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Abstract: Many existing reinforced concrete structures were constructed with substandard
characteristics. Low quality concrete, poor transverse reinforcement details and insufficient flexural
strength are among the most common deficiencies. While substandard structures are in need of
retrofitting, particularly in seismic areas, problems such as high costs and disturbance to occupants
are major obstacles for retrofit interventions. Fiber reinforced polymers can provide feasible retrofit
solutions with minimum disturbance to occupants. In this study, the basic aim is to investigate the
flexural seismic performance of substandard reinforced concrete columns retrofitted with embedded
longitudinal fiber reinforced polymer reinforcement without increasing the original dimensions
of the columns. In the experimental study, the reference and retrofitted columns were tested
under constant vertical and reversed cyclic lateral loads. Three different connection methods of
aramid fiber reinforced polymer reinforcement to the footing were investigated experimentally. A
significant enhancement was obtained in lateral flexural strength through the proposed retrofitting
method. Furthermore, it was observed that the cyclic lateral drift capacities of the retrofitted
columns were as high as 3%, which can be deemed as quite satisfactory against seismic actions. The
comparison of the experimental data with analytical calculations revealed that a conventional design
approach assuming composite action between concrete and fiber reinforced polymer reinforcement
can be used for flexural retrofit design. Experimental results also demonstrated that strain limit for
longitudinal fiber reinforced polymer (FRP) reinforcement should be remarkably lower in case of
reversed cyclic loading conditions.
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1. Introduction

Many substandard reinforced concrete (RC) structures should be seismically retrofitted to reduce
their vulnerabilities against seismic actions. Financial constraints, disturbance to the occupants and
disruption of functions of the structures are the main obstacles for proper seismic retrofitting of
these substandard existing structures. In recent years, use of fiber reinforced polymers (FRP) in
construction industry has become quite common. They offer feasible and innovative solutions for
seismic retrofitting due to their lightweight, high tensile strength and noncorrosive character [1–6].
FRPs are also utilized as external tendons for strengthening concrete structures [7–9]. While
there are many studies on external confinement of columns or joints [10–26], and on flexural
retrofit with near surface mounted (NSM) FRP rods or pultruded strips under monotonic loading
conditions [27–42], only few studies are available on flexural retrofitting using FRPs under repeated
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loading conditions [43–45]. According to the best knowledge of the authors’, reversed cyclic flexural
behavior of RC members strengthened with longitudinal FRP reinforcement was studied for the first
time by Ilki and Kumbasar [46]. More recently, Bournas and Triantafillou [47], Goksu et al. [48],
Fahmy and Wu [49], Vrettos et al. [50], Li et al. [51], Goksu et al. [52] and Faustino and Chastre [53]
also studied this type of behavior. However, in all cases, except the studies of Goksu et al. [48,52], it
is difficult to perceive the performance of the NSM FRP system and anchoring of NSM reinforcement
into the footing in case of low strength concrete. In the study of Goksu et al. [48], which was the
precursor of this study, the possibility of using carbon FRP (CFRP) longitudinal (rod, laminate, sheet)
and transverse (sheet) reinforcement for the flexural seismic retrofit of low strength RC members
under reversed cyclic loading conditions was investigated. The aim of flexural retrofitting by using
FRP reinforcement, mainly in the longitudinal direction, was to obtain flexural strength enhancement
under reversed cyclic loading, since many existing structures, among other deficiencies, suffer from
lack of sufficient flexural strength in case of seismic loading. Furthermore, it was targeted not to
sacrifice from drift capacity, since drift capacity is as important as strength in case of seismic actions.
In the study of Goksu et al. [48], an enhancement in flexural capacity was obtained until large
drift ratios (approximately 6% drift ratio) through flexural FRP retrofit. Moreover, after testing of
performance of several anchorage types for connection of FRP reinforcement to the footing, the most
effective anchorage detail was obtained, and was also utilized in the current testing program. The
major differences between the current testing program and the work reported by Goksu et al. [48] are
(i) the presence of axial load (20% of axial load capacity of the columns, whereas no axial load was
applied on the specimens in the study of Goksu et al. [48]), (ii) the different type of FRP reinforcement
utilized in the current study, aramid FRP pultruded laminates (AFRP), and (iii) intentional partial
debonding of FRP reinforcement in the anchorage hole to allow more distributed FRP deformations
at the critical interface between the column and footing in the current study. The reason of utilizing
AFRP reinforcement rather than CFRP or GFRP in the current study is the expectation of potentially
better performance of AFRP due to its better toughness characteristics [54].

In this study, four cantilever RC columns were constructed using low strength concrete and
plain reinforcing bars for representing relatively old substandard structures. According to the
compressive tests of core specimens extracted from many different existing buildings constructed
before 1990s in Turkey, the concrete compressive strengths are found to be between 5 and 13 MPa.
The microstructural analyses of these core specimens revealed that the concretes were very porous
and the water/cement ratio used for making them was excessively high [55]. The columns were
then tested under reversed cyclic lateral and constant axial loads before and after retrofitting. Three
different anchorage details were designed for embedding AFRP laminates to the existing footing.
These different details constitute the main test variable. While the applied retrofitting technique is
similar to NSM technique in terms of mechanical contribution of FRP reinforcement to the flexural
strength, application technique of retrofitting is different than NSM technique, as has been introduced
by Goksu et al. [48] before. As is well known, concrete cover is generally deteriorated due to
corrosion of internal steel reinforcing bars of substandard structures constructed with low strength
concrete. Typical appearances of columns of existing substandard RC frame buildings with corroded
reinforcement are shown in Figure 1.

In the applied retrofitting technique, firstly, deteriorated concrete cover is removed. Secondly, a
layer of high strength structural repair mortar (SRM) is applied to obtain a flat surface for bonding
AFRP reinforcement. After hardening of SRM, AFRP longitudinal reinforcement is bonded to the
substrate by using epoxy adhesive. Then, a second layer of SRM is applied to form the new concrete
cover. As the final stage of seismic retrofit, the strengthened column is externally jacketed with
CFRP sheets in transverse direction. Consequently, by this technique, all retrofitting application
was conducted within the thickness of the original concrete cover, which may be deemed as an
advantage with respect to the conventional retrofitting techniques. Clearly, AFRP reinforcement,
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which is embedded into SRM, is expected to perform better than NSM application in case of poor
quality concrete in terms of structural integrity.Polymers 2015, 77, page–page 
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Figure 1. The appearances of existing substandard columns of RC frame structures. 
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through the applied retrofitting method. Current technical guidelines/documents do not allow use of 
longitudinal FRP reinforcement for flexural retrofit under cyclic loading in potential plastic hinge 
regions of RC members [5,56,57]. This is basically due to concerns related with ductility. In this study, 
however, it was observed that the deformation capacity of the retrofitted columns was also acceptable 
for a satisfactory seismic performance. 

It was observed from the seismic tests that the measured rupture strain of AFRP reinforcement, 
which was subjected to cyclic loading, was approximately 43% of design rupture strain of  
FRP reinforcement (design rupture strain of FRP reinforcement = environmental reduction  
factor × manufacturer declared ultimate rupture strain). For NSM applications under monotonic 
loading conditions, ACI 440-2R-08 [5] recommends to consider 70% of ultimate strain of FRP. In this 
study, it is demonstrated clearly that allowable strain limit for longitudinal FRP reinforcement should 
be lower in case of reversed cyclic loading conditions (only 43% of manufacturer declared ultimate 
strain of FRP reinforcement). It is also shown that the increased flexural capacity as well as nonlinear 
inelastic displacement response of columns after strengthening could be predicted satisfactorily 
using conventional RC theory. 

2. Experimental Program 

The aim of the applied retrofitting technique is the enhancement of column flexural capacity 
using AFRP reinforcement under cyclic lateral loading in the presence of constant axial load without 
a significant sacrifice from deformation capacity. On the other hand, like many existing substandard 
RC columns, the spacing of the transverse reinforcement of the columns was insufficient. This might 
have caused deficiencies in terms of ductility and shear strength after flexural strength enhancement 
through FRP retrofitting. Therefore, after the intervention made for flexural strength enhancement 
through longitudinal AFRP reinforcement, the columns were also jacketed externally with CFRP 
sheets in transverse direction. As known, while external FRP confinement has a remarkable 
contribution to deformability and shear strength, its contribution to flexural strength (which is the 
main issue investigated in this study) is marginal with respect to the contribution of longitudinal 
AFRP reinforcement. Nevertheless, both contributions were taken into account during the analytical 
calculations presented in this paper. 

2.1. Description of Test Specimens 

Four substandard symmetrically reinforced cantilever RC columns were tested under reversed 
cyclic lateral and constant axial load. The main features of the specimens are shown in Table 1.  
While lateral loads were applied through displacement cycles in pushing and pulling directions with 
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Test results, supported by the analytical calculations, revealed that the cyclic flexural capacity of
the substandard RC members can be increased significantly by the use of AFRP pultruded laminates
through the applied retrofitting method. Current technical guidelines/documents do not allow use
of longitudinal FRP reinforcement for flexural retrofit under cyclic loading in potential plastic hinge
regions of RC members [5,56,57]. This is basically due to concerns related with ductility. In this study,
however, it was observed that the deformation capacity of the retrofitted columns was also acceptable
for a satisfactory seismic performance.

It was observed from the seismic tests that the measured rupture strain of AFRP reinforcement,
which was subjected to cyclic loading, was approximately 43% of design rupture strain of FRP
reinforcement (design rupture strain of FRP reinforcement = environmental reduction factor ˆmanufacturer
declared ultimate rupture strain). For NSM applications under monotonic loading conditions, ACI
440-2R-08 [5] recommends to consider 70% of ultimate strain of FRP. In this study, it is demonstrated
clearly that allowable strain limit for longitudinal FRP reinforcement should be lower in case of
reversed cyclic loading conditions (only 43% of manufacturer declared ultimate strain of FRP
reinforcement). It is also shown that the increased flexural capacity as well as nonlinear inelastic
displacement response of columns after strengthening could be predicted satisfactorily using
conventional RC theory.

2. Experimental Program

The aim of the applied retrofitting technique is the enhancement of column flexural capacity
using AFRP reinforcement under cyclic lateral loading in the presence of constant axial load without
a significant sacrifice from deformation capacity. On the other hand, like many existing substandard
RC columns, the spacing of the transverse reinforcement of the columns was insufficient. This might
have caused deficiencies in terms of ductility and shear strength after flexural strength enhancement
through FRP retrofitting. Therefore, after the intervention made for flexural strength enhancement
through longitudinal AFRP reinforcement, the columns were also jacketed externally with CFRP
sheets in transverse direction. As known, while external FRP confinement has a remarkable
contribution to deformability and shear strength, its contribution to flexural strength (which is the
main issue investigated in this study) is marginal with respect to the contribution of longitudinal
AFRP reinforcement. Nevertheless, both contributions were taken into account during the analytical
calculations presented in this paper.
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2.1. Description of Test Specimens

Four substandard symmetrically reinforced cantilever RC columns were tested under reversed
cyclic lateral and constant axial load. The main features of the specimens are shown in Table 1.
While lateral loads were applied through displacement cycles in pushing and pulling directions with
increasing amplitudes, axial load was kept constant. All columns were identical (before retrofitting)
and flexure-critical.

Table 1. Main Features of the Specimens.

Specimen Main longitudinal AFRP a

reinforcement
Additional anchorage

reinforcement a Anchorage type a Transverse CFRP b

reinforcement

REF – – – –
LAM 2 ˆ 2 (each 42 mm x 1.4 mm) – Fully bonded 2 plies ˆ 0.166 mm

LAM-PB 2 ˆ 2 (each 42 mm x 1.4 mm) – Partially bonded 2 plies ˆ 0.166 mm
LAM-LAM 2 ˆ 2 (each 42 mm ˆ 1.4 mm) 2 ˆ 2 (each 42 mm ˆ 1.4 mm) Fully bonded 2 plies ˆ 0.166 mm

a Aramide based, pultruded laminates; b Carbon based, unidirectional sheets fully wrapped around the
retrofitted specimens. REF: reference specimen; LAM, LAM-PB, LAM-LAM: retrofitted specimens.

The geometry and the reinforcement details of the columns are presented in Figure 2. In this
figure, it can be observed that the longitudinal bars were (4φ14) continuous from the bottom of the
footing to the top of the column. The spacing of transverse bars was 200 mm in the testing zone
(φ10/200). All internal reinforcing bars were plain round bars, which had been used commonly until
2000s in Turkey.
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Figure 2. The geometry and reinforcement details of the columns.

The reference specimen, denoted as REF, was tested without any retrofit. The other columns
(LAM, LAM-LAM and LAM-PB) were tested after they were retrofitted with AFRP reinforcement in
longitudinal and CFRP reinforcement in transverse directions. The longitudinal AFRP reinforcement
embedded in the columns was anchored directly to the footing in all retrofitted specimens, while
additional AFRP anchorage reinforcement was used for the specimen LAM-LAM to achieve a better
performance by avoiding potential failures of FRP reinforcement at the interface of the column and
the footing. Contrary to the fully bonded anchorages of longitudinal FRP reinforcement in case of
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the specimens LAM and LAM-LAM, the anchorage of the FRP reinforcement in case of the specimen
LAM-PB was intentionally partly debonded from concrete using insulating tape. Partial debonding
of AFRP reinforcement in the anchorage zone was for preventing the localized damage of the AFRP
reinforcement at the interface of column and footing by avoiding localization of stresses at this critical
zone. Details on each retrofitting scheme are explained below and presented in Figure 3.
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2.2. Characteristics of Materials

Low strength concrete and plain reinforcing bars were used for the construction of the columns
for representing relatively old, existing substandard structures. All RC columns were cast at the
same day, from the same concrete production batch. The 28th-day average compression strength
was measured as 10.3 MPa. An additional compressive strength test, performed on the 750th day,
yielded an average compressive strength of 15.2 MPa. The compressive strength, at the time of testing
of columns (between 57th and 64th days), was calculated as 12.0 MPa, according to the procedure
described in Eurocode 2-Part 1 (2004) [58]. For the numerical analysis, this value was multiplied
with 0.85 to account for the size effect in concrete columns. The concrete mix-proportions of cement:
aggregate (0–4 mm): aggregate (5–12 mm): sand: water were 1:3.8:2.2:4.7:1 (by weight). The yield
stress (f y) and tensile strength (f max) of longitudinal bars were 296 and 400 MPa, while those of
transverse bars were 315, and 400 MPa, respectively. The compression tests of concrete specimens and
tension tests of steel bars were carried out in accordance with TS-EN Turkish Standards 12390-3 [59]
and TS 708 [60], respectively. Two different types of FRP reinforcement were used in retrofitting;
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AFRP pultruded laminates in longitudinal and CFRP sheets in transverse direction. The appearance
and geometrical and mechanical properties of FRP reinforcement are presented in Figure 4 and
Table 2, respectively. In this table, tf, wf, Ef and εfu* are the effective thickness, the effective width,
the tensile elastic modulus and the ultimate rupture strain of FRP reinforcement declared by the
manufacturer (BASF Construction Chemicals, Augsburg, Germany). The compressive strengths of
SRM (cement based structural repair mortar, EN-1504-3 [61]) used for forming the new concrete cover,
the epoxy adhesive used for bonding the AFRP reinforcement to the column surface (EN-1504-4 [62]),
the epoxy adhesive used for bonding CFRP sheets in transverse direction to the column surface, and
the epoxy grout used for anchoring AFRP reinforcement in the footing were 50, 75, 60 and 80 MPa
(obtained from 40 mmˆ 40 mm ˆ 160 mm prism test results at 7 days of age), respectively. The
compressive characteristics of all materials were determined according to TS-EN 196-1 [63], and the
mechanical characteristics of CFRP sheets were determined according to ASTM D3039 [64].

Table 2. Properties of FRP reinforcement.

FRP reinforcement Ef (N/mm2) tf (mm) wf (mm) εfu*

AFRP (laminate) 60,000 1.4 42 0.023
CFRP (sheet) 230,000 0.166 500 0.015

FRP, fiber reinforced polymers; AFRP, aramide reinforced polymers; CFRP, carbon reinforced polymers; Ef,
tensile elastic modulus of FRP reinforcement; tf, effective thickness of FRP reinforcement; ; wf, effective width
of FRP reinforcement; εfu*, ultimate rupture strain of FRP reinforcement declared by manufacturer.
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the columns was anchored directly to the footing in all retrofitted specimens. Different from  
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2.3. Retrofitting Procedure

For enhancing the column flexural capacity, three specimens were retrofitted with longitudinal
AFRP reinforcement, which was embedded within the concrete cover (after removal of poor concrete
cover), and anchored to the existing footing. The retrofitting details and the application stages
are shown in Figures 3 and 5 respectively. As a first step, the concrete cover was removed for
more effective utilization of AFRP reinforcement until the longitudinal steel bars were exposed
(Figure 5a). This allowed AFRP reinforcement to be embedded within the cover thickness. This
application may also cover a corrosion repair procedure, which is generally required in case of
rehabilitation of old buildings, which were constructed with poor quality concrete. Then, a thin
layer of SRM was applied to obtain a sound and smooth substrate over the internal steel reinforcing
bars (Figure 5b). Afterwards, an epoxy-based primer was applied over the SRM to increase the
adhesion between the AFRP reinforcement and SRM. Then, two pultruded AFRP laminates of 1.4 mm
thickness and 42 mm width were placed symmetrically on each side of the columns in the strong
direction, with an anchorage length of 300 mm (Figures 3 and 5c), and the laminates were bonded to
the substrate by using an epoxy adhesive. For the connection of the AFRP longitudinal reinforcement
to the footing, conical holes were dug in the footing (Figure 3). The longitudinal AFRP reinforcement
embedded in the columns was anchored directly to the footing in all retrofitted specimens. Different
from the specimen LAM, for the specimen LAM-PB, the top 100 mm long part of the AFRP
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reinforcement in the conical hole was wrapped with a plastic insulating band in order to create
a partially debonded anchor (Figures 3 and 5d). Therefore, total bonded lengths of the AFRP
reinforcement in the footing were 200 mm (rather than 300 mm) for the specimen LAM-PB. Additional
AFRP anchorage reinforcement of 800 mm length was used at the column-footing interface in case of
the specimen LAM-LAM (Figures 3 and 5e). The 300 mm long part of the additional AFRP anchorage
reinforcement was embedded into the conical hole. AFRP anchorage reinforcement and the main
AFRP reinforcement were bonded to each other by using the same epoxy adhesive, and they were
anchored to the footing (in the pre-dug conical hole) together by using epoxy grout. Same epoxy grout
was used to fill the conical holes in the footings of specimens LAM and LAM-PB. After all, a layer of
SRM was applied to bring the column cross-section to its original dimensions (Figure 5f). It should
be noted that, buckling of NSM FRP bars was observed during the reversed cyclic tests carried out by
Bournas and Triantafillou [47]. Therefore, after installation of longitudinal AFRP reinforcement and
formation of concrete cover with SRM, as a final step, CFRP sheets were wrapped around the columns
in transverse direction to enhance the deformability through confinement action and to avoid
potential shear damages due to increased flexural strength as well as to prevent buckling of AFRP
reinforcement in compression (Figure 5g). Additionally, CFRP confinement is believed to enhance
the bond between the core concrete, SRM and AFRP reinforcement. Consequently, the external
dimensions of the reference and retrofitted specimens were identical (200 mm ˆ 300 mm). In other
words, all retrofitting application was conducted within the thickness of the original concrete cover.
Naturally, during practical applications, the safety of the footing and soil under the footing should be
checked to confirm that they have also sufficient safety margin against increased internal forces.
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2.4. Test Setup

The specimens were tested under constant axial load and reversed cyclic lateral loads in a
quasi-static displacement-controlled manner. A displacement-based loading protocol was applied
during testing of all specimens. Similar loading patterns were used by Matamoros and Sozen [65],
Iacobucci et al. [13], Ilki et al. [20], Bournas and Triantafillou [66], and Goksu et al. [48] during testing
of RC columns. Target lateral drift ratios were calculated as the ratio of the lateral displacement to the
specimen height (at which actuator is connected) in both pushing and pulling directions (Figure 6).
The axial load of 120 kN, which corresponded to 20% and 18% of the axial load capacity of the
reference column without and with consideration of the capacity of the internal steel reinforcement,
respectively, was applied to all specimens (Figure 7a). Other than a large number of displacement
transducers, a number of strain gauges were also used on steel bars and AFRP reinforcement in
longitudinal direction and on stirrups in transverse direction (Figure 7b).
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3. Analytical Considerations

3.1. Theoretical Flexural Strength and Displacement Capacity before and after Retrofit

The theoretical strength and local deformation characteristics are determined through
moment–curvature relationships obtained by fiber analysis approach using the stress–strain
relationships of materials representing monotonic increasing stresses. The monotonic
moment–curvature relationships are obtained using XTRACT (2007) [67] software at the critical
sections of each column for predicting the load–displacement relationships of the columns.
Therefore, the theoretical load–displacement relationships approximately represent the envelopes
of hysteretic curves. The effect of axial load is considered while obtaining the moment–curvature
relationships. In the moment–curvature analysis, steel reinforcing bars are assumed to behave in an
elasto–plastic manner with strain hardening. The stress–strain relationship of the steel reinforcing
bar is defined according to actual uniaxial tension test results. Longitudinal AFRP reinforcement is
taken into account as linear elastic material in tension since the buckling and debonding of AFRP
reinforcement during cyclic loading is prevented by SRM and CFRP confinement. Nevertheless, the
contribution of the AFRP reinforcement in compression is neglected. Since the retrofitted specimens,
thereby the AFRP applications, were exposed to laboratory conditions for a very short time prior
to testing, the design rupture strain of AFRP reinforcement (εfu) is assumed to be equal to εfu*,
which is the manufacturer declared ultimate strain of FRP reinforcement (Equation (1)). In other
words, the environmental reduction factor, CE, is taken as 1.0. While ACI 440-2R-08 [5] recommends
to reduce εfu by a factor of 0.70 for NSM FRP applications under monotonic flexural loading, εfu
is reduced by a factor of 0.43 during the analysis presented here (the reason for this assumption
is explained in the section titled “Strains of Steel and AFRP Reinforcement”). For obtaining the
stress–strain relationship of CFRP confined concrete, the model proposed by Ilki et al. [68] is used.
The stress–strain relationship of CFRP confined concrete is obtained for two different parts of
the confined cross–section (for core concrete confined by transverse steel bars and external CFRP,
and for SRM as concrete cover confined by only external CFRP). The stress–strain relationships of
unconfined concrete, core concrete, SRM, internal steel and AFRP reinforcement used in calculation
of moment capacities are presented in Figure 8. The marks in the figure correspond to the analytical
values of the specimens during analysis. It should be noted that SRM causes an increase of 7%
in theoretical moment capacity, while both SRM and AFRP cause an increase of 51% and 97% for
the specimens LAM and LAM-LAM, respectively, in theoretical moment capacity in comparison
with the reference column. The moment–curvature analysis is terminated when longitudinal FRP
reinforcement ruptures (Figure 9).

εfu “ CE ¨ εfu
˚ (1)
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After obtaining the moment–curvature relationships through fiber analysis approach with
summarized assumptions, the total top displacements (δt) of the columns are determined considering
the elastic and inelastic deformations. It should be noted that the shear deformations are neglected
since they are very small with respect to contribution of flexure. As a first step, for calculating
the yield displacements (δy) of the columns using Equation (2), the columns are discretized into 5
elements for considering effective flexural stiffness, rather than the gross cross-sectional stiffness, at
different heights of the column as a function of bending moment when the longitudinal reinforcing
bars yield at the critical maximum moment region (Figure 10). In Equation (2), χi is the elastic
curvature (corresponding to respective bending moment on that discretized part), li is the length
of the respective part, and hi is the distance between the center of the respective part and the tip
of the column, where the lateral load is applied. Sequentially, for obtaining the plastic component
of the total top displacements (δp) of the columns, conventional plastic hinge approach is used
(Equation (3)). In Equation (3), χp is the plastic curvature at the plastic hinge of the column, lp
is the plastic hinge length, H is the distance between the interface of the column and the footing
and the point of application of the lateral load. The length of plastic hinge (lp) of the column is
assumed as h/2 (150 mm) according to TSDC [57], where h refers to the depth of the cross-section of
the column. Finally, the total top displacements (δt) of the columns are determined using Equation (4).
The theoretical lateral load–displacement relationships are then obtained and compared with the
experimental load–displacement relationships in the Section “Results and Discussions”.

δy “

5
ÿ

i“1

χi ¨ li ¨ hi (2)

δp “ χp ¨ lp ¨ pH ´
lp
2
q (3)

δt=δy+δp (4)
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where Vf is the FRP contribution to shear strength, Afv is the area of FRP shear reinforcement, ɛfe is  
the effective strain of FRP sheet attained at failure, which was assumed to be 0.004 as recommended 
by ACI-440-2R-08 [5] and TSDC [57], Ef is the tensile modulus of elasticity of FRP shear reinforcement, 
dfv is the effective depth of FRP shear reinforcement, sf is the spacing of FRP reinforcement plies, n is 
the number of plies of FRP reinforcement, tf is nominal thickness of one ply of FRP reinforcement, 
and wf is the width of FRP reinforcement plies. 
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According to ACI-440-2R-08 [5], the contribution of FRP reinforcement to shear strength can be
obtained using Equations (7) and (8).

Vf “
Afv ¨ εf e ¨ Ef ¨ dfv

sf
(7)

Afv “ 2n ¨ tf ¨wf (8)

where Vf is the FRP contribution to shear strength, Afv is the area of FRP shear reinforcement, εfe is
the effective strain of FRP sheet attained at failure, which was assumed to be 0.004 as recommended
by ACI-440-2R-08 [5] and TSDC [57], Ef is the tensile modulus of elasticity of FRP shear reinforcement,
dfv is the effective depth of FRP shear reinforcement, sf is the spacing of FRP reinforcement plies, n
is the number of plies of FRP reinforcement, tf is nominal thickness of one ply of FRP reinforcement,
and wf is the width of FRP reinforcement plies.

According to ACI-440-2R-08 [5], the total shear strength of the cross-section (Vn) resisted with
FRP reinforcement, concrete and transverse reinforcement can be obtained using Equation (9).

Vn “ Vc `Vs `ψfVf (9)

where ψf is the FRP strength reduction factor and was assumed to be 0.95 as recommended by
ACI-440-2R-08 [5] for shear fully wrapped sections.
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Since the shear strengths of the columns (before and after retrofit) were remarkably higher
than their flexural strengths, as expected, flexural effects dominated the behavior of the specimens
(Table 3). This table includes the observed and predicted failure modes, which are consistent.

Table 3. Theoretical and experimental lateral load capacities and consecutive failure modes of the columns.

Specimens REF LAM and LAM-PB LAM-LAM

Theoretical lateral load capacity (kN) 21.2 32.1 41.8

Experimental lateral load capacity (kN) 24.5
33.8 (for the specimen

LAM) 34.6 (for the
specimen LAM-PB)

45.1

Theoretical moment capacity (M0) (kNm) 36.5 55.0 72.4
Theoretical failure mode Y before C Y, T Y, then T
Observed failure mode Y before C Y, F Y, FA

Shear strength (kN) 108.0 (Vc+Vs) 260.6 (Vc+Vs+ψ f ¨ Vf)

Y: Tensile reinforcement yields; C: Concrete crushes; T: AFRP reinforcement reaches its ultimate tensile
capacity; F: AFRP reinforcement fractured; FA: Both AFRP reinforcement and anchorage fractured.

3.3. Anchorage Length for FRP Reinforcement in Footing

In order to utilize the full capacity of the FRP reinforcement, the failure of FRP reinforcement
was desired to be due to rupture of the reinforcement rather than pullout, concrete splitting, concrete
cone and spacing and edge cone failures, which have been listed as five primary failure modes in
ACI-355-1R-91 [70]. Among these failures, the possibility of concrete cone, concrete splitting and
edge cone failures was significantly reduced due to the constraining effect of steel reinforcing bars
in the footing, where the conical anchor holes were dug in. Therefore, only possibilities of pullout
failure and fracture of FRP reinforcement were taken into account by comparing the tensile strength
of FRP reinforcement and the adhesion between concrete and epoxy grout (Equations (10) and (11)).
In these equations, Fbond is the bond capacity, τb is the uniform bond strength along the anchorage
length, ldb is the embedment length, while u is the perimeter, Ffrp is the tensile capacity of the FRP
reinforcement, εfu is the design rupture strain of FRP reinforcement, and Afrp is the cross-sectional
area of the FRP reinforcement. For the selected embedment length (300 mm), the calculated value
of Fbond (1012 kN) was far over Ffrp (277 kN), which clearly eliminated the possibility of pullout
failure. It should be noted that while calculating Fbond, τb was calculated to be 6.3 N/mm2 based
on ACI-355-1R-91 [70]. Moreover, test results of the retrofitted columns also confirmed that the
embedment length of FRP reinforcement was sufficient. No debonding problem or damages resulting
from concrete cone, concrete splitting, edge cone and pullout failures were observed during the tests.

Fbond “ τb ¨ ldb ¨ u (10)

Ffrp “ Ef ¨ εfu ¨ Afrp (11)

4. Results and Discussions

The test results were outlined through hysteretic load–displacement curves, envelopes of
these curves, strain distributions along longitudinal, transverse steel and longitudinal AFRP
reinforcement, energy dissipation capacities, average section rotations in different gauge lengths
and damage progression and distribution. Furthermore, experimental data was compared with the
theoretical findings.
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4.1. Lateral Load–Displacement Curves and Failure Modes

The hysteretic lateral load–displacement curves and their envelopes are presented in Figures 11
and 12 respectively. The damage progression of the columns with increasing drifts is summarized in
Table 4.
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Figure 11. Experimental and theoretical lateral load–displacement curves for all specimens (rein.,
reinforcement).
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Table 4. Damage progression of the columns (The numbers are drift ratios in %).

Damage mechanisms Specimens
REF LAM LAM-LAM LAM-PB

Yielding of longitudinal steel bars 2 3 3 3
Crushing of concrete cover 3 – – –
Spalling of concrete cover ´6 – – –

Fracture of AFRP reinforcement – 3 3 3

As seen in Figures 11 and 12 and Table 3, the reference column (REF) reached its theoretical
flexural capacity and exhibited a ductile behavior. The column LAM, retrofitted with AFRP
reinforcement, experienced an enhancement in strength up to the drift ratio around 3%. At this
drift, the enhancement in strength was around 38% with respect to the column REF. The sudden
remarkable loss of strength upon exceeding the drift ratio around 3% was due to the fracture of AFRP
reinforcement at the interface of the column and the footing (Figure 13a). As seen in Figures 11 and 12
the column LAM-LAM exhibited a remarkably superior performance with respect to the reference
and the other retrofitted columns by resisting lateral loads, approximately 1.9 and 1.3 times the loads
resisted by the reference and other retrofitted columns, respectively. As seen in Figure 11, the column
LAM-LAM also sustained its lateral load capacity until the drift ratio of 3%, around where the AFRP
reinforcement and AFRP anchorage reinforcement fractured at the same section (Figure 13b). The
higher strength of the column LAM-LAM is due to the contribution of additional AFRP anchorage
reinforcement to the flexural capacity. The column LAM-PB behaved similar to the column LAM in
terms of maximum lateral load and fracture of AFRP reinforcement around 3% drift ratio. At this drift
ratio, the enhancement in strength was around 41% with respect to the column REF. It was observed
that, while pulling, both AFRP reinforcements under tension were fractured upon exceeding the
drift ratio of 3%. On the other hand, while pushing, only one AFRP reinforcement under tension
fractured, whereas the other one did not fracture, instead, decomposed locally just above the isolated
height (Figure 13c). Decomposition is the separation of the individual fibers after fracture of the
epoxy matrix. Contribution of decomposed AFRP reinforcement to the behavior at larger drifts
limited plastic residual deformations of the column LAM-PB. As seen in Figure 11, marginal residual
displacements remained after unloading branches in pulling direction up to 8% drift ratio. Therefore,
this type of anchorage system can be used to limit the residual displacement (and consequently
residual damage). The retrofitted columns behaved similar in terms of strength degradation after
the rupture of FRP reinforcement as the specimens tested by Ilki and Kumbasar [46], Bournas and
Triantafillou [47], and Vrettos et al. [50], where the drift ratios at failure were approximately 2%, 4%
and 2.5%, respectively. It is important to note that all significant damage was accumulated at the
base of the columns, since the columns were wrapped with CFRP sheets in transverse direction along
the full height. Consequently, the crack width reached several centimeters at the intersection of the
column and the footing. This type of damage may be quite disadvantageous in case of earthquakes
since the distribution of plastic deformations through the potential plastic hinge length is prevented
due to presence of a rigid transverse CFRP jacket. The accumulation of a remarkable portion of
plastic deformations only at the interface of the column and the footing may significantly reduce the
overall drift capacity of the column. Since drift capacity is essentially important for a satisfactory
seismic performance, this kind of reduction in drift capacity should be avoided. This problem can be
overcome by application of transverse sheets in strips allowing distribution of damage (and plastic
deformations) in the unconfined zones between transverse FRP strips.
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and transverse steel, and longitudinal AFRP reinforcement (Figure 15). The efficiency of AFRP 
reinforcement on flexural capacity can also be seen through the measured strains of longitudinal 
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Figure 13. Fracture of AFRP reinforcement during the test (a) the column LAM at 3% drift ratio,
(b) the column LAM-LAM at 3% drift ratio, and (c) the column LAM-PB at 3% drift ratio.

Average experimental moment–curvature relationships obtained for critical sections of columns
are presented in Figure 14. In this figure M (Second order effect is considered) is the experimental
moment, M0 is the theoretical moment capacity calculated per specimen, which is obtained by
fiber analysis approach. The theoretical moment capacities (M0) are presented in Table 3. For the
calculation of experimental moment–curvature relationships, the average curvature values obtained
along 0–20 mm, 20–150 mm, and 150–300 mm heights above the footing were taken into account. As
seen in Figure 14, for the retrofitted columns, the average curvature values of the column sections
measured along 0–20 mm height were in the order of 4.5 ˆ 10´3 (1/mm), while the curvatures
measured in 20–150 mm height above the footing were in the order of 4.5 ˆ 10´4 (1/mm). Since
the curvature values of the columns measured along 150–300 mm height were even smaller, these
results are not presented in Figure 14. In agreement with these measurements, the damage was
also accumulated particularly in 20 mm height of the column from top of the footing. During the
autopsy after the tests, no concrete crushing and no cracking (other than the main crack at the
interface of the column and the footing) were observed on the retrofitted columns. On the other
hand, the deformations (as well as cracks) were distributed through the column height in case of the
reference column.
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4.2. Strains of Steel and AFRP Reinforcement

The strain values were obtained by making use of the strain gauges on longitudinal and
transverse steel, and longitudinal AFRP reinforcement (Figure 15). The efficiency of AFRP
reinforcement on flexural capacity can also be seen through the measured strains of longitudinal
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AFRP reinforcement. The maximum strains of longitudinal AFRP reinforcements in tension were
measured to be in the range of 0.01 right before the rupture of the AFRP reinforcement. This value
corresponded to approximately 43% of design rupture strain of FRP reinforcement. ACI 440-2R-08 [5]
recommends to reduce εfu by using a factor of 0.70 for NSM application technique under monotonic
flexural loading. This value is quite unconservative for the applied retrofitting technique in this study.
It shall be much lower for cyclic loading based on the test results. In the study of Vrettos et al. [50],
where the longitudinal CFRP sheets together with CFRP anchors were used for flexural retrofitting
of RC columns, the measured strains were also far behind (approximately 38% of design rupture
strain of FRP reinforcement) the strain reduction factor recommended by ACI 440-2R-08 [5]. It should
be noted that, in the study of Vrettos et al. [50], the ultimate rupture strain of FRP reinforcement
was not measured directly through pre-installed strain gauges but calculated through analysis of the
cross-section at the column base by using conventional RC force equilibrium, strain compatibility,
and material constitutive relationships based on the test results. As shown in Figure 15c,f, right after
the rupture of the AFRP reinforcement, the strains decrease within the AFRP reinforcement, and
corresponding stresses are transferred to the longitudinal reinforcing bars (the strains of steel bars
increased remarkably along the measured height). The longitudinal steel bars of the column REF
yielded at drift ratio of 2%, while that of retrofitted columns yielded at drift ratio around 3% right
after the columns experienced strength degradation due to rupture of AFRP reinforcement. Since steel
reinforcing bars in tension already reached their yield strain at around 3% drift ratio before rupture of
AFRP reinforcement, the brittle failure of the column was avoided. It should be noted that drift ratios
exceeding 3% may only be expected if substandard RC structures are subjected to severe earthquakes.
Nevertheless, after AFRP reinforcements were fractured at around 3% drift ratio, the columns still
resisted considerable lateral forces due to contribution of steel reinforcing bars until extremely large
drift ratios (~6% to 8%) and kept their vertical load resisting capacities. According to strain gauge
measurements, strains of longitudinal steel bars did not reach tensile strain corresponding to strain
hardening. This observation is consistent with the nearly horizontal branch of the load–displacement
relationships after fracture of AFRP reinforcement. On the other hand, none of the stirrups yielded
(strains are in the range of 0.00004 and 0.0006) and no damage was observed on CFRP sheets in
transverse direction due to relatively low level of applied axial load (20% axial load capacity of the
column) and shear stresses.
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Figure 15. Strain distribution of longitudinal steel reinforcement (a) at ˘0.01 drift ratio, (b) right
before rupture of AFRP reinforcement (at around 3% drift ratio), (c) right after rupture of AFRP
reinforcement (at around 3% drift ratio), and AFRP reinforcement (d) at ˘0.01 drift ratio, (e) right
before rupture of AFRP reinforcement (at around 3% drift ratio), (f) right after rupture of AFRP
reinforcement (at around 3% drift ratio). * strain measurements obtained from additional AFRP
anchorage reinforcements for the column LAM-LAM.

4.3. Energy Dissipation Capacities

Energy dissipation capacities of the tested columns are calculated as the areas enclosed by the
load–displacement hysteresis loops and presented in Figure 16. As seen in this figure, until the
rupture of the AFRP reinforcement, the column LAM-LAM shows the highest energy dissipation
capacity due to its higher lateral load capacity with respect to other columns. Moreover, the energy
dissipation capacity of the column LAM is higher than the column LAM-PB. This is due to larger
elastic deformations along the embedded unbonded length of AFRP reinforcement in case of column
LAM-PB. After the rupture of the AFRP reinforcement, energy dissipation capacities of the columns
LAM and LAM-LAM are approximately same, since the columns behave like the reference column
in terms of sustained lateral load. As seen in Figure 16, the dissipated energy is significantly
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less for column LAM-PB due to elastic behavior of unbonded AFRP reinforcement. Nevertheless,
with the gradual damaging of AFRP reinforcement, the contribution of AFRP reinforcement to the
elastic behavior is diminished and plastic deformations increased causing more significant residual
displacements with respect to previous loading cycles.
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5. Conclusions

In this study, the effects of using anchored and embedded AFRP laminate longitudinal
reinforcement for the flexural retrofit of substandard RC columns were investigated. The tests were
conducted under constant axial load and reversed cyclic lateral loads. Based on the experimental and
theoretical studies, the following conclusions/observations can be listed:

‚ The reference column reached its theoretical flexural capacity, and exhibited a ductile behavior as
foreseen during design.

‚ The retrofitted columns (LAM, LAM-LAM, LAM-PB) failed due to the rupture of AFRP
reinforcement at around 3% drift ratio. At this drift ratio, the enhancement in strength was
around 38%, 90% and 41% for the columns LAM, LAM-LAM, and LAM-PB, respectively, with
respect to the reference column. It should be noted that drift ratios exceeding 3% may only
be expected if substandard RC structures are subjected to severe earthquakes. Nevertheless,
after AFRP reinforcements were fractured at around 3% drift ratio, the columns still resisted
considerable lateral forces due to contribution of steel reinforcing bars until extremely large drift
ratios (~6% to 8%). The column LAM-LAM exhibited a remarkably superior performance with
respect to the reference and the other retrofitted columns due to additional AFRP anchorage
reinforcement. When compared with the column LAM, the proposed anchorage type used for the
column LAM-PB, limited the residual plastic deformations, while did not affect the lateral load
capacity adversely. Therefore, this type of anchorage system can be utilized to limit the residual
displacement and corresponding damage. It was observed that the predicted results through
theoretical calculations satisfactorily captured the tested results by means of lateral load and
deformation capacities, particularly, when 43% of the design rupture strain of FRP reinforcement
was considered as the rupture strain of the FRP reinforcement during theoretical calculations.

‚ The AFRP reinforcement of the retrofitted columns ruptured at the interface of the column and the
footing. The experimentally measured rupture strain of AFRP reinforcement was observed to be
approximately 43% of design rupture strain of FRP reinforcement. Therefore, the strain reduction
factor (70%) recommended by ACI 440-2R-08 [5] for NSM applications under monotonic loading
conditions may lead to unconservative predictions of lateral load-deformation capacity for the
proposed retrofitting technique in this study under cyclic loading conditions. Clearly, further
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investigations are also needed to accurately identify the theoretical seismic behavior of the
columns retrofitted using NSM techniques under cyclic loading conditions.

It can be inferred from the results of this study that the proposed retrofitting method is promising
for improving the seismic performance of substandard columns built with low quality concrete under
reversed cyclic flexure and axial force. It should be noted that these conclusions are mainly based on
the test results of this study, therefore, they are limited to the ranges of test parameters and details
considered in this study.

Acknowledgments: The financial support of the ITU Scientific Research Department (Scientific Research Project
No:326024), BASF and ART-YOL Companies and the assistance of staff of Structural and Earthquake Engineering
Laboratory and Building Materials Laboratory of Istanbul Technical University are acknowledged gratefully.

Author Contributions: Alper Ilki coordinated the study. Ahmet Uzunhasanoglu worked on production of the
specimens. All authors contributed to the execution of the tests. Engin C. Seyhan and Caglar Goksu contributed
to the processing of the test data. The paper was written by Engin C. Seyhan, Caglar Goksu and Alper Ilki.

Conflicts of Interest: The authors declare no conflict of interest.

Notations

AFRP Aramid fiber reinforced polymer
Afrp Cross-section area of the FRP anchor reinforcement
Afv Area of FRP shear reinforcement
Ag Gross area of the column section
Au Cross-sectional area of the transverse reinforcing bar
bw Web width of the column
CE Environmental reduction factor according to ACI 440-2R-08 2008
CFRP Carbon fiber reinforced polymer
d Distance from extreme compression fiber through centroid of tension steel reinforcement
dfv Effective depth of FRP shear reinforcement
E f Tensile elastic modulus of FRP reinforcement
f'c Design compressive strength of concrete
f max Tensile strength of longitudinal and transverse reinforcing bar
fy Yield stress of longitudinal reinforcing bar
f yt Design yield strength of transverse reinforcement
Fbond Bond capacity of epoxy grout on AFRP reinforcement
Ffrp Tensile strength of FRP
FRP Fiber reinforced polymer
GFRP Glass fiber reinforced polymer
H Distance between the interface of the column and the footing and the point of application of

the lateral load
hi Distance between the center of the respective part and the tip of the column, where the

lateral load is applied
ldb Embedment length
li Length of the respective part of the column
lp plastic hinge length
M Experimental moment capacity
M0 Theoretical moment capacity calculated by fiber analysis approach
n Number of plies of FRP sheet
NSM Near surface mounted
Nu Factored axial load normal to cross-section (to be taken as positive for compression)
RC Reinforced Concrete
s Spacing of shear reinforcement measured in a direction parallel to the longitudinal

reinforcement
sf Spacing of FRP reinforcement plies
tf Nominal thickness of one ply of FRP reinforcement
u Perimeter of the FRP anchor
Vc Nominal shear strength provided by concrete
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Vs Nominal shear strength provided by shear reinforcement
Vn Nominal shear strength
Vr´ f rp Nominal shear strength (with the contribution of FRP)
Vf FRP contribution to shear strength
wf Effective width of FRP reinforcement
δt Top displacement of the column
θp Plastic rotation
εc0 Axial strain corresponding to unconfined concrete strength
εcc Axial strain corresponding to confined concrete strength
εfe Effective strain of FRP sheet attained at failure
ε f u Design rupture strain of FRP reinforcement
ε f u

˚ Ultimate rupture strain of FRP reinforcement declared by manufacturer
ρs Existing volumetric ratio of transverse reinforcement of columns
ρsm Required volumetric ratio of transverse reinforcement of columns
τb Uniform bond strength along the anchorage length
χi Curvature of the respective part of the column
χp Curvature of the plastic part of the column
ψf FRP strength reduction factor
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