
Supplementary Information 

1. Transport Models 

1.1. Zero-Order Model 

For zero-order release kinetics, the dissolution of a drug molecule is only a function of time. This 
model holds true only in the case of very slow drug release. Zero-Order release is therefore modeled  
as follows: 
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gel − 𝑀𝑡

gel = 𝑘0𝑡 (1) 

where 𝑀0
gel is the initial concentration of drug present in the drug molecule, 𝑀𝑡

gel is the concentration 
of drug in the drug molecule at time t, and k0 is the Zero-Order release constant with units of 
concentration per time. 

1.2. First-Order Model 

Typically utilized to describe the adsorption and/or elimination of certain drugs, the First-Order 
model is derived from First-Order release kinetics, which states that the change in concentration with 
respect to change in time is dependent only on concentration: 

𝑑𝑀gel

𝑑𝑡
= −𝑘𝑀gel (2) 

where 𝑀gel is the concentration of drug in the drug molecule and k is the First-Order release constant. 
Integrating Equation (2) yields the following: 
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where 𝑀0
𝑔𝑒𝑙 is the initial concentration of drug in the drug formulation and 𝑀𝑡

𝑔𝑒𝑙 is the concentration of 
drug in the drug formulation at time t. 

1.3. Higuchi Model 

A descriptive mathematical model for drug dissolution from matrix systems was not developed until 
1961 by Higuchi [1]. The model was initially derived for planar systems; however it has since been 
modified for use with different geometries and porous systems. The most familiar form of the  
Higuchi model is the simplified Higuchi model, which relates drug concentration to the square root of time: 
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gel = 𝑘H𝑡
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where 𝑀𝑡
gel  is the concentration of drug in the drug matrix at time t and KH is the Higuchi  

dissolution constant. 
Many assumptions follow with the use of this model however: (i) the drug concentration in the 

matrix is initially much higher than the solubility of the drug; (ii) edge effects are negligible, so 
diffusion is unidirectional; (iii) the thickness of the dosage form is much larger than the size of the 
drug molecules; (iv) the swelling and dissolution of the matrix is negligible; (v) the diffusivity of the 
drug is constant; (vi) and perfect sink conditions are attained in the release environment [1]. A perfect 



Polymers 2013, 5 S2 
 
sink condition is such that the total dissolution of the drug molecule in solution yields a resulting 
concentration that is much lower than that of saturation (typically 1/3 of saturation). 

1.4. Hixson-Crowell Cube Root Model 

For systems in which the surface area and diameter of the drug matrix change with time, the 
Hixson-Crowell model can be used. In 1931, Hixson and Crowell discovered that a group of particles’ 
regular area is proportional to the cube root of its volume [2]. This relationship can thus be used to 
derive the following: 
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where 𝑊0
gel is the mass of the drug molecule initially, 𝑊𝑡

gel is the mass of the drug molecule at time t, 
and κ is a constant incorporating the relationship between the surface area and the volume of the  
drug molecule. 

1.5. Korsmeyer-Peppas Model 

The Korsmeyer-Peppas Model was developed to specifically model the release of a drug molecule 
from a polymeric matrix, such as a hydrogel. Korsmeyer et al. developed the following Equation [3]: 

𝑀𝑡
sol

𝑀∞
sol = 𝑘KP𝑡𝑛 (6) 

where 𝑀𝑡
sol is the concentration of the drug in the release solution at time t, 𝑀∞

sol is the equilibrium 
concentration of drug in the release solution, kKP is the drug release rate constant, and n is the 
diffusional exponent. 

2. Figures and Tables 

2.1. Calibration Curves 

Figure S1. Calcium ion concentration ladder. 
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Figure S2. Potassium ion concentration ladder. 

 

2.2. Fit Parameters 

Figure 3. Calculated Korsmeyer-Peppas constants, kKP, from Equation 6 for calcium () 
and potassium () at varying TEGDA concentrations. 

 

Table 1. Calculated Korsmeyer-Peppas constants, kKP, for calcium (blue) and potassium 
(red) at varying TEGDA concentrations. Error bars represent 95% confidence intervals. 

%TEGDA 1.0 3.0 5.0 7.0 9.0 

k 
0.30 ± 0.09 0.25 ± 0.13 0.30 ± 0.08 0.24 ± 0.09 0.26 ± 0.12 
0.15 ± 0.84 0.14 ± 0.11 0.30 ± 0.32 0.14 ± 0.02 0.12 ± 0.08 

Figure 4. Calculated diffusion coefficients, n, from Equation (6) for calcium () and 
potassium () at varying TEGDA concentrations. 
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Table 2. Calculated effective diffusivities, Deff, for calcium (blue) and potassium (red) at 
varying TEGDA concentrations. Error bars represent 95% confidence intervals. 

% TEGDA 1.0 3.0 5.0 7.0 9.0 

Deff 

03.2 × 10−6  
±11 × 10−6 

2.2 × 10−6  
±5.9 × 10−6 

1.5 × 10−6  
±2.7 × 10−6 

3.4 × 10−6  
±4.5 × 10−6 

3.0 × 10−6  
±2.05 × 10−6 

3.5 × 10−6  
±31 × 10−6 

5.1 × 10−6  
±14 × 10−6 

17 × 10−6  
±35 × 10−6 

8.6 × 10−6  
±4.2 × 10−6 

17 × 10−6  
±37 × 10−6 

Figure 5. Calculated diffusion coefficients, n, determined using values from  
the Korsmeyer-Peppas model for calcium () and potassium () at varying  
TEGDA concentrations. 

 

Table 3. Calculated diffusion coefficients, n, for calcium (blue) and potassium (red) at 
varying TEGDA concentrations. Error bars represent 95% confidence intervals. 

% TEGDA 1.0 3.0 5.0 7.0 9.0 

n 
0.24 ± 0.11 0.25 ± 0.12 0.24 ± 0.07 0.27 ± 0.04 0.26 ± 0.05 
0.32 ± 0.90 0.33 ± 0.16 0.24 ± 0.36 0.35 ± 0.03 0.38 ± 0.18 
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