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Abstract: In a previous work, we described a multi-scale protocol for the simulation of
the conformation and dynamics of macromolecules that was applied to dendrimer molecules
proving its predictive capability by comparison with experimental data. That scheme is
now employed in order to predict conformational properties (radius of gyration) and overall
hydrodynamic properties (translational diffusion and intrinsic viscosity) of hyperbranched
molecules in dilute solution. For that purpose, we use a very simple coarse-grained
bead-and-spring model whose parameters are not adjusted against experimental properties
but they are obtained from previous atomic-level (Langevin) simulations of small fragments
of real hyperbranched polymers. In addition, we devise a method to generate structures
with different degree of branching. The Monte Carlo simulation technique was used to
generate the set conformations of the coarse-grained model. In spite of the difficulties of
reproducing experimental data of highly polydisperse entities (in terms of both molecular
weight and topology) without using adjustable parameters, the results of this paper show that
the proposed methodology allows for qualitative predictions of the behavior of such complex
systems and lead us to conclude that, after some improvement, acceptable quantitative
predictions can be achieved.
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1. Introduction

Dendritic polymers are highly branched macromolecules which can be classified into three categories
according to their degree of structural control: random hyperbranched polymers, dendrigraft polymers,
and dendrimers [1]. Whereas dendrimers are highly uniform and monodisperse, hyperbranched
polymers exhibit polydispersity and irregular branching as a consequence of their method of synthesis.
Thus, whereas the synthesis of dendrimers requires a complex multi-step process, hyperbranched
polymers are synthesized via one-step reactions [1,2]. The study of hyperbranched polymers have
received much attention since the late eighties because of their interesting material properties and
easy synthesis, becoming nowadays an alternative to dendrimers in applications which do not require
structural regularity. Although theoretical approaches on the conformational statistics of hyperbranched
polymers have been developed since long [3], many difficulties persist due to the high variability in both
the degree of branching and the degree of polymerization. In that sense, ideal dendrimers (characterized
by branching monodispersity) are more easily tractable from a theoretical point of view. Even so,
the unavoidable branching defects that arise when the dendrimer nodes form fewer bonds than those
attainable according to its functionality (or maximum connectivity) must be quantified in order to have a
realistic description of the dendrimer behavior [4,5]. Thus, the irregular branching issue that appears both
in real dendrimers due to defects and in truly random hyperbranched polymers (the topic of this work)
can be addressed with the aid of computer simulation. In this regard, simulation techniques like Monte
Carlo [6,7] and Brownian dynamics [8–10] have been employed to compute dilute solution properties
of hyperbranched polymers and evaluate the influence of either the degree of polymerization or the
degree of branching. The degree of polymerization is straightforwardly represented by the number of
elements constituting the polymer model, N (usually a coarse-grained model of beads and connectors).
Instead, the way of representing the degree of branching is not so clearly defined. Thus, there are several
topological indices like the “Wiener index” [11] or the so-called “degree of branching” (DB) [12] that
have been used to represent the degree of branching of hyperbranched polymers. The latter is the most
commonly employed index and takes values between 0 and 1 so that 0 corresponds to a linear chain and
1 corresponds to a whole branched chain (i.e., a chain with the maximum possible number of branches
emerging from every node). Note that slightly different mathematical definitions for DB fit within the
former requirement [2,8]. Indeed, the relationship between topological index and structure is not unique
and several structures can have the same topological index. Experimentally, DB is usually determined
by nuclear magnetic resonance (NMR)-spectroscopy [12].

Coarse-grained models with an appropriate choice of adjustable parameters may predict properties of
individual macromolecules as those measured in dilute solution experiments. Atomic-level simulations
help to assign some of the parameters values of such models while others parameters must be adjusted
as to fit some pieces of experimental information [13,14]. Recently, our group developed a multi-scale
computational method that avoids the need of adjustable parameters [15]. That method was successfully
applied to predict conformational and hydrodynamic properties of several dendrimer molecules [15]
as well as some thermoresponsive amphiphilic copolymers [16,17]. In this work we apply such
a multi-scale procedure to four hyperbranched polymers: a polyamidoamine (PAMAM) [18], two
polycarbosilanes (a “short-branched” PCS3 and a “long-branched” PCS11) [19,20], and a polyester,
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polydimethyl 5-(4-hydroxybutoxy)isophthalate (PDHBI) [21]. The chemical structures of the monomer
and the branches of those hyperbranched polymers are displayed in Figure 1 (notice that the PCS3
monomer has branches with three carbon atoms whereas the PCS11 monomer has branches with eleven
carbon atoms).
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Figure 1. Chemical structures: (A) monomer (within the square) and a piece of
PAMAM; (B) monomer (within the square) and a piece of PCS3; (C) monomer of PCS11;
(D) monomer (within the square) and a piece of PDHBI.

According to our multi-scale procedure, we firstly obtain the coarse-grained model parameters
from atomic-level simulations of small chains fragments. For that purpose, we use some modeling
techniques implemented in our public-domain tools [22]. Then, we perform Monte Carlo simulations of
the coarse-grained models using our public-domain simulation programs [23,24]. The Monte Carlo
technique generates the ensemble of conformations from which both hydrodynamic properties like
the intrinsic viscosity [η] or the translational diffusion coefficient, Dt, and conformational properties
like the radius of gyration Rg can be calculated. At this point, it must be mentioned that a theory
to calculate the intrinsic viscosity of flexible polymers with any architecture has been published
recently [25]. That theory, which predicts successfully some experimental data, is based on defining
some phenomenological functions whereas our simulation methodology tries to be more general by
using atomic features of the polymers to predict any solution property.
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2. Model and Simulation Method

2.1. Topology

Any polymer chain without cyclic structures made of N nodes will contain N − 1 connectors.
The maximum connectivity of a node is called the node functionality, F . According to F , the nodes
can be classified into three types:

(1) End or terminal nodes (T ) if they are connected to just 1 other node,
(2) Linear nodes (L) if they are connected to 2 other nodes, and
(3) Branching or dendritic nodes (D) if they are connected to f nodes, being f any number

from 3 to F .

If T , L and D indicate the number of terminal, linear and dendritic nodes, respectively, the total
number of nodes in a given polymer chain will be N = T + L+D.

The polymers studied in this work are formed byAB2 monomers. That type of monomer is commonly
used to build hyperbranched structures and has two types of reactive groups: A and B. The molecule
grows by addition of the group A of one monomer to one free group B of other monomer with the
subsequent emergence of a new free group B in the structure. Those AB2 monomers correspond to
nodes of functionality F = 3 so that every dendritic node in the structure must be connected to three
other nodes (i.e., f = 3). A sketch of a hyperbranched polymer with N = 21 nodes made of AB2

monomers is depicted in Figure 2. For the sake of clarity, T , L and D nodes are represented by different
colors and numbered from 1 to 21, and groups A and B in each node are distinguished with solid and
dotted lines respectively.
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Figure 2. Sketch of a possible AB2 hyperbranched structure with N = 21 nodes.

2.1.1. Degree of Branching

In this work, we define the degree of branching as the ratio between the number of branches
actually existing in the molecule, R, and its maximum possible value, Rmax: DB = R/Rmax [12].
As commented above, for the particular case of an AB2 type hyperbranched chain there is only one type
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of dendritic node with f = 3. Since linear and terminal nodes do not contribute to R and each dendritic
node incrementsR in 1, thenR = D. As a consequence,Rmax will be the maximum number of dendritic
nodes, Dmax, that can exist in a structure with N nodes and, therefore, DB = R/Rmax = D/Dmax.
It can be shown that Dmax = int[(N − 2)/2] where “int” stands for the integer ratio. If N is
large Dmax ≈ N/2, and DB ≈ 2D/N = 2D/(T + L + D). An almost equivalent expression is
DB ≈ 2D/(2D + L) [12], which can be derived from our argumentation considering that D ≈ T for
AB2 structures (indeed D = T − 2 counting the initial node as L or T according to its connectivity).

2.1.2. Generation of Chain Topology

Since a flexible hyperbranched polymer does not have a regular branched structure, the polymer
properties must be calculated as averages over both different conformations of a given topology and
different topologies. We generate AB2 type chains with different topology by randomly attaching a new
node to an existing node which has one or two free positions (i.e., free B groups). In order to control
the degree of branching during the chain generation, we define the “attachment probability parameter”
p. That parameter quantifies how much likely is for a node with one free position to incorporate the
new node in comparison to a node with two free positions. For the latter p = 1 so that the probability
of generating a highly branching structure (i.e., DB → 1) increases as p is greater than 1. The value
p = 0 generates exclusively linear structures whereas any other p value can generate different branching
structures with different (albeit generally similar) DB values. In spite of that DB uncertainty, one can
establish a general relation between p and an average degree of branching 〈DB〉. Thus, we found the
relationship 〈DB〉 = (p2 + 0.35p)/(p2 + 1.06p + 0.02) to fit quite well the dependence of 〈DB〉 on p
for any number of nodes N . That 〈DB〉 vs. p relationship is useful to determine the p value that must
be employed in order to generate chains with a certain DB value.

We do not have experimental DB values for the polymers studied in this work except for
PDHBI whose authors report DB = 0.5 ± 0.1 [21]. Therefore, we decided to generate the four
hyperbranched polymers studied here by setting p = 0.425 which provides an average degree of
branching 〈DB〉 = 0.54± 0.04 that we consider representative of many real hyperbranched polymers.

2.2. Coarse-Grained Model

The model that will be ultimately used for the prediction of the solution properties of the
hyperbranched polymer is a bead-and-spring model. Each bead represents an AB2 monomer and is
connected with other beads by linear springs that capture the connectivity. Thus, the model contains
N beads or nodes and N − 1 springs as appreciated in Figure 2. The linear springs are defined by a
potential devised in our previous work [15] that is an hybrid of Fraenkel (hard Hookean) and FENE
(finitely extensible, non-linear elastic) springs [26]. As an elastic connector representing a chemical
entity, the spring must have an equilibrium length le and a Hookean spring constant HHF that gauges
the fluctuation of the instantaneous length l. In addition, in order to account for the limited extensibility
of the branches, the potential includes a maximum length, lmax. All the features of our “hard-FENE”
springs are represented by the equation:
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The conformational freedom at the branching points has restrictions that are represented by angular
springs with the following simple quadratic potential:

Vang(θ) =
1

2
Q(θ − θ0)2 (2)

where θ is the supplementary angle to the bond angle (θ = 0 for aligned connectors), θ0 is the equilibrium
angle, and Q is the bending constant.

We must also include excluded volume (EV) interactions between nonbonded beads. For the sake of
the simplicity that inspires our model, the EV effect is represented by a purely repulsive hard sphere (HS)
potential: if the distance between two nonbonded beads is less or equal than the contact distance, σHS ,
the potential value becomes infinity (in practice a sufficiently high value), and otherwise the potential
value is zero. The calculation of hydrodynamic properties requires the assignment of a hydrodynamic
(Stokes) radius to the beads, a. Again, with the intention of maximum simplicity we have decided that
this radius would also be the hard-sphere radius for the EV effect, so that σHS = 2a.

Thus, the set of values of a, le, HHF , lmax, Q, and θ0 defines completely the mechanical
(conformational and dynamic) behavior of our coarse-grained model of the hyperbranched polymer.

2.3. Monte Carlo Simulation and Hydrodynamics

The prediction of both conformational and hydrodynamic properties for our flexible models is
performed by using the rigid-body Monte Carlo procedure (RBMC) [27–29]. In the RBMC procedure,
the properties are evaluated as means of the calculated values for each conformation in the Monte Carlo
sample, as if the conformation were instantaneously rigid. We have used our public-domain program
MONTEHYDRO [24] (available at: http://leonardo.inf.um.es/macromol/programs/programs.htm) which
carries out both the Monte Carlo generation of conformations and the calculation of individual and
average values for a general bead-and-connector model of arbitrary topology.

The hydrodynamic calculation for an array of beads is feasible using standard bead modeling
procedures. A particular difficulty in bead-model calculations has been that concerning the intrinsic
viscosity. The hydrodynamic approach of Kirkwood and Riseman [30,31], on which bead-model
methods are based, does not take into account the volume of the beads in the model, which may give rise
to erroneous values of the intrinsic viscosity when the size of the beads are not much smaller than the
size of the molecule modeled by them. An improved theory that considered this missing influence [32]
arrived at the so-called volume correction for the intrinsic viscosity:

[η]corr = [η]uncorr + fη(5NAV/2M) (3)

whereNA is the Avogadro’s number, M the molecular weight of the solute and V the volume of the bead
model. In the original derivation fη = 1 so that the correction is the Einsteinian viscosity of a sphere of
the same volume as the model. In some preliminary predictions of the intrinsic viscosity Equation (3)
was applied with full volume correction [33]. More recently an application of this correction to a
variety of bead models [34] showed that while [η]uncorr (i.e., fη = 0) is a lower-bound that always
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underestimates the correct value, the result with full volume correction [η]corr with fη = 1 produces
an upper-bound overestimation. Clearly, an intermediate correction with 0 < fη < 1 would be more
appropriate. With results gathered for such a collection of bead models, an empirical correlation has
been determined between the optimum fη and two features of the model, namely its asphericity and
its degree of fragmentation. The present version of the hydrodynamic calculation routines inserted in
MONTEHYDRO includes the determination of the optimum fη and the corresponding volume correction.

2.4. Atomic-Level Calculations

In our multi-scale approach the values of the coarse-grained model parameters corresponding to a
given hyperbranched molecule are assigned from atomic-level Langevin molecular dynamics simulations
of the minimum polymer fragment that contains the coarse-grained elements whose parameters are to
be determined. Therefore, the model does not have free parameters to be fit to experimental data.
The Langevin molecular dynamics simulations were carried out by using the commercial software
HYPERCHEM (http://www.hyper.com) with the AMBER force field at T = 300 K. The simulation
conditions were: time step ∆t = 0.001 ps, collision frequency 50 ps−1, and duration of the trajectory
about 100 ns. Under those conditions we found that simulations are well equilibrated and produce
reproducible data.

• Beads:

The atomic-level simulation with HYPERCHEM allows to sweep the conformational space of
the monomeric unit represented by a bead. From the atomic coordinates, the hydrodynamic
Stokes radius Rh = ft

6πη0
(where ft is the friction coefficient of the particle and η0 the

solvent viscosity), and the equivalent radius to radius of gyration RG =
√

5
3
Rg, are

computed for each conformation by using our public domain program HYDROPRO [22] (see
http://leonardo.inf.um.es/macromol/programs/programs.htm). Regarding the possible influence of
solvation on the effective hydrodynamic radius of the atoms, we follow previous experience [35]
that, in the case of small molecular entities, such effective radius can be equated to the Van der
Waals radius, of typically 1.8 Å [36]. The results are the averages over a sample of conformations.
Because Rh turns out to be similar to RG, we take as the hydrodynamic radius of the bead
representing the monomer unit their mean a = (RG +Rh)/2.
In order to avoid free parameters in the model, the radius of the beads in the hard spheres EV
potential was taken equal to a so that the contact distance becomes σHS = 2a. This choice seems
convenient because it makes neighboring beads almost tangent and prevent “phantom” crosses of
the connectors.

• Connector and angles:

Parameters of the potentials associated to connectors and angles were estimated from atomic-level
simulations of the minimal atomic structure that defines those connectors and angles, as illustrated
in Figure 3 for a PCS3. From the atomic trajectories generated with program HYPERCHEM, the
distribution functions for connector length (taken as the distance between the centers of mass
of two connected monomers/beads) and the angle subtended by those connectors were obtained.
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We distinguish between two types of angles: “internal” angles subtended between the two B

groups of a monomer and “external” angles subtended between the groups A and B of the
monomer (see Figure 3). In terms of the formation process of the bead-and-connector model,
the “internal” angle is that subtended between the two free connectors emerging from a newly
incorporated node, and the “external” angle is that subtended between any one of those free
connectors and the connector that links that new node to the chain structure. Then, the connector
length distribution and the two angles distributions were fit, respectively, to the Boltzmann
exponentials associated to the connector-spring potential and the angle-spring potentials (see
Figure 4):

p(l) = All
2 exp[−V (l)/kBT ] (4)

p(θ) = Aθ sin θ exp[−V (θ)/kBT ] (5)

where Al and Aθ are normalization constants.

In that way, we obtained the values of the coarse-grained parameters that best fit the atomic-level
distributions for the four studied hyperbranched polymers: PAMAM, PCS3, PCS11 and PDHBI. As an
example, we comment the results obtained for the parameterization of PCS3. The HYDROPRO result
for the bead radius is a = 4.5 Å. The atomic-level simulation yields the distribution functions for the
connector length and inter-connector angles shown in Figure 4. The fit of the simulated p(l) to the
Boltzmann exponential associated to Equations (1) and (4) gives HHF = 1131 erg/cm2, lmax = 9.1 Å,
and le = 5.7 Å. On the other hand, the fit of the simulated p(θ) to Equations (2) and (5) gives
Q = 1.1× 10−13 erg and θ0 = 1.0 rad for the supplementary “internal” angle (being γ in Figure 3
the “internal” angle) as well as Q = 5.7× 10−14 erg and θ0 = 1.2 rad for the supplementary “external”
angles (being α and β in Figure 3 the “external” angles). In Figure 4, the fitted Boltzmann exponentials
are plotted along with the original distribution functions coming from the atomic-level simulations.
We remark that the fits do not reproduce the details of the simulated distribution functions–as it
corresponds to a coarse-grained representation of the true potentials–but provide continuous potential
functions that are conveniently handled in the Monte Carlo simulations of the coarse grained model.

Si
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Si
H2

HSi α

β

γ

Figure 3. Atomic structure of the PCS3 monomer, showing the beads, connectors and angles.
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Figure 4. Distribution of (A) connector length; (B) “internal” angle; and (C) “external”
angles in the branches of PCS3. Results from the atomic-level Langevin simulation and their
best fits to Equations (1) and (2).
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3. Results and Discussion

We have studied how the polymer properties Rg, Dt, and [η] vary with the molecular weight (which
would be a mean molecular weight in the real polydisperse samples). For that purpose, we have simulated
for each case (PAMAM, PCS3, PCS11 and PDHBI), coarse-grained models containing from N = 50 to
N = 400 beads/nodes. Since each node represents a monomer, the molecular weight corresponding to
each N will be calculated as the monomer molecular weight times the number of nodes. On the other
hand, for a given N we have run 600 independent simulations varying slightly the topology of the chain
so that polymer properties are computed as both a conformational average and a topological average.
Nevertheless, it must be remarked that the topological variability may be insufficient since the parameter
p is fixed (p = 0.425) what produces only small variations in DB. Moreover, for the sake of simplicity,
the polydispersity of the sample is not actually considered (for instance, generating chains with different
molecular weight by a reaction kinetic method [37]). Thus, all of the chains used to perform the 600
simulations corresponding to a given mean molecular weight are indeed of the same length N (instead
of N being an average) so that the sample is treated as monodisperse.

The radius of gyrationRg gives a direct measurement of the mean molecular size. Figure 5 is a log–log
plot that represents the variation of Rg with the molecular weight, M , for the hyperbranched polymers
studied in this work. We do not compare with experiments because we do not have experimental Rg data
for most of the polymers studied here. In a first approximation, all of the cases can be fit to linear plots
which gives rise to the typical power law of linear flexible polymers Rg ∝ Mαg , where αg is the slope
of the plots in Figure 5. However, the values of those slopes is generally smaller than the characteristic
value of the random coil conformation of flexible linear polymers in theta solvent (i.e., 0.5). In particular,
we found the following slope values: αg (PAMAM) ≈ 0.19, αg (PCS3) ≈ 0.32, αg (PCS11) ≈ 0.38,
and αg (PDHBI) ≈ 0.51. It must be noticed that PDHBI has the largest branches and is the most
flexible among the polymers studied here so that it is expected to present a random coil conformation
with a value of the power law exponent about 0.5 (as for linear flexible polymers). It is also interesting
to notice that a value of αg ≈ 0.35 was found in our previous work for dendrimers [15] as well as
in some other simulations with dendrimers [38]. Thus, hyperbranched polymers seem to behave in
some aspects similarly to dendrimers; obviously, the similarities will be more remarkable in increasing
the degree of branching. The value αg = 1/3 is the theoretical expectation for spherical particles of
uniform density whereas for flexible/semiflexible non-spherical structures αg should be larger than 1/3.
Nonetheless, the increase in Rg with M can be smaller than it should be for spheres of constant density
if some backfolding effect is present. It means that terminal branches tend to get back to the polymer
core (the initial monomer) so that the effective volume, proportional to R3

g, grows slower than M and
the exponent of Rg vs. M is smaller than 1/3. That effect must become more remarkable with increasing
the degree of branching of the polymer and therefore the number of terminal nodes.

As indicated above, from our simulations we have also predicted (in a multi-scale approach, without
adjustable parameters) two hydrodynamic overall solution properties for which some experimental data
are available: the diffusion coefficient Dt and the intrinsic viscosity [η], being the latter the most
frequently reported hydrodynamic property. In order to compare simulation and experimental Dt values,
it is convenient to work in terms of the equivalent hydrodynamic Stokes radius, Rh, because it is
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solvent and temperature independent (and our simulation conditions are not always coincident with
experiments). We compute the characteristic polymer Stokes radius from the Dt value by using the
Stokes-Einstein relationship Dt = kBT/(6πη0Rh), where kBT is the Boltzmann factor and η0 is the
solvent viscosity. On the other hand, the intrinsic viscosity coming from our simulations can be directly
compared to experimental data.

Figure 5. Double-log plots of the radius of gyration of the four hyperbranched polymers vs.
molecular weight.

Concerning [η], it does not increase, in general, monotonically with the molecular weight and cannot
be fit to a power law (a linear relation in a log-log plot) as it is common for linear flexible polymers.
In some cases, [η] even reaches a maximum value and then keeps constant or decreases, a behavior
often found in dendrimer solutions [15]. As commented above, for high enough DB the effective
(hydrodynamic) volume of the molecule may grow with M (or N ) less than expected due to the
backfolding effect what explains that particular [η] behavior.

Figure 6 is a log–log plot showing the comparison of our simulation results for the intrinsic viscosity
(empty circles) with experimental data [18] (black circles) for PAMAM. Both set of data display the same
trend: firstly [η] increases slightly, then reaches a maximum and finally tends to decrease. However, our
simulation results yield [η] values clearly higher than the experimental ones. Likewise, our maximum
is shifted to a higher molecular weight. The lack of good correspondence between the topological
variability and polydispersity of the real polymer and our simplified model may be an important source
of discrepancy in the solution properties values.

Figure 7A,B shows the comparison between our simulation results and experimental data [19,20]
for the variation of [η] and Rh with the molecular weight for the polymer PCS3. Semi-log plots are
used in order to better appreciate the non-monotonic molecular weight dependence and the differences
between experimental and simulation values. Again, simulation results overestimate the experimental
values. The type of dependency of [η] with the molecular weight is quite similar in both simulation
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and experimental results. On the other hand, Rh values from simulations seem to diverge from the
few available experimental data. Figure 8A,B is the analogous to Figure 7 for PCS11 [20]. For that
polymer, the values of [η] coming from simulations reproduce reasonable well the experimental data.
Concerning Rh, the discrepancy between simulation and experimental data is about 50%, although
molecular weight dependences are qualitatively similar. For this long-branched polymer the simulation
values are smaller than the experimental ones.

Finally, Figure 9A,B displays our results for the polymer PDHBI along with the experimental
ones [21] in terms of semi-log plots representing the molecular weight dependence of [η] and Rh.
Again, the simulation results underestimate experimental values in about 50%.

It is interesting to notice that simulations results for hyperbranched polymers with small and relatively
stiff monomers (PAMAM and PCS3) overestimate the experimental values whereas simulations for
those polymers whose monomers contains larger branches (PCS11 and PDHBI) underestimate the
experimental values. On the other hand, the hyperbranched polymer with shorter and stiffer branches
(PAMAM) exhibit an intrinsic viscosity behavior similar to that of dendrimers (with a maximum in
the molecular weight dependence of [η]) whereas those hyperbranched polymers with long branches
(PCS11 and PDHBI) tend to behave as linear flexible polymers (monotonic increase of [η] with the
molecular weight that would eventually lead to a power law). Therefore, the larger the branches the
closer the hyperbranched polymer to a linear polymer. Notice how [η] for the short-branched PCS3
polymer increases with M at a smaller rate than [η] for its long-branched counterpart PCS11. Obviously,
it must be also true that the greater the degree of branching of the hyperbranched polymer the more
similar its behavior to that of a dendrimer, although such a point was not tested because all of the cases
studied in this work correspond to a same degree of branching (〈DB〉 = 0.54± 0.04).

Figure 6. Variation of the intrinsic viscosity with the molecular weight for PAMAM.
Comparison of simulation and experimental results.
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Figure 7. Variation of (A) the intrinsic viscosity and (B) the hydrodynamic radius with the
molecular weight for PCS3. Comparison of simulation and experimental results.

The main conclusion is that our multi-scale simulations without adjustable parameters are able
to qualitatively reproduce the experimental behavior but not yet fully capable of reproducing the
hydrodynamic properties of these hyperbranched molecules accurately. Therefore, our procedure must
be improved in order to obtain quantitative agreement between simulations and experiments. On the
other hand, it is clear that the high variability in the degree of polymerization and the degree of
branching of the hyperbranched polymers generates an important uncertainty in the determination of
their properties values. Thus, experimental data must be affected by errors (not reported in the original
works) that should be consider to better quantify the differences with our simulations results.
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Figure 8. Variation of (A) the intrinsic viscosity and (B) the hydrodynamic radius with the
molecular weight for PCS11. Comparison of simulation and experimental results.
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Figure 9. Variation of (A) the intrinsic viscosity and (B) the hydrodynamic radius with the
molecular weight for PDHBI. Comparison of simulation and experimental results.

4. Conclusions

In this work, we have implemented a scheme for the prediction of properties of hyperbranched
polymers using a very simple coarse-grained model whose parameters are not adjusted to fit experimental
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data. Instead they are obtained, in a multi-scale approach, from previous atomic-level simulations
which are also done in a simple fashion with Langevin dynamics of small pieces of the molecules.
The procedure predicts conformational and hydrodynamic properties of the four studied hyperbranched
polymers which differ from experimental data typically in about 50%, although simulation results tend
to reproduce qualitatively the dependency of the properties with the molecular weight. Obviously, the
double source of polydispersity (degree of polymerization and degree of branching) makes our simple
multi-scale procedure not yet appropriate for quantitative predictions of hydrodynamic properties of
hyperbranched polymers, in spite of its excellent performance for the prediction of solution properties of
regular monodisperse dendrimers (where the typical difference respect to experimental data was found
to be about 4% [15]).

A possible reason for the quantitative disagreement between experimental and simulation results is
the poor statistical representativity, both in terms of polydispersity and topological variability, of the
samples used in our simulations. Thus, the number of different degree of polymerization and topologies
(for a given degree of polymerization) that can appear in a one-pot reaction are surely much higher
than the ones taken into account in our simulations. This explanation is specially plausible if one
considers the excellent results obtained in our previous works with monodisperse polymers of well
defined topology [15–17]. Apart from it, the average degree of branching about 0.5 assumed to carry out
our simulations may be not the correct one for all of the polymers.

Obviously, improvements must be performed in both the parameterization and mainly the ensemble
generation procedures in order our methodology to be applicable to obtain quantitative predictions
of hyperbranched polymers properties in solution. Still, the present scheme opens the possibility
to understand and predict single-molecular behavior of hyperbranched structures from first principles
without resorting to free adjustable parameters. In the present work, the coarse-grained model has been
simulated by a Monte Carlo procedure to obtain overall conformational and hydrodynamic properties of
the molecule. The same model (with the forces derived from the analytical potentials) could be used in
Brownian dynamics simulations in order to study dynamic aspects that would be out of reach of fully
atomic-level molecular dynamics simulations.
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