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Abstract: This paper presents the experimental results of steel plates strengthened with carbon fiber
reinforced polymer (CFRP) sheets under tensile load. The number of CFRP layers (ranging from
one to four), strengthening schemes (single-sided and double-sided bonding), and temperatures
(ranging from 25 to 120 ˝C) were investigated. Results showed that the number of CFRP layers
and strengthening schemes had insignificant effects on failure modes of specimens. The failure
modes were dominated by the degradation of resin matrix at temperatures lower than Tg + 10 or
20 ˝C, where Tg is the glass transition temperature, and were dominated by the volume decrease
of resin matrix at temperatures above that. Through bonding CFRP sheets, the ultimate load
and post-elastic stiffness of specimens were significantly increased. However, the increase in the
number of CFRP layers also led to the decrease in strengthening and stiffening efficiency. The
double-sided strengthened specimens showed more preferable mechanical properties than the
single-sided strengthened specimens. As temperature increased, significant decreases in ultimate
load and post-elastic stiffness were observed. Analytical modeling to predict the mechanical
properties at ambient and elevated temperatures were conducted, respectively. The modeling results
were verified by the test data.
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1. Introduction

Fiber reinforced polymer (FRP) composites have gained an increasing use in civil infrastructure
applications [1–4]. The preferable mechanical properties of FRP composites include high specific
strength, corrosion resistance, ease of transportation and installation, etc. Carbon fiber reinforced
polymer (CFRP) composites are the most widely used FRP composites with respect to strengthening
steel structures. Compared with the traditional technique by bonding steel plates, the application of
CFRP composites avoids the procedure of welding and the occurrence of residual stresses, and is thus
beneficial for the fatigue resistance of steel structures.

An increasing number of studies have been conducted on the utilization of CFRP composites in
strengthening steel structures [3–6]. Sen et al. [5] conducted research on six steel beams strengthened
with 2 or 5 mm thick CFRP plates. Results demonstrated that bonding CFRP plates significantly
increased the ultimate bearing capacity, while its effects on elastic response were relatively modest.
Al-Saidy et al. [6] reported obvious increases in post-elastic stiffness of strengthened beams through
the use of high modulus CFRP, also confirmed by Fam et al. [7] and Schnerch and Rizkalla [8].

Instead of strengthening the whole structures, some researchers focused on strengthening only
steel members, among which steel plates are an example. Steel plates are representative of the
tension flanges of steel beams or other tensional elements in the tests. Miller et al. [9] studied
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the stress distribution in CFRP through tensile tests on CFRP-bonded steel plate. Colombi and
Poggi [10] conducted research on three double-sided strengthened specimens and three double lap
joints, with the aim of reproducing the strengthening of uncracked and cracked tension members.
Al-Zubaidy et al. [11] compared the bond characteristics of double strap joints under static and
dynamic tensile loads, and investigated the effects of the number of CFRP layers, bond lengths,
and loading rates. Bocciarelli et al. [12] and Liu et al. [13] studied the fatigue behavior of
CFRP-strengthened steel plates and verified the superiority of CFRP in improving the fatigue
resistance of specimens. Li et al. [14] studied the tensile behavior of steel plates bonded with basalt
fiber reinforced polymer (BFRP) from the perspective of novel materials.

Despite these research efforts, many aspects of the strengthening effects remain unclear, for
example, the number of CFRP layers, the bonding schemes (single-sided bonding and double-sided
bonding), and elevated temperatures.

Admittedly, the increase in the number of CFRP layers could significantly increase the strength
and stiffness of specimens. However, conclusions vary on the strengthening efficiency of different
numbers of CFRP layers, which is expressed as the average failure stress in CFRP layers. Reports
on efficiency of stiffening effects are limited. Li et al. [14] reported an almost linear increase in the
ultimate bearing capacity of BFRP bonded steel plates as the number of BFRP layers increased from
zero to eight. Though the material was BFRP sheets, the results were similar to the strengthening
effects of CFRP sheets. In contrast, Tavakkolizadeh and Saadatmanesh [15] reported a decrease in
the strengthening efficiency of CFRP strengthened beams, with the average failure stress of CFRP
dropping from 75% of the ultimate tensile strength to 42% as the number of CFRP layers increased
from one to five.

Aside from the number of CFRP layers, the strengthening schemes, including single-sided
bonding and double-sided bonding, are also yet to be resolved. This issue is interesting since CFRP
could be bonded on both sides of the tension flange of the beam [9]. To the best knowledge of
the authors, no comparison has been made of the strengthening and stiffening effects of these two
schemes, though each scheme has been studied respectively [5,10,13]. Available reports indicated
that a double-sided bonding scheme may have better strengthening and stiffening effects. Lu et al. [16]
reported a discrepancy in the strain of CFRP and steel after steel yielding through tensile test on CFRP
bonded steel plates. The discrepancy, which contributed to the shear strain of bonding adhesive and
might even result in premature local adhesive failure, was directly related to the number of CFRP
layers bonded on one side of the steel plate [17]. By attaching the CFRP layer on both sides instead of
on only one side, the strain discrepancy between CFRP and steel would be decreased, which might
be beneficial for the service of strengthened specimens.

The effects of elevated temperatures are also of high concern. As temperature rises, resins
and adhesives begin to soften, which leads to a sharp reduction in stiffness and strength of CFRP
strengthened steel structures. The critical temperature is called the glass transition temperature
(Tg), which ranges between 55 to 120 ˝C [18]. Limited research is available for understanding the
degradation of CFRP strengthened steel structures at elevated temperatures. Cao et al. [19] studied
the tensile properties of CFRP and hybrid FRP at elevated temperatures. They pointed out that the
degradation in strength of FRP materials at elevated temperatures was due to the softening of the
resin matrix, which lost the ability to transfer load among fibers that were in an originally wavy state.
Mouritzand Gibson [20] proposed the following formula for modeling the degradation of FRP:
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where P(T) is a particular property at temperature T; PU and PR are the unrelaxed (low temperature)
and relaxed (high temperature) values of that property, respectively; k is a constant describing
the length of relaxation; T1 is the temperature when a 50% reduction in the property’s value is
observed; and Rn is a power law factor accounting for resin decomposition and equals one when
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the property related to is tensile strength. This model was validated by Chowdhury et al. [21].
Cree et al. [18] reported a fibrous fracture failure mode when the temperature rose above 200 ˝C
through tests on CFRP composites. The fibrous fracture, which showed a random distribution of
fibers rather than small pieces, was believed to be indicative of the increased softening of epoxy
resin. Nguyen et al. [22] conducted tests on CFRP/steel double strap joints. As temperature rose, the
failure mode of steel/CFRP double strap joints changed from CFRP delamination (adherend failure)
to cohesive debonding failure (adhesive failure). It was therefore concluded that the failure mode at
elevated temperatures was dominated by the temperature dependence of the bonding adhesive, and
that the change in failure mode was due to the faster degradation rate of the bonding adhesive than
that of the resin matrix, though the bonding adhesive and resin matrix were made of the same epoxy.
Li and Wang [23] compared the provisions on properties of steel at elevated temperatures of different
guidelines, including ECCS, EC3, AS4100, CECS200, and Japanese standard. Most of the guidelines
assumed a constant yield strength of steel when the temperature was below 215 ˝C.

With an aim to evaluate the effects of these three factors on the failure modes and tensile
behavior of strengthened specimens, this paper presents a study on CFRP strengthened steel plates
under tensile load. The number of CFRP layers (ranging from one to four), strengthening schemes
(single-sided or double-sided bonding), and experimental temperatures (ranging from 25 to 120 ˝C)
were investigated. Analytical modeling was also conducted to predict the mechanical behavior at
ambient and elevated temperatures, respectively.

2. Experimental Section

2.1. General

Table 1 lists the details of specimens for ambient and elevated temperature tests. As shown,
specimens are categorized into series L, S, and T, which are for study of number of CFRP layers,
strengthening schemes, and experimental temperatures, respectively. Specimens of series L and S
were tested at ambient temperature, while specimens of series T were tested at temperatures ranging
from 25 to 120 ˝C. Each specimen has three identical replicates in the present paper.

Table 1. Summary of test specimens.

Series Specimen Temperature (˝C) Sequence Number of CFRP layers

L

C/S 25 C+S 1
2C/S 25 C+C+S 2
3C/S 25 C+C+C+S 3
4C/S 25 C+C+C+C+S 4

S
4C/S 25 C+C+C+C+S 4

3C/S/C 25 C+S+C+C+C 4
2C/S/2C 25 C+C+S+C+C 4

T

C/S 25 C+S 1
C/S-T30 30 C+S 1
C/S-T35 35 C+S 1
C/S-T40 40 C+S 1
C/S-T45 45 C+S 1
C/S-T50 50 C+S 1
C/S-T55 55 C+S 1
C/S-T60 60 C+S 1
C/S-T70 70 C+S 1
C/S-T80 80 C+S 1

C/S-T100 100 C+S 1
C/S-T120 120 C+S 1

1. C and S denote CFRP and steel plate, respectively; 2. Specimens C/S and 4C/S appear twice in specimen
code, with the main purpose for better series illustration, though there are only one group of specimens
C/S and 4C/S, respectively; L, S, and T refer to sample series for the study of the number of CFRP layers,
strengthening schemes, and experimental temperatures, respectively.
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2.2. Materials

Materials used for manufacturing specimens included steel plates, unidirectional carbon fiber
sheets, and epoxy resin. Mechanical properties of steel plates and CFRP sheets were obtained through
tensile coupon tests according to ISO 6892-1 [24] and ASTM D3039 [25], respectively. The CFRP sheets
were UT70-20, supplied by Toray of Japan. The properties of epoxy resin were obtained from the
supplier. The epoxy resin was WSX, supplied by Wudajucheng, a company of China, with the Tg

being 50 ˝C according to the manufacturer’s data sheet. Mechanical properties of these materials are
listed in Table 2.

Table 2. Material properties.

Material Thickness
(mm)

Young’s modulus
(GPa)

Yield strength
(MPa)

Ultimate
strength (MPa)

Failure strain
(%)

Steel plate 2 185 271 364 28
CFRP sheet 0.111 252 – 3,553 1.4
Epoxy resin – ě2.5 – ě30.0 –

2.3. Specimens

Figure 1a,b show the geometry of specimens for tests at ambient temperature and at elevated
temperatures. The gauge length of specimens was 120 mm. Extra steel teeth are designed to place
the clip-on extensometer for double-sided strengthened specimens. A copper rod, which has a
low coefficient of thermal expansion (1.65 ˆ 10´5/˝C), together with a displacement gauge, was
adopted for measuring the strain of specimens at elevated temperatures. The change from clip-on
extensometer to copper rod and displacement gauge was due to the fact that the extensometer
could not be placed in the temperature chamber, which was for heating the specimens, and that the
measuring results of extensometer were easily affected by temperature when the temperature was
high (more than 60 ˝C). One end of the steel plates for the temperature test was extended from 60 to
110 mm to place the displacement gauge.
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Figure 1. Geometry of specimens: (a) specimens for ambient temperature; and (b) specimens for
elevated temperatures (unit: mm).

Specimens were fabricated at room temperature through hand lay-up technique. The steel plates
were uniformly roughened with fine emery paper and cleaned with ethanol prior to the application
of epoxy resin to ensure a sound bonding and prevent contaminants. The two-part epoxy resin was
mixed with the weight ratio being 4:1 (resin/hardener) according to manufacturer’s requirements.
Carbon fiber sheets were impregnated in the epoxy resin and then placed upon the surface of steel
plates. Pressure was applied on CFRP sheets to ooze out voids and excess resin. GFRP tabs were then
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bonded to the tab portion at the surface of CFRP, followed by the bonding of aluminum alloy tabs.
GFRP tabs were used to contribute to better load transferring capability at the tab portion. Pressure
was applied on aluminum alloy tabs after the bonding process. For double-sided strengthened
specimens, the steel plate with one side bonded was cured at room temperature for one day before
the bonding of the other side. When both sides were completed, binder clips were attached to
the specimens throughout the length. Specimens were cured at room temperature for seven days
before testing.

2.4. Test Setup and Instrumentation

The schematic view of test setup is shown in Figure 2. Tensile tests were carried out through a
universal testing machine, with the crosshead speed being 1 mm/min. A spherical hinge was used
to connect the load cell and the clamp of the universal testing machine for better alignment.

Strain gauges and the clip-on extensometer, which had a measure range of 25 mm and a linearity
error of ˘ 0.10%, were used to measure the longitudinal strain for tests at ambient temperature.
The strain for tests at elevated temperatures was measured by a displacement gauge, with the
measurement range being 30 mm and the linearity error being ˘ 0.10%. The temperature was
controlled by the chamber, which has a probe for sensing the air temperature inside. Specimens
for elevated temperature tests were preheated for 20 min in the chamber and kept in the chamber
throughout the tensile process.
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Figure 2. Schematic view of test setup: (a) test setup for ambient temperature; and (b) test setup for
elevated temperatures.

3. Results and Discussion

Tensile results are summarized in Table 3. Except for the data of specimens 3C/S and 3C/S/C,
each value is the average of three replicates’ experimental results. The values of specimens 3C/S
and 3C/S/C in Table 3 are the average of two replicates, as one replicate failed prematurely and the
data became unavailable. The premature failure might be due to in-plane bending, which was caused
by irregular adhesive thickness at tab ends and misalignment between grips and specimens. The
premature failure highlights the importance of specimen preparation and placing. The mechanical
values of steel plates were theoretical results based on coupon test data. They are listed for better
illustration of strengthening and stiffening effects. In this paper, the yield load of specimens is defined
as the load when steel yields, and the ultimate load as the load when the first significant drop in the
load-displacement curves is observed. One exception to this is that the yield load of steel plate is
defined as its ultimate load, as strengthened specimens usually failed when steel was still in the yield
plateau or not far from that.
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Table 3. Test results of specimens at ambient temperature.

Series Specimen KI Py KII Pu Failure
modeExp.

(kN/mm) CV (%) Theo.
(kN/mm)

Exp.
(kN) CV (%) Theo.

(kN)
Exp.

(kN/mm) CV (%) Theo.
(kN/mm)

Exp.
(kN) CV (%) Theo.

(kN)

L

S - - 92.5 - - 16.3 - - 0 - - 16.3 -
C/S 95.9 9.1 99.5 17.3 5.3 17.5 7.0 11.4 7.0 28.6 6.7 28.1 LF+D
2C/S 106.0 7.8 106.5 18.6 11.2 18.7 12.1 12.3 14.0 39.7 11.1 39.9 LF+D
3C/S 103.9 9.4 113.5 19.4 8.7 19.9 17.2 8.8 21.0 48.1 10.3 51.8 LF+D
4C/S 94.9 7.2 120.5 20.2 4.9 21.2 20.7 12.1 28.0 56.0 12.9 63.6 LF+D

S
4C/S 94.9 7.2 120.5 20.2 4.9 21.2 24.3 12.1 28.0 56.0 12.9 63.6 LF+D

3C/S/C 118.7 9.8 120.5 20.4 5.7 21.2 28.9 10.4 28.0 59.7 9.1 63.6 LF+D
2C/S/2C 120.3 5.6 120.5 20.6 8.8 21.2 33.0 15.7 28.0 63.2 4.5 63.6 LF+S+D

T

C/S 95.9 9.1 - 17.3 5.3 - 7.0 11.4 7.0 28.6 6. 7 27.6 LF+D
C/S-T30 93.4 8.8 - 17.3 6.1 - 6.8 12.8 6.9 27.4 10.2 27.0 LF+S+D
C/S-T35 93.3 7.3 - 17.2 10.0 - 7.1 11.9 6.7 25.5 9.0 26.1 LF+S+D
C/S-T40 92.7 9.9 - 17.0 4.3 - 5.6 15.6 6.1 24.1 13.3 24.7 LF+S+D
C/S-T45 93.1 5.6 - 16.9 11.9 - 5.4 13.2 5.1 23.9 7.6 23.3 IF
C/S-T50 92.8 8.3 - 16.8 6.7 - 4.1 9.9 4.1 22.1 8.9 22.1 IF+S
C/S-T55 90.4 7.5 - 16.2 5.9 - 3.3 10.4 3.5 21.5 2.0 21.3 IF
C/S-T60 91.0 5.8 - 16.1 8.2 - 3.1 5.8 3.3 20.5 3.8 20.9 IF
C/S-T70 89.5 5.9 - 16.3 11.3 - 3.2 3.4 3.2 21.2 4.1 20.5 IF
C/S-T80 90.5 4.7 - 16.0 5.8 - 3.4 4.1 3.2 20.7 3.9 20.5 IF
C/S-T100 89.3 3.5 - 16.0 7.6 - 3.0 1.7 3.2 19.7 2.1 20.5 IF
C/S-T120 90.2 3.8 - 16.1 1.9 - 3.3 3.0 3.2 20.4 5.6 20.5 FF

1. KI = Elastic stiffness; Py = yield load; KII = post-elastic stiffness; Pu = ultimate load; Exp. = experimental value; CV = Coefficient of Variation; and Theo. = theoretical value,
respectively; 2. Failure mode: LF = lateral fracture; D = steel-adhesive debonding; S = longitudinal splitting; IF = irregular fracture; and FF = fibrous fracture.
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3.1. Failure Modes

The failure modes of all specimens are listed in Table 3, with typical failed specimens shown in
Figure 3.
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(e) C/S-T120.

As noted, the increase in the number of CFRP layers and the change in strengthening schemes
did not have observable effects on failure modes. Except for specimen 2C/S/2C, all specimens
of series L and S failed in a combined failure mode involving both CFRP lateral fracture and
steel-adhesive debonding, with the lateral fracture being predominant. Specimen 2C/S/2C showed
splitting failure in addition to the two types of failure mentioned above. Misalignment in the
application process was believed to be the main contributor to that. The debonding failure observed
in specimens did not indicate a premature failure, as CFRP rupture in the middle part of specimens
was also observed. The debonding was believed to be due to strain incompatibility between steel and
CFRP after the yielding of steel [16], which led to the increase in shear strain of adhesive and caused
adhesive shear failure as load increased. The debonding, which occurred at the interface between
steel and adhesive instead of between CFRP and adhesive, was indicative of a higher bonding
strength between CFRP and adhesive than between steel and adhesive at ambient temperature.
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In comparison, experimental temperatures significantly affected the failure modes. From 30 to
40 ˝C, the failure modes of specimens were basically the same as that observed at 25 ˝C, except that
edge splitting was noted and that the debonding area was decreased with the increase of temperature.
When the temperature exceeded 45 ˝C, irregular fracture, instead of regular lateral fracture, became
the dominant failure, with no steel-adhesive debonding observed. At 120 ˝C, the failure mode further
changed, with the specimens being characteristic of fibrous fracture. The resin matrix that bonded
fibers together at the fracture diminished, with only carbon fibers left. Fibrous fracture was also
reported by Cree et al. [18] and could be observed from the result of Cao et al. [19]. Local adhesive
remnant was observed on the steel plate (see point 1 in Figure 3e).

Since the service temperatures of carbon fibers and steel plates were well above 120 ˝C [23,26],
the change in failure modes at elevated temperatures was believed to be due to the degradation of
epoxy resin in mechanical properties, and moreover, the decrease of it in volume. The decrease was
due to volatilization or decomposition of epoxy resin at elevated temperatures. The effects of volume
decrease, which were neglected by available reports [18,19,22,27], were emphasized here, since the
strength and stiffness of epoxy resin kept nearly constant after the temperature exceeded Tg + 10
or 20 ˝C [18,19], while the failure mode continued to change. In other words, the degradation in
mechanical properties was believed to play the key role in contributing to failure mode change only
at temperatures below Tg + 10 or 20 ˝C, while after that, the volume decrease of epoxy resin was
the predominant factor that affected the failure mode change. The change in failure modes could
be illustrated as follows. At temperatures ranging from 30 to 40 ˝C, the degradation was modest.
No significant changes in failure modes were observed. However, when the temperature rose to
45 ˝C, approaching the Tg, the epoxy resin started a physical transition from glassy state to rubbery
state, resulting in significant decreases in strength and stiffness. The resin matrix, therefore, could
not effectively unify fibers or transfer load among fibers. Fibers broke at different cross sections,
and irregular fracture occurred. The degradation of epoxy resin was also the contributor of the
decrease in debonding area, as the shear and peal stress in adhesive layer, which was caused by strain
incompatibility between steel and CFRP under tensile load, concentrated in a more limited area than
before. At 120 ˝C, due to high decrease in the volume of epoxy resin, fibrous fracture occurred. The
local adhesive remnant on steel plate was indicative of low bonding strength between CFRP sheet
and adhesive layer. Moreover, it also indicated that the local adhesive layer had lost the ability to
transfer load between CFRP and steel plate.

The effects of temperatures on failure modes may be better illustrated when the failure process
is taken into account. At temperatures ranging from 30 to 55 ˝C, noises were constantly heard in the
tensile process, and the specimens failed with a sudden loud noise from the breaking of CFRP, which
were similar to that observed at 25 ˝C. When the temperature was between 60 and 80 ˝C, significant
changes were observed. Firstly, in the preheating procedure, gases emitted from epoxy resin were
detected. This observation was important as it indicated the volume decrease of epoxy resin, as
mentioned above. Also, when under tensile load, the noises from specimens were considerably less
audible, which indicated that the epoxy resin had softened greatly. With further temperature increase,
the smell of gases emitted from preheated specimens was evidently more pungent, with the noises
being observably lower. At temperatures ranging from 100 to 120 ˝C, the color of CFRP seemed
to have deepened. Noises from specimens were scarcely heard. The breaking of CFRP was only
accompanied by a low and deep sound.

3.2. Strengthening and Stiffening Effects

Figures 4–6 show the load-displacement curves of specimens. Except for the curves of specimens
3C/S and 3C/S/C, which are the average curves based on two replicates, each curve represents
the average behavior of three replicates. As noted, specimens showed bi-linear behavior before the
rupture of CFRP, and the differences in their load-displacement curves laid mainly in the post-elastic
region, i.e., from steel yield to CFRP rupture.
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3.2.1. Effects of the Number of CFRP Layers

Figure 7 shows the strengthening and stiffening effects of specimens with different numbers of
CFRP layers. The increases in yield load and elastic stiffness were insignificant. For specimens C/S
and 4C/S, the yield loads were 17.3 and 20.2 kN, respectively, with the strength gains being 6.1%
and 23.9% when compared with that of steel plates. The elastic stiffness even slightly dropped after
it peaked at 2C/S, from 106.0 kN/mm at 2C/S to 94.9 kN/mm at 4C/S. The insignificant increases,
or even slight drops, in yield load and elastic stiffness were expected, since the CFRP sheet is very
thin (0.111 mm) compared with that of steel (2 mm), and that the tensile modulus of CFRP is only
35% higher than that of steel. With an increase in the number of CFRP layers, more voids in adhesive
layer and misalignment among fibers might occur, which weakened the contribution of CFRP to the
strength and stiffness of specimens.
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In comparison, the effects on ultimate load and post-elastic stiffness were rather significant. For
specimens C/S and 4C/S, the ultimate loads were 28.6 and 56.0 kN, respectively, with corresponding
strength gains being 75.4% and 243.6% when compared with that of steel plates. The post-elastic
stiffness also increased from nearly zero for steel plate to 7.0 and 20.7 kN/mm for specimens C/S
and 4C/S, respectively. The increase in post-elastic stiffness was meaningful, as it indicated a lower
permanent deformation when specimens suffered from unexpected loads.

As discussed in the introduction, conclusions vary on the strengthening efficiency, which is
expressed as the average failure stress in FRP layers. The failure stresses in the present paper for
specimens C/S, 2C/S, 3C/S and 4C/S were 3694, 3514, 3183, and 2980 MPa, respectively, which
were 104%, 99%, 90%, and 84% of the ultimate tensile strength of CFRP from coupon test. The
decrease in failure stress was substantial, the causes of which might be the occurrence of voids
and misalignment among fibers when more layers of CFRP were applied. The increase in the
stiffness of CFRP sheets, resulting from the increase in the number of CFRP layers, might also be
a contributor [28]. The stiffening efficiency, expressed as the average stiffness per FRP layer, was also
decreased. The average CFRP stiffnesses for specimens C/S, 2C/S, 3C/S, and 4C/S were 7.0, 6.1, 5.7,
and 5.2 kN/mm, respectively.

It is to be noted that a sound bonding is the prerequisite for the full utilization of CFRP
strengthening materials. Al-Zubaidy [11] reported a nearly constant failure load for steel plate joints
strengthened with one and three CFRP layers under impact loads. The reason behind this was that
the shear strength of adhesive was exceeded and that debonding failure (adhesive failure), rather
than CFRP rupture (adherend failure) occurred.
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3.2.2. Effects of Strengthening Schemes

Figure 8 compares the strengthening and stiffening effects of specimens with different
strengthening schemes. As noted, a more balanced strengthening scheme contributed to the increase
in yield and ultimate load and elastic and post-elastic stiffness. The increase in post-elastic stiffness
was the most significant, as the post-elastic stiffness of specimen 2C/S/2C was 36% higher than that
of specimen 4C/S. The elastic stiffness and ultimate load of specimen 2C/S/2C were 27% and 13%
higher than those of specimen 4C/S, respectively. This result indicated that a more balanced (or
symmetrical) strengthening scheme may help further increase mechanical properties when only a
limited number of CFRP layers are available.
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and post-elastic stiffness of specimens.

3.2.3. Effects of Temperature

Figure 9 illustrates the degradation of series T specimens with respect to ultimate load and
post-elastic stiffness at elevated temperatures. The degradation in yield load and elastic stiffness
was not plotted, since the decrease was rather slight, as shown in Table 3. The insignificant decrease
in yield load and elastic stiffness was due to the low content of CFRP in specimens, as the thicknesses
of CFRP sheet and steel plate were 0.111 and 2 mm, respectively.
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It is observed that elevated temperatures resulted in a significant decrease in the ultimate load
and post-elastic stiffness of specimens. As the temperature rose from 25 to 60 ˝C, the ultimate load
decreased from 28.6 to 20.5 kN, with a reduction of 28.3%. Corresponding post-elastic stiffness
dropped from 7.0 to 3.1 kN/mm, with the reduction being 55.7%. The degradation trends between
ultimate load and stiffness were similar, both of which reached a peak degradation rate at about 42 ˝C,
and kept nearly constant after 60 ˝C. The jump in mechanical properties at about 42 ˝C was due to
the softening of epoxy resin, as discussed previously.

4. Analytical Modeling

4.1. Analytical Modeling for Tests at Ambient Temperature

Perfect bonding is assumed between interfaces of different materials. Linear elastic model and
bilinear elastic-plastic model are adopted to characterize the mechanical properties of CFRP and steel,
respectively. The load bearing capacity of epoxy resin is neglected.

In the elastic region, both CFRP and steel are elastic. The Young’s modulus EI and corresponding
P1 load are as follows [29]:

EI “
Ests ` nEftf

tsf
, 0 ď

∆
l
ď εy (2)

PI “ EI
∆
l

btsf, 0 ď
∆
l
ď εy (3)

where Es, ts, and εy are the modulus, thickness, and yield strain of steel, respectively; Ef, tf, and n are
the modulus, single-layer thickness, and number of CFRP layers, respectively; tsf = ts + n¨ tf and b are
the total thickness and the width of the specimen in the middle section, respectively; finally, ∆ and l
are the displacement and gauge length, respectively.

In the post-elastic region, the equations for modulus EII and corresponding load PII are:

EII “
nEftf

tsf
, εy ď

∆
l
ď εfu (4)

PII “

„

EIεy ` EII

ˆ

∆
l
´ εy

˙

btsf, εy ď
∆
l
ď εfu (5)

where εfu is the ultimate strain of CFRP.
After the rupture of CFRP, the tensile modus EIII is zero, with the load PIII being constant at the

yield load of steel. The equations are as follows:

EIII “ 0, εfu ď
∆
l
ď εsu (6)

PIII “ EIεybts, εfu ď
∆
l
ď εsu (7)

where εsu is the ultimate strain of steel.
Thus, the load-displacement relationship of CFRP strengthened steel plates is derived as:

P “

$

’

’

’

’

&

’

’

’

’

%

EI
∆
l

btsf
„

EIεy ` EII

ˆ

∆
l
´ εy

˙

btsf

EIεybts

0 ă
∆
l
ď εy

εy ă
∆
l
ď εfu

εfu ă
∆
l
ď εsu

(8)

Based on the analysis, the theoretical load-displacement curves (Theo.) were plotted and
compared with the experimental curves (Exp.), as shown in Figure 10. As noted, the theoretical
values agreed well with the test data. The ratios of average elastic stiffness, yield load, post-elastic
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stiffness, and ultimate load to corresponding theoretical values were 0.919, 0.971, 0.929, and 0.948,
with the coefficients of variation (CV) being 0.102, 0.017, 0.161, and 0.059, respectively. Differences
between theoretical and experimental curves were mainly due to voids in the adhesive layer and the
incompatibility in strain of CFRP and steel after the yielding of steel, neither of which were considered
in the analytical model.
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4.2. Analytical Modeling for Tests at Elevated Temperatures

As the degradation of yield load and elastic stiffness were modest, the modeling was focused
on the degradation of ultimate load and post-elastic stiffness. Similar to the case for the modeling of
tests at ambient temperature, linear elastic model and bilinear elastic-plastic model are adopted for
characterizing the mechanical properties of CFRP and steel, respectively. The load-bearing capacity
of epoxy resin is neglected. The yield load of steel is assumed to be constant within the temperature
range studied [23]. A simplified model of Mouritz and Gibson [20] was adopted by assuming Rn to
be one.

Thus, the expressions for ultimate loads of CFRP and the whole specimen are as follows:

ff pTq “
fU ` fR

2
´

fU ´ fR

2
tanh

`

ka
`

T´ T1

a
˘˘

(9)

Pu pTq “ ff pTq Af ` fy As (10)

where Pu(T) is the ultimate load at temperature T; f R, ka, and Ta
1 are constants achieved through

regression analysis, which are 1258.91, 0.078, and 41.6, respectively, in the present paper.
The post-elastic stiffness is calculated as:

kII pTq “
kU ` kR

2
´

kU ´ kR

2
tanh

`

kb
`

T´ T1

b

˘˘

(11)

where kII(T) is the ultimate load at temperature T; kR, kb, and Tb
1 are constants achieved through

regression analysis, which are 3.16, 0.120, and 45.1, respectively, in the present paper.
The modeling results were listed in Table 3 and compared with experimental values, as shown

in Figure 9. It could be observed that the fitting curves matched well with the test data. The average
value of experimental data to theoretical data for ultimate load and post-elastic stiffness were 1.000
and 0.994, respectively, with corresponding CVs being 0.05 and 0.02.

However, it is to be noted that the good fit is based on test data in the present paper. As
the mechanical properties of different resins vary greatly at elevated temperatures, the coefficients
obtained from regression analysis need to be validated with further research.

5. Conclusions

Based on experimental tests, the following conclusions are drawn:
(1) The effects of the number of CFRP layers and strengthening schemes on failure modes of

CFRP strengthened steel plates under tensile load were insignificant. The failure modes were mainly
affected by the experimental temperature. The change in failure modes was dominated by the
degradation of resin matrix in mechanical properties when the temperature was below Tg + 10 or
20 ˝C; and was also dominated by the volume decrease of resin matrix at temperatures above that.
The volume decrease was due to resin volatilization or decomposition at elevated temperatures;

(2) The number of CFRP layers, strengthening schemes, and experimental temperatures mainly
affected the load-displacement behavior of specimens in the post-elastic region, while their influences
on the elastic region were relatively modest;

(3) The ultimate load and post-elastic stiffness of specimens significantly increased with the
number of CFRP layers. The ultimate load bearing capacity was 28.6, 39.7, 48.1, and 56 kN for
specimens strengthened with one, two, three, and four layers of CFRP sheets, respectively. The
post-elastic stiffnesses were correspondingly 7.0, 12.1, 17.2, and 20.7 kN/mm, respectively. However,
the strengthening and stiffening efficiency decreased with the increase in number of CFRP layers.
The average failure stresses in CFRP for specimens C/S, 2C/S, 3C/S, and 4C/S were 3694, 3514,
3183, and 2980 MPa, respectively, with corresponding stiffness in CFRP being 7.0, 6.1, 5.7, and
5.2 kN/mm, respectively.
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(4) The double-sided strengthening scheme had better strengthening and stiffening effects than
the single-sided strengthening scheme. The ultimate load and post-elastic stiffness of specimen
2C/S/2C were 13% and 36% higher than those of specimen 4C/S, respectively;

(5) The ultimate load and post-elastic stiffness were significantly decreased at elevated
temperatures. The values of ultimate load and post-elastic stiffness at 60 ˝C, after which the values
kept nearly constant, were only 44.3% and 71.7% of the values at ambient temperature; and

(6) Analytical modeling for predicting the load-displacement behavior at ambient temperature
and the ultimate load and post-elastic stiffness at elevated temperatures were conducted. The
modeling results were verified by the test data.
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