Next Article in Journal
Impact of the Enhanced Permeability and Retention (EPR) Effect and Cathepsins Levels on the Activity of Polymer-Drug Conjugates
Next Article in Special Issue
Block Co-Polymers for Nanolithography: Rapid Microwave Annealing for Pattern Formation on Substrates
Previous Article in Journal
Release of Insulin from Calcium Carbonate Microspheres with and without Layer-by-Layer Thin Coatings
Article Menu

Export Article

Open AccessReview
Polymers 2014, 6(8), 2166-2185; doi:10.3390/polym6082166

Non-Stoichiometric Polymer-Cyclodextrin Inclusion Compounds: Constraints Placed on Un-Included Chain Portions Tethered at Both Ends and Their Relation to Polymer Brushes

Fiber & Polymer Science Program, College of Textiles, North Carolina State University, Campus Box 8301, Raleigh, NC 27695-8301, USA
Received: 16 May 2014 / Revised: 25 June 2014 / Accepted: 15 July 2014 / Published: 13 August 2014
(This article belongs to the Special Issue Advances in Polymer Brushes)
View Full-Text   |   Download PDF [2767 KB, uploaded 15 August 2014]   |  

Abstract

When non-covalently bonded crystalline inclusion compounds (ICs) are formed by threading the host cyclic starches, cyclodextrins (CDs), onto guest polymer chains, and excess polymer is employed, non-stoichiometric (n-s)-polymer-CD-ICs, with partially uncovered and “dangling” chains result. The crystalline host CD lattice is stable to ~300 °C, and the uncovered, yet constrained, portions of the guest chains emanating from the CD-IC crystal surfaces behave very distinctly from their neat bulk samples. In CD-IC crystals formed with α- and γ-CD hosts, each containing, respectively, six and eight 1,4-α-linked glucose units, the channels constraining the threaded portions of the guest polymer chains are ~0.5 and 1.0 nm in diameter and are separated by ~1.4 and 1.7 nm. This results in dense brushes with ~0.6 and 0.4 chains/nm2 (or 0.8 if two guest chains are included in each γ-CD channel) of the un-included portions of guest polymers emanating from the host CD-IC crystal surfaces. In addition, at least some of the guest chains leaving from a crystalline CD-IC surface re-enter another CD-IC crystal creating a network structure that leads to shape-memory behavior for (n-s)-polymer-CD-ICs. To some extent, (n-s)-polymer-CD-ICs can be considered as dense polymer brushes with chains that are tethered on both ends. Not surprisingly, the behavior of the un-included portions of the guest polymer chains in (n-s)-polymer-CD-ICs are quite different from those of their neat bulk samples, with higher glass-transition and melt crystallization temperatures and crystallinities. Here we additionally compare their behaviors to samples coalesced from their stoichiometric ICs, and more importantly to dense polymer brushes formed by polymer chains chemically bonded to surfaces at only one end. Judging on the basis of their glass-transition, crystallization and melting temperatures, and crystallinities, we generally find the un-included portions of chains in (n-s)-polymer-CD-ICs to be more constrained than those in neat bulk as-received and coalesced samples and in high density brushes. The last observation is likely because many of the un-included chain portions in (n-s)-polymer-CD-ICs are tethered/constrained at both ends, while the chains in their dense brushes are tethered at only one end. View Full-Text
Keywords: tethered polymers; cyclodextrins; inclusion compounds; brushes tethered polymers; cyclodextrins; inclusion compounds; brushes
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Tonelli, A.E. Non-Stoichiometric Polymer-Cyclodextrin Inclusion Compounds: Constraints Placed on Un-Included Chain Portions Tethered at Both Ends and Their Relation to Polymer Brushes. Polymers 2014, 6, 2166-2185.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top