Next Article in Journal
A Heterobimetallic Anionic 3,6-Connected 2D Coordination Polymer Based on Nitranilate as Ligand
Previous Article in Journal
Charge Transport in LDPE Nanocomposites Part I—Experimental Approach
Article Menu

Export Article

Open AccessArticle
Polymers 2016, 8(3), 88; doi:10.3390/polym8030088

Stability Study of Flexible 6,13-Bis(triisopropylsilylethynyl)pentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol)/Yttrium Oxide Nanocomposite Gate Insulator

1
School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
2
Department of Electronic Engineering, Hallym University, Chuncheon 24252, Korea
3
Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
These authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.
Academic Editor: Changsik Song
Received: 16 February 2016 / Revised: 11 March 2016 / Accepted: 14 March 2016 / Published: 16 March 2016
View Full-Text   |   Download PDF [2865 KB, uploaded 16 March 2016]   |  

Abstract

We investigated the electrical and mechanical stability of flexible 6,13-bis(triisopropylsilylehtynyl)pentacene (TIPS-pentacene) thin-film transistors (TFTs) that were fabricated on polyimide (PI) substrates using cross-linked poly(4-vinylphenol) (c-PVP) and c-PVP/yttrium oxide (Y2O3) nanocomposite films as gate insulators. Compared with the electrical characteristics of TIPS-pentacene TFTs with c-PVP insulators, the TFTs with c-PVP/Y2O3 nanocomposite insulators exhibited enhancements in the drain current and the threshold voltage due to an increase in the dielectric capacitance. In electrical stability experiments, a gradual decrease in the drain current and a negative shift in the threshold voltage occurred during prolonged bias stress tests, but these characteristic variations were comparable for both types of TFT. On the other hand, the results of mechanical bending tests showed that the characteristic degradation of the TIPS-pentacene TFTs with c-PVP/Y2O3 nanocomposite insulators was more critical than that of the TFTs with c-PVP insulators. In this study, the detrimental effect of the nanocomposite insulator on the mechanical stability of flexible TIPS-pentacene TFTs was found to be caused by physical adhesion of TIPS-pentacene molecules onto the rough surfaces of the c-PVP/Y2O3 nanocomposite insulator. These results indicate that the dielectric and morphological properties of polymeric nanocomposite insulators are significant when considering practical applications of flexible electronics operated at low voltages. View Full-Text
Keywords: flexible electronics; transistor; polymeric insulator; nanocomposite; stability flexible electronics; transistor; polymeric insulator; nanocomposite; stability
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kwon, J.-H.; Zhang, X.; Piao, S.H.; Choi, H.J.; Bae, J.-H.; Park, J. Stability Study of Flexible 6,13-Bis(triisopropylsilylethynyl)pentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol)/Yttrium Oxide Nanocomposite Gate Insulator. Polymers 2016, 8, 88.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top