Supplementary Materials: Low Band Gap Donor-Acceptor Type Polymers Containing 2,3-Bis(4-(decyloxy)phenyl)pyrido[4,3-b]pyrazine as Acceptor and Different Thiophene Derivatives as Donors

Yan Zhang, Xuezhong Liu, Min Wang, Xiaoli Liu and Jinsheng Zhao

Figure S1. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of 2,5-diromopyrido-3,4-diamine (1) in DMSO. Solvent peak at $\delta=2.49 \mathrm{ppm}$ is marked by " x ", water peak at $\delta=3.33 \mathrm{ppm}$ is marked by " y "; $(\mathbf{b}){ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in DMSO. Solvent peak at $\delta=40.76 \mathrm{ppm}$ is marked by " X ".

Figure S2. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of 1,2-bis(4-(decyloxy)phenyl)ethane-1,2-dione (2) in CDCl_{3}. Solvent peak at $\delta=7.26 \mathrm{ppm}$ is marked by " x "; $\mathbf{(b)}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}. Solvent peak at $\delta=72.50 \mathrm{ppm}$ is marked by " X ".

Figure S3. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of 5,8-dibromo-2,3-bis(4-(decyloxy)phenyl)pyrido[4,3-b]pyrazine (3) in CDCl_{3}. Solvent peak at $\delta=7.26 \mathrm{ppm}$ is marked by " x "; (b) ${ }^{13} \mathrm{C}$ NMR spectrum of 3 in CDCl_{3}.Solvent peak at $\delta=72.50 \mathrm{ppm}$ is marked by " X ".
(a)

(b)

Figure S4. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of M 1 in CDCl_{3}. Solvent peak at $\delta=7.26 \mathrm{ppm}$ is marked by " x "; (b) ${ }^{13} \mathrm{C}$ NMR spectrum of M 1 in CDCl_{3}. Solvent peak at $\delta=72.50 \mathrm{ppm}$ is marked by " X ".
(a)

(b)

Figure S5. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of M2 in CDCl_{3}. Solvent peak at $\delta=7.26 \mathrm{ppm}$ is marked by " x "; (b) ${ }^{13} \mathrm{C}$ NMR spectrum of M2 in CDCl_{3}. Solvent peak at $\delta=72.50 \mathrm{ppm}$ is marked by " X ".
(a)

(b)

Figure S6. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of M 3 in CDCl_{3}. Solvent peak at $\delta=7.26 \mathrm{ppm}$ is marked by " x "; (b) ${ }^{13} \mathrm{C}$ NMR spectrum of M 3 in CDCl_{3}. Solvent peak at $\delta=72.50 \mathrm{ppm}$ is marked by " X ".
(a)

(b)

Figure S7. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of M 4 in CDCl_{3}. Solvent peak at $\delta=7.26 \mathrm{ppm}$ is marked by " x "; (b) ${ }^{13} \mathrm{C}$ NMR spectrum of M 4 in CDCl_{3}. Solvent peak at $\delta=72.50 \mathrm{ppm}$ is marked by " X ".

Figure S8. Cyclic voltammetry (CV) curves of the monomers: (a) M2; (b) M3; and (c) M4.

Figure S9. CV curves of the polymers for p-type doping process at various scan rates: (a) P2; (b) P3; and (c) P4. Insert: graphs of scan rate vs. peak current density.

Figure S10. The first and the 1000th CV curve of the polymers: (a) P2; (b) P3; and (c) P4.

Figure S11. Film thicknesses of the polymers deposited potentiostatically onto ITO electrode: (a) P1; (b) P2; (c) P3; and (d) P4.

