.466(3)

Fe1–O3 a 2.016(2) Na1–O5 b 2.466(3)
Fe1–O12 2.016(2) Na1–O6 2.417(3)

Fe1–O12 a 2.016(2) Na1–O6 b 2.417(3)
Na1–O1 2.428(3) Na1–Na1 d 3.256(4)

Na1–O1 b 2.428(3)

Atoms Angle Atoms Angle

O2–Fe1–O2 a 172.77(14) O3–Fe1–O12 166.86(10)
O2–Fe1–O3 79.74(10) O3 a–Fe1–O12 95.48(10)

O2 a–Fe1–O3 95.18(10) O2–Fe1–O12 a 96.89(10)
O2–Fe1–O3 a 95.18(10) O2 a–Fe1–O12 a 88.67(10)

O2 a–Fe1–O3 a 79.71(10) O3–Fe1–O12 a 95.48(10)
O3–Fe1–O3 a 91.75(15) O3 a–Fe1–O12 a 166.86(10)
O2–Fe1–O12 88.67(10) O12–Fe1–O12 a 79.66(15)

O2 a–Fe1–O12 96.89(10)

Symmetry operations: a = ´x, y, ´z + 1/2; b = x, ´y + 1/2, ´z + 1/2; c = ´x ´ 1, y, ´z + 1/2; d = ´x ´ 1,
´y + 1/2, z.

The NO2 groups of the ligands are tilted with respect to the anilato ring angles in the range
48.9˝–77.5˝, as observed in other compounds containing the nitranilate ligand [31,40]. The Na+ cation
is located on a C2 axis and close to a second C2 axis perpendicular to one containing the Na+ cation.
This second C2 axis generates pairs of Na+ cations connected through four O1 oxygen atoms (O1, O1b,
O1c, and O1d, Figure 1b). Each Na+ cation appears surrounded by a total of eight oxygen atoms: O5,
O5b, O6, and O6b plus the four bridging O1 atoms (Figure 1b). The coordination geometry around
the Na+ cations can be defined as a distorted triangular dodecahedron with six short Na–O bond
distances (in the range 2.419–2.467 Å) and two long ones (2.879(4) Å). The Na–Nad distance through
the quadruple oxido bridge is 3.256(4) Å (Table 2).

The organic layers are formed by one independent DAMS+ cation. The presence of an inversion
center near the DAMS+ cations generates pairs of parallel DAMS+ cations with opposite orientations
of the dimethylamino groups (Figure 2b). The DAMS+ dimers are packed in stacks running along the
b direction (Figure 2b). In each layer, the DAMS+ cations are parallel and form an angle of 70.8˝ with
the DAMS+ cations of the neighboring layers (Figure 2b).

There are no interlayer interactions worth mentioning since the shortest O¨¨¨H interlayer distance
between the oxygen atoms of the ligand and the H atoms of the cation is above 2.4 Å.

3.3. Magnetic Properties of Compound [(DAMS)2{FeNa(C6N2O8)3}¨CH3CN]n (1)

The product of the molar magnetic susceptibility times the temperature of compound 1 per Fe(III)
ion shows, at room temperature, a value of ca. 4.5 cm3¨K¨mol´1, close to the expected one for a high
spin S = 5/2 Fe(III) ion (Figure 4). When the sample is cooled, χmT remains constant down to ca. 20 K.
Below this temperature, χmT shows an abrupt decrease to reach a value of ca. 2.7 cm3¨K¨mol´1 at
2 K. Since the Fe(III) centers are quite well isolated by the Na+ dimers, this abrupt decrease has to be
attributed to the presence of a zero field splitting in the Fe(III) ions (see below).
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4. Discussion

The structure of compound 1 is quite original since it has never been observed in any anilato-based
compound; as far as we know, it has only been obtained in two examples with the oxalato ligand,
both containing the organic donor bis(ethylendithio)tetrathiafulvalene (BEDT–TTF) [32,33]. Although,
as mentioned above, there are no short interlayer interactions, it is interesting to note that both
molecules (BEDT–TTF and DAMS) are very similar in size and geometry. In our case, the formation
of this original structure seems to be facilitated by the presence of Mn(II) ions and, most importantly,
of the Na+ cations. This assumption is based on the fact that, when using the same synthetic conditions
with the DMAS+ cations and the oxalato ligand (except for the presence of Na+ cations), the obtained
structure is the usual honey comb [MnCr(C2O4)3]´ lattice [41].

An additional original aspect of this structure is the presence of a Na+ dimer with a bridge
formed by four oxygen atoms (Figure 1b). In fact, a search in the CSD database (updated to Nov.
2015) [42] shows only 19 of such NaO4Na dimeric units, including three NaO4NaO4Na trimers [43–45].
In these NaO4Na units, the oxygen bridges belong to different coordinating groups as carboximidato
(R-C=NO–Na, in five cases) [46–48], hydroxamato (H-C=NO–Na, in three cases) [43,49,50], water
molecules (in three cases) [51–53], acetato (in two cases) [44,45], oxalato (in two cases) [54], ketone (in
two cases) [55,56], alkoxido (in one case) [57], and one more case with two H2O molecules and two
NO2 groups [58]. Compound 1 is the first example where the four bridging oxygen atoms belong to an
anilato group.

The Na–Na distances in these 19 examples range from 2.857 to 4.042 Å with an average value of
3.267 Å, very close to the one observed in 1 (3.256(4) Å).

Compound 1 possesses an inversion center and, therefore, is not expected to show any non-linear
optical (NLO) response, despite containing the DAMS+ cation, which is well-known to provide large
second-order NLO responses [41,59].

The magnetic properties of compound 1 are the expected ones for isolated high spin S = 5/2 Fe(III)
ions since the Na+ dimers preclude any exchange interaction between the Fe(III) ions. This situation is
very similar to that observed in other anilato-based 2D and 3D structures with paramagnetic Fe(III) or
Cr(III) centers separated by Na+ or K+ cations [30]. Accordingly, we have fit the magnetic properties
to a simple model for an S = 5/2 monomer with a zero field splitting [60] accounting for the sharp
decrease of χmT at low temperatures. This simple model reproduces very satisfactorily the magnetic
properties of compound 1 with g = 2.016 and |D| = 8.5 cm´1 (solid line in Figure 4). This value
is similar to those found in other Fe(III) complexes [61] and may include a weak antiferromagnetic
interaction between the Fe(III) centers. Note that the sign of D cannot be determined from powder
susceptibility measurements.
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5. Conclusions

The use of the nitranilate ligand with Fe(III) and Na+ ions led to a coordination polymer with an
unprecedented 3,6-connected 2D structure derived from the well-known honey comb 2D hexagonal
lattice with two important differences: (i) the vertices of the hexagons were occupied by Na+ dimers
alternating with Fe(III) centers; and (ii) there was an additional [Fe(C6N2O8)3]3´ complex occupying
the center of the hexagons connecting the three pairs of Na+ ions. This original arrangement resulted
in an anionic lattice that can be formulated as [Na2Fe2(C6N2O8)6]4´, whose charge is neutralized
by four DAMS+ cations. This compound represents an additional proof that the anilato derivative
ligands are topologically similar to the oxalato with the advantage that anilato derivatives can be
easily functionalized.
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