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Abstract: The mechanical and physical properties of polymeric materials originate from
the interplay of phenomena at different spatial and temporal scales. As such, it is necessary
to adopt multiscale techniques when modeling polymeric materials in order to account for
all important mechanisms. Over the past two decades, a number of different multiscale
computational techniques have been developed that can be divided into three categories:
(i) coarse-graining methods for generic polymers; (ii) systematic coarse-graining methods
and (iii) multiple-scale-bridging methods. In this work, we discuss and compare eleven
different multiscale computational techniques falling under these categories and assess them
critically according to their ability to provide a rigorous link between polymer chemistry and
rheological material properties. For each technique, the fundamental ideas and equations
are introduced, and the most important results or predictions are shown and discussed. On
the one hand, this review provides a comprehensive tutorial on multiscale computational
techniques, which will be of interest to readers newly entering this field; on the other, it
presents a critical discussion of the future opportunities and key challenges in the multiscale
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modeling of polymeric materials and how these methods can help us to optimize and design
new polymeric materials.

Keywords: multiscale modeling; polymer; viscoelasticity; rheology; coarse-grained
molecular dynamics; entanglement; primitive path; tube model

Nomenclature definitions are given here in the following sequence: Roman alphabetical order
followed by Greek alphabetical order. Bold quantities denote vectors or tensors.

app tube diameter in reptation/tube model
aT shift factor in time-temperature superposition principle
b Kuhn length of polymer chain as R2

ee = Nb2

Dcm self-diffusion coefficient of polymer chain
DRouse diffusion coefficient defined by the Rouse model as DRouse = kBT/Nζ

G′, G′′ storage and loss shear moduli
G0
N , G(t) plateau and relaxation shear moduli

F deformation gradient tensor
L, L0 current and initial length of material in the direction of uniaxial tension
Lpp primitive chain length in reptation/tube model, defined as Lpp = R2

ee/app

MRI geometric mapping matrix between all-atomistic and coarse-grained models
N number of monomers per chain
Ne entanglement length, which is the number of monomers between two entanglements
nv number of polymer chains per unit volume
nij (n0(rij)) entanglement number (at equilibrium) between particle pairs i and j
pr, PR configurational probability distributions in all-atomistic and coarse-grained models,

respectively
Ree end-to-end distance of polymer chain
RG radius of gyration of polymer chain
s segment index/contour length variable along primitive chain
S(q) single chain coherent dynamic scattering function
Z number of entanglements per chain, defined as Z = N/Ne

α exponent in standard Mittag-Leffler function
σE elastic part of Cauchy stress
σV viscous part of Cauchy stress
PE elastic part of nominal stress
PV viscous part of nominal stress
η, η0 viscosity and zero-rate viscosity
γ, γ̇ shear strain and shear strain rate
λ stretch ratio in uniaxial tension, defined as λ = L/L0
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ν unit tangent vector of the primitive chain
ω circular frequency
ψ(s, t) probability that chain segment, s, remains in the tube of reptation at time, t
Ψ(t) tube survivability function, defined as Ψ(t) =

∫ Lpp

0
ψ (s, t) ds/Lpp

τd disentanglement time of polymer chain, defined as τd = L2
pp/π

2Dcm

τe entanglement time of polymer chain, defined as τe = (1/3)τd/(N/Ne)
3

τR Rouse time of polymer chain, defined as τR = (1/3)τd/(N/Ne)

ζ friction coefficient between polymer beads
ζAA, ζCG friction coefficients in all-atomistic and coarse-grained models, respectively

1. Introduction

The design and processing of polymeric materials become increasingly difficult as performance
requirements of many advanced technological applications become stricter, and as the demand increases
for shorter ideation-to-implementation times. It is therefore of great interest to predict and design
the key physical and mechanical properties of polymeric materials from information about molecular
ingredients. Consequently, it is important to establish a rigorous link between molecular constituents and
macroscopic mechanical properties, i.e., between polymer chemistry and viscoelasticity, in particular.
With such a tool at hand, the optimal processing, design and application of polymeric materials can be
more easily realized. However, establishing such a rigorous link is not a simple task, and it has not yet
been fully achieved. The difficulty arises from the wide range of spatial and temporal scales involved
in the characterization of polymeric materials (in contrast to, for example, the case of a monoatomic
gas), as illustrated in Figure 1. The typical vibrations of covalent bonds are on the length scale of
an Ångström and time scale of sub-picoseconds. The typical length of a monomer is a nanometer,
with relevant dynamics in the range of tens of picoseconds. The size of a single polymer chain is
characterized by its radius of gyration, typically between 10 and 100 nanometers. Depending on its
surroundings, the relaxation of a single chain lasts about 10 to 100 nanoseconds, but often longer.
Beyond a critical concentration, different polymer chains are coiled together with mutual uncrossability.
A typical polymeric network has a size of about 1 to 100 micrometers, with a relaxation time on the order
of microseconds to milliseconds. Bulk polymeric material is composed of these coils and networks on
the length scale of millimeters to centimeters. The relaxation and aging of these bulk polymeric materials
occur in the range of seconds, hours and even years. These multiple, disparate spatial and temporal scales
and their interdependence among each other in terms of system behavior (i.e., bulk behavior depends on
the behavior of individual polymer chains, and so forth) make it necessary to adopt a multiscale modeling
technique that can correctly characterize the hierarchy of scales, if we wish to link molecular constituents
with macroscopic mechanical properties, including viscoelasticity, viscoplasticity and aging of rubbery
or glassy polymers. It is not feasible to review the multiscale modeling of all of these properties in
this work; instead, we focus on the viscoelasticity (rheological properties) of polymer melts, which is
one of the most important issues in the processing, molding and application performance of polymeric
materials. We begin by discussing the cause of viscoelastic behavior in polymer melts.
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Figure 1. Hierarchical length scales for polymeric materials.
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The viscosity of polymeric materials originates from the dynamics of polymer chains. If the chains
are very short, i.e., they are oligomers; their dynamics are dominated by the friction between monomers.
According to the Rouse theory, the viscosity, η0, of these oligomers has a simple scaling relationship
with chain length N , as η0 ∼ N , and the self-diffusion coefficient scales as Dcm ∼ N−1 [1].
These phenomena have also been observed both in molecular dynamics (MD) simulations [2,3] and
experiments [4]. However, when the chain length is larger than the entanglement length (N > Ne), due
to chain connectivity and uncrossability, the dynamics of these long chains will be greatly hindered by
topological constraints, referred to as entanglements. These entanglements are commonly assumed to
effectively restrict the lateral motion of individual polymer chains into a tube-like region with diameter
app. Thus, a chain will slither back and forth, or reptate, along the tube, instead of moving randomly
through three dimensional space. When the time, t, is shorter than the entanglement time, τe, the chain
does not feel the constraints of the tube formed by its neighboring chains. Thus, it can move isotropically
in space. At intermediate times, τe < t < τR, the chain segments move along the axis of the tube in
a Rouse-like fashion, where τR is the Rouse time, and only the two ends of the polymer chain explore
new space. The inner segments of the chain behave like a random walk inside the tube [5]. Beyond
the Rouse time (τR < t < τd), the chain moves inside the tube in a one-dimensional diffusive manner,
where τd is the disentanglement time. At longer times (t > τd), the chain can completely escape its
original tube and form a new tube with its neighboring chains. This picture for entangled polymer chain
dynamics constitutes the so-called tube model, the most successful theory from the field of polymer
physics in the past thirty years. The central axis of the tube-like region defines the primitive path (PP).
The PP can be considered as the shortest path remaining, if one holds the two ends of the chain in space
and continuously shrinks its contour without violation of the chain’s uncrossability with its neighboring
chains. De Gennes [5] and Doi and Edwards [6] performed the pioneering works on the theoretical study
of rheological properties of entangled polymer melts following from the tube concept. The dynamics
of entangled polymer chains was considered in terms of the one-dimensional diffusion of a tracer chain
along its PP in a mean-field approach (i.e., the constraints formed by neighboring chains are considered
static). The PP was treated as a random walk in space with a constant step length, app. Thus, the
degree of the topological interactions between different chains is also defined through the effective tube
diameter, app. From the tube theory [5,6], Dcm ∼ N−2 and η0 ∼ N3, which agree reasonably well
with the experimental observations. Later on, two important mechanisms observed in real polymer
systems, contour length fluctuation (CLF) and constraint release (CR), were subsequently incorporated
into the tube theory, which then predicts η0 ∼ N3.4 [7]. In the original tube theory, the contour length
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of the chain was assumed to remain fixed at the mean value, L, when in actuality, it fluctuates about
this mean value with root-mean-squared fluctuation on the order of δL ∼ L(Ne/N)1/2 [8] and, thus,
manifests itself in the dynamics of moderately long chains, but becomes negligible for extremely long
chains. In addition, the motion of surrounding chains can release lateral constraints to the motion of the
tracer chain, thereby dilating or otherwise reorganizing its surrounding tube. Thus, CR is a cooperative
phenomenon between different chains, while CLF can be considered as a single-chain phenomenon,
but both hasten the relaxation process. By taking these important mechanisms into account, various
models have been developed [7–13], which result in significant improvements when compared with
experimental results. In particular, Likhtman and McLeish [14] developed a quantitative theory for the
linear dynamics of linear entangled polymers with all the relevant mechanisms considered, i.e., CLF,
CR and longitudinal stress relaxation along the tube. Later on, Hou et al. [15] performed extensive
simulations of the stress relaxation of bead-spring polymers. They found that their simulation results
agreed with the Likhtman-McLeish theory [14] by using the double reptation approximation for the
CR effect and removing high-frequency CLF contributions [15]. The related theories have also been
extensively reviewed in the literature [7,10–13,16–20].

Since about 90% of the free energy of polymeric materials is entropy [21], the elasticity of these
materials is dominated by entropic forces whose strength is inversely proportional to kBT , where kB

is Boltzmann’s constant and T denotes absolute temperature. To explore why the elastic modulus of
rubber eventually becomes independent of the strand length in the network, Edwards invented the tube
concept in his description of rubber elasticity [22–24]. De Gennes then realized that one can omit the
crosslinks when the chains become very long, and he adopted the tube concept to study the polymer chain
reptation inside a strongly crosslinked polymeric gel [25]. Later on, through rigorous statistical mechanic
formulations, upon employing the affine deformation assumption, Edwards and Vilgis established the
contributions of entanglements and crosslinks to the elastic response of a crosslinked network following
an external applied force [21]. The obtained results compared well with the extensive experimental
results. Rubinstein and Panyukov [26] adopted a similar idea to establish an affine length scale,
Raff , which separates the deformation of polymer networks into two regimes: the solid, elastic, affine
deformation on large scales and the liquid-like nonaffine deformation on smaller scales. They also
demonstrated that the nonlinear elasticity of polymer networks is induced by nonaffine deformation [26].
The proposed method also unified the phantom (crosslinked) and entangled networks and lead to a simple
stress-strain relationship for polymer networks, which has been further validated by experiments [26].
Later on, Rubinstein and Panyukov [27] combined and generalized several successful ideas into a
new molecular model for the nonlinear elasticity of polymer networks, with the concepts of the tube
model, CLF and CR mechanisms. The prediction of the new model agreed with experimental and
computer-simulation results [27]. Arruda and Boyce [28] also developed a constitutive model for the
nonlinear elasticity of rubber materials. In their model, the underlying structure of rubber materials
is simplified into an eight-chain crosslinked cube, with each chain having Langevin (non-Gaussian)
behavior. The proposed model successfully captures the response of real polymeric materials under
uniaxial tension, biaxial extension, uniaxial compression and pure shear.

Having understood the origins of elasticity and viscosity, it was only a technical challenge to develop
theoretical and thermodynamically consistent constitutive models for the viscoelasticity of polymeric
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materials, with all the relevant physical mechanisms considered [19,29–33]. However, the predictions
and/or assumptions made in these theoretical models should be checked against computer simulations
and experimental observations, to either accept, reject or refine the models as a whole or subsets of their
basic assumptions. As accurate MD potentials are developed for a broad range of materials based on
quantum chemistry calculations and with the increase of supercomputer performance, all-atomistic MD
simulation has become a very powerful tool for analyzing the complex physical phenomena of polymeric
materials, including dynamics, viscosity, shear thinning and α- and β-relaxations. However, as discussed
above and illustrated in Figure 1, the interactions between different polymer chains are characterized
by a wide range of spatial and temporal scales. It is still not feasible to perform all-atomistic MD
simulations of highly entangled polymer chain systems, due to their large equilibration and relaxation
times, long-range electrostatic interactions and tremendous number of atoms. The all-atomistic MD
model for such a system, with a typical size of about a micrometer and a relaxation time on the
scale of microseconds, would consist of billions of atoms and would require billions of time steps
to run, which is obviously beyond the capability of the technique, even with the most sophisticated
supercomputers available today. One of the largest united atom MD simulations (with hydrogen atoms
ignored in the all-atomistic model) was done by Gee et al. [34] on spinodal decomposition preceding
polymer crystallization. They simulated polyethylene (PE) polymer with a chain length of N = 384 and
4,478,976 united atoms in total, taking about ∼1 ×106 processor hours for a ∼50 ns simulation using
2048 processors. There is a huge demand to extend the approachable scales of all-atomistic simulations
to the scales of real polymeric materials, with the help of multiscale computational techniques. With
this ability, a rigorous link between the molecular compositions and macroscopic properties can
be established to provide a powerful tool for optimizing the processing, design and application of
polymeric materials.

Multiscale modeling techniques will play an important role in this process of verifying new
and existing models, but also in guiding theoretical development and exploring unexpected physical
phenomena. There exist some excellent and recent reviews on the coarse-graining of entangled polymers,
focusing on static properties [35–37], dynamic properties [38–41] and the comparison between different
systematic coarse-graining methods [42,43]. There are also several books on multiscale modeling of
polymers and biomolecules [35,44–48], which cover particular methods not captured in this review.
However, to our knowledge, there is no systematic review on the different multiscale modeling
techniques developed in the past twenty years. This review attempts to provide an up-to-date overview
of multiscale modeling methods within this time period, including current work. We will introduce
the fundamental ideas and equations for each multiscale modeling method, and we will summarize key
results. At the same time, this review may serve as a comprehensive tutorial for different multiscale
computational techniques to those readers who are new in this field.

Self-consistent field theoretical approaches have been excluded from this review, because the
underlying principles were established and developed more than two decades ago [49–52]. Still, a
number of important applications were newly added in the recent past, including block copolymers and
nanocomposites [53]; screening effects in polyelectrolyte brushes [54]; mixed polymer brushes [55];
harvesting cells cultured on thermoresponsive polymer brushes [56,57]; morphology control of hairy
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nanopores [58]; and the effect of charge, hydrophobicity and sequence of nucleoporins on the
translocation of model particles through the nuclear pore complex [59]; to mention a few.

Another topic in multiscale modeling concerns the bridging of detailed ab-initio or density functional
theory (DFT) calculations to the classical all-atomistic simulations. These methods provide the solid
molecular scale foundations for the multiscale modeling method discussed in this review. However,
these methods are beyond the scope of the current review. We recommend [60–63] and the references
therein to the interested reader.

Yet another important topic is polymer mixtures. In polymer mixtures, different components are
typically not miscible microscopically, because the entropy of mixing for polymers is smaller than
that of small molecules. Therefore, a polymer mixture often separates into different phases, in which
one of the polymer components is enriched. The simulation of such complex systems is a challenge
involving additional complexities [64,65]. Due to the different modes of motion and relaxation for each
component, the multiscale modeling of polymer mixtures and their structure formation, phase transition
and inhomogeneity at equilibrium are computationally expensive, not even to speak of non-equilibrium.
One of the most powerful methods to study polymer mixtures at equilibrium in an approximate manner
is self-consistent field theory [66]. Some of the multiscale modeling methods reviewed in this paper
have been extended to study polymer mixtures [67–75]. Interested readers may refer to these papers
for details. Due to space limitations, this review sets out to put its focus on the multiscale modeling of
homopolymers, while briefly mentioning extensions for mixtures.

This review is organized as follows. In Section 2, we give an overview of the different multiscale
computational techniques and divide them into three categories. Section 3 introduces the different
methods in the coarse-graining of generic polymers. Section 4 discusses systematic coarse-graining
methods, from lightly or moderately coarse-grained models to highly coarse-grained ones where the
whole polymer chain is lumped into a soft colloid. Section 5 reviews different multiple-scale-bridging
methods developed in the past five years, which have distinct features compared with other methods.
None of the latter methods have apparently been reviewed and compared in the literature. In Section 6,
we discuss the perspectives and key challenges in the multiscale modeling of polymeric materials.
Finally, we summarize and conclude in Section 7.

2. Overview of Multiscale Modeling Techniques

In this review, according to their capabilities, we divide different multiscale computational techniques
into three categories: (i) coarse-graining methods for generic polymers; (ii) systematic coarse-graining
methods and (iii) multiple-scale-bridging methods, as tabulated in Table 1. Methods falling into Category
(i) mainly focus on the large scale simulation of generic polymers. The molecular details are ignored in
this method below the scale of Kuhn or entanglement length. Large spatial and temporal scales can rather
easily be approached by these generic methods, compared with all-atomistic MD simulations. Scaling
laws characterizing the effect of molecular weight on the dynamics or rheology can be obtained and
compared with the prediction from the Rouse or tube model, as well as with experiments [76]. However,
since these methods neglect chemical details, the obtained results are usually difficult to compare with
specific polymers. In contrast, in Category (ii), we review systemic coarse-graining methods, which can
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extend the approachable length and time scales of all-atomistic MD simulations, while keeping many
intrinsic chemical and physical features of specific polymers, such as end-to-end distance, radius of
gyration, diffusion coefficient and glass-transition temperature. Thus, the obtained results can be directly
compared with experiments. According to the degree of coarse-graining, the systemic coarse-graining
methods can be further divided into several models: the Iterative Boltzmann Inversion (IBI) method,
the blob model and the super coarse-graining method. In the IBI method, one or two monomers are
coarse-grained into one super atom. Within the blob model, ten to twenty monomers are coarse-grained
into one blob. Within the super coarse-graining method, the whole chain is mapped to a single soft
colloid. The approachable length and time scales of the MD simulations increase with the degree of
coarse-graining. However, there are different issues involved in these methods, which we will discuss
in this review. Finally, in category (iii), we discuss multiple-scale-bridging methods, which have been
developed in the past five years. These methods have distinct features and develop different bridging
laws for different scales, compared with the methods in other categories. These methods also overcome
the unapproachable scales and phenomena in past simulations of polymeric materials and represent the
frontier of multiscale modeling of polymeric materials. A comparison between different multiscale
modeling methods is presented in Table 2.

Table 1. Summary of the methods discussed in this review.

Category Method Key references Governing formulation

(i) Bond-fluctuation method [67,77] Section 3.1 Monte Carlo
(i) Finite-extensible non-linear elastic (FENE)

Model
[78,79] Section 3.2 molecular dynamics (MD)

(i) Slip link model [80,81] Section 3.3 MD

(ii) Iterative Boltzmann Inversion method [82,83] Section 4.1 MD
(ii) Blob model [84,85] Section 4.2 MD
(ii) Numerical super coarse-graining method [86] Section 4.3 MD
(ii) Analytical super coarse-graining method [87,88] Section 4.3 MD

(iii) Dynamic mapping onto tube model [89] Section 5.1 MD and primitive path (PP)
analysis

(iii) Molecularly-derived constitutive equation [90] Section 5.2 MD and continuum model
(iii) Concurrent modeling of polymer melts [91] Section 5.3 MD and continuum model
(iii) Hierarchical modeling of polymer rheology [92] Section 5.4 MD, PP analysis and

continuum model
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Table 2. Comparison of the methods discussed in this review. Dcm is the self-diffusion coefficient. G′ and G′′ are the storage and loss
moduli, respectively. G(t) and η denote the shear relaxation modulus and viscosity, respectively. The approachable temporal and spatial
scales vary with the computer platform and the number of processors used. The acceleration of different multiscale modeling methods is
estimated by taking the all-atomistic method as a baseline. Note that the bond-fluctuation method, FENE model and slip link model in
Category (i) can only be applied to study generic polymers, not specific polymers. Here, Dcm in the bond-fluctuation model is obtained
based on the Monte Carlo (MC) step, not the real time. All the approachable temporal and spatial scales are estimated according to the
time step and efficiency of the different methods, without considering the time-temperature superposition principle. ? This is the only
multiscale modeling method developed so far, which can be applied to study both small and large deformation of polymeric materials for
engineering applications.

Category Method Approachable temporal
and spatial scales

Predictable properties in the
approachable scales

Acceleration

All-atomistic method 10−8 s and 10−8 m Dcm, G′, G′′, G(t), η 1×
(i) Bond-fluctuation model 10−6 m and no time scale Dcm N/A
(i) FENE model 10−6 s and 10−6 m Dcm, G′, G′′, G(t), η N/A
(i) Slip link model 10−5 s and 10−5 m Dcm, G′, G′′, G(t), η N/A

(ii) Iterative Boltzmann Inversion method 10−6 s and 10−6 m Dcm 102×
(ii) Blob model 10−5 s and 10−5 m Dcm, G′, G′′, G(t), η 103×
(ii) Numerical super coarse-graining method 10−2 s and 10−2 m Dcm, G′, G′′, G(t), η 106×
(ii) Analytical super coarse-graining method 10−2 s and 10−2 m Dcm 106×
(iii) Dynamic mapping onto tube model 10−7 s and 10−7 m Dcm, G′, G′′, G(t), η 101×
(iii) Molecularly-derived constitutive equation 10−7 s and 10−7 m G′, G′′, G(t), η N/A
(iii) Concurrent modeling of polymer melts 10−7 s and 10−7 m η N/A
(iii) Hierarchical modeling of polymer rheology ? 101 s and 101 m Dcm, G′, G′′, G(t), η 109×
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3. Coarse-Graining Methods for Generic Polymers

3.1. Bond-Fluctuation Method

In this theoretical study on the thermodynamics of polymers, the space is divided into an equally
spaced, d-dimensional, cubic lattice, and each monomer is confined to a single lattice site without
any overlap, as shown in Figure 2a. The bond-fluctuation model (BFM) adopts this lattice structure,
allowing the bond lengths and the angles between two consecutive bonds to vary within discrete sets of
values [67,77,93]. Bonds with lengths greater than four are considered to be broken, so the bond length
is restricted to be less than four [77]. Then, a monomer is randomly selected and moved onto one of
its 2d nearest-neighbor lattice sites randomly. If both the bond length restriction and the self-avoiding
walk condition are satisfied, the move will be accepted. Otherwise, another monomer will be selected
randomly, and so on, according to the standard Monte Carlo (MC) recipe. Here, one MC step is one
attempted move per monomer of the system.

Figure 2. Depiction of (a) the bond-fluctuation model and (b) mean-squared displacements
for a self-avoiding walk withN = 200 steps. Part (b) reproduced with permission from [94].

(a) (b)

The BFM model is very simple and efficient for modeling the dynamic properties of unentangled and
entangled polymer chains. Paul et al. [94,95] applied the BFM model to study the dynamic behavior of
self-avoiding polymer chains on a cubic lattice (d = 3). The mean-squared displacement (MSD) of the
innermost monomers, g1(t), and the MSD of the center of mass of the entire chain, g3(t), were calculated
and plotted against the number of Monte Carlo steps per monomer, as shown in Figure 2b. According
to the tube model [6], g1(t) ∼ t0.5 and g3(t) ∼ t for the self-avoiding walk, when t < τe. When
τe < t < τR, g1(t) ∼ t0.25 and g3(t) ∼ t0.5, while g1(t) ∼ t0.5 and g3(t) ∼ t for τR < t < τd. When
t > τd, the tube constraints are completely released and g1(t) ∼ t and g3(t) ∼ t. Here, the chain length
is N = 200, which indicates that the chain is slightly entangled (entanglement length Ne ' 30) [94]. As
such, the MSD, g1(t) and g3(t), exhibit similar trends, as compared with the scaling laws predicted by
the tube model, but do not obey exactly these scaling exponents, as shown in Figure 2b.

Shaffer adopted the BFM to study the effect of chain topology on polymer dynamics [96]. By
disallowing bond crossings, entanglements were created. From the detailed investigation of polymer
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chains with lengths between N = 10 and N = 300, Shaffer found that Dcm ∼ N−2.08 and Dcm ∼ N−1

for long chains with and without entanglements, respectively. These simulations illustrate the importance
of the entanglement effect on the dynamics of polymer chains. Shanbhag and Larson applied the
primitive path analysis (PPA) algorithm [97] to study the primitive path of the BFM. The obtained
results confirm the quadratic form for the potential of tube-diameter fluctuation, with a prefactor of
1.5, which has been theoretically predicted by Doi and Kuzuu [98]. However, the BFM is a Monte
Carlo simulation and cannot be applied to study the dynamic moduli and the viscosity of polymers. The
obtained results are also very generic and cannot be directly compared with numerical values for specific
polymers. Subsequent works focused on the mapping of BFM results to real polymers, such as bisphenol
polycarbonates and polyethylene (PE) [99–102]. The coarse-grained study of polymers using BFM has
been reviewed by Baschnagel et al. [35,93].

3.2. FENE Model

One of the most widely used coarse-grained MD models for generic polymers is the finite-extensible
non-linear elastic (FENE) model [16]. In the FENE model, monomers are lumped together into spherical
beads, which are connected through elastic springs, as shown in Figure 3a. For dense polymeric systems,
all the beads interact with each other through the Weeks-Chandler-Andersen (WCA) potential [103],
which is a Lennard-Jones potential cut off at its minimum and shifted to zero. Therefore, the WCA
potential is continuous and differentiable in the entire range of interaction:

VWCA (r) = 4ε

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
, r < rcutoff =

6
√

2σ (1)

when r ≥ rcutoff , VWCA = 0, as shown in Figure 3b. Here, 6
√

2σ and ε represent the non-bonded
diameter and interaction strength of the polymeric beads, which serve as dimensional units of simulated,
dimensionless quantities. Thus, σ and ε are set to unity. Similarly, the bead mass, m, is also set to unity.
rcutoff is the cutoff distance for the WCA potential. By setting Boltzmann’s constant, kB = 1, the unit
of time is given by t = σ

√
m/ε = 1. By taking m, σ, ε and kB as fundamental quantities, all the other

units can be defined and are so-called reduced LJ units [16].

Figure 3. Depiction of (a) the FENE model and (b) its potential functions.

(a)

(b)

(a)
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The bonded beads interact, in addition, through the FENE potential [78,79]:

VFENE (r) = −1

2
KR2

0 ln

[
1−

(
r

R0

)2
]

(2)

where K is the bond strength (usually K = 30, to avoid bond crossing) and R0 = 1.5σ is used as the
maximum bond length. Since the FENE potential is attractive and the WCA potential repulsive, the
combination of them forms an anharmonic spring (Figure 3b). The equilibrium mean bond length is
about 0.97σ at a temperature of T = 1. For melts, the bead number density, ρ, is fixed to be ≈ 0.85, and
the system temperature is controlled by a Langevin thermostat with a weak friction constant of 0.5 [79].

The main advantage of the FENE model is that the computationally expensive long-range van der
Waals (vdW) interactions between polymeric beads, as well as the square root operation involved in
calculating a harmonic bond energy are avoided. Additionally, several monomers are coarse-grained
into one bead, which greatly reduces the degrees of freedom, and the Einstein frequency determining
the MD time step is basically set by the WCA potential, whose thermo-mechanical properties are well
known [104]. Therefore, simulation of the FENE model is extremely fast compared with all-atomistic
and united-atom simulations. The united-atom method involves ignoring hydrogen atoms and is
reviewed in [2,3]. Using the FENE model, Kremer and Grest [79,105] performed the pioneering works
on modeling the dynamic behavior of unentangled and entangled polymer chains in equilibrium. As
shown in Figure 4a, when the polymer chain length, N , is shorter than the entanglement length, Ne,
the dynamics of the polymer chain follows the Rouse model, as D ∼ DRouse [1]. Here, DRouse is the
diffusion coefficient of polymer chains predicted by the Rouse model. However, if the chain length,
N , is longer than Ne, the dynamics of the chains will be constrained by the entanglements, such that
D ∼ N−1DRouse, as predicted by the tube model [6]. These obtained scaling relationships also agree
exceptionally well with experimental observations, given in Figure 4a. Via non-equilibrium molecular
dynamics (NEMD), Kröger and Hess [106] applied the same model to study the non-Newtonian
viscosity, normal stress differences and flow-induced alignment of polymers. The zero-rate shear
viscosity, η0, of unentangled and entangled polymer chains was also obtained. The scaling law between
chain length, N , and η0 was found to be in accordance with the prediction from the Rouse and
tube models: η0 ∼ N and η0 ∼ N3 for unentangled and entangled chains [106] (see Figure 4b),
respectively. Moreover, in the intermediate range, the scaling relationship, η0 ∼ N3.4, induced by
the CLF and CR effects was also confirmed [106]. Pütz et al. [105] studied the dynamic scattering
factor, S(q), of entangled polymer chains and found that the S(q) of highly entangled polymer chains
(N = 10, 000) can be well characterized by the tube model [5,107]. In addition, the entanglement
length, Ne, predicted from the S(q) calculation is in agreement with the Ne obtained from the segment
motion of polymer chains [105], which further validates the tube model for entangled polymer chain
dynamics. Cifre et al. [108] studied the linear viscoelastic properties of unentangled polymers via NEMD
simulations. By using the time-temperature superposition principle, the NEMD simulations have been
extended to study the linear viscoelastic properties of FENE polymer over a broad range of frequency.
The calculated storage, G′, and loss, G′′, moduli of FENE polymers were found to agree reasonably
well with the prediction of the Rouse model [109]. In addition, the empirical Cox-Merz rule [110] for
polymer viscosity was also confirmed using NEMD simulations of FENE chains [108].
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Figure 4. Results of (a) self-diffusion coefficient and (b) zero-rate shear viscosity of
finite-extensible non-linear elastic (FENE) chains. In (a), the scaled diffusion coefficient,
D(N)/DR(N), is plotted against the scaled chain length, N/Ne,p, for polystyrene (closed
circles Ne,p = 140 and T = 485 K [111]), polyethylene (closed squares Ne,p = 31

and T = 448 K [112]), hydrogenated polybutadiene (closed triangles Ne,p = 18 and
T = 448 K [113]), FENE (open triangles Ne,p = 72 [105]), bond-fluctuation model (BFM)
(open squares Φ = 0.5 [94]) and tangent hard spheres (open circles Φ = 0.45 [114]). In (b),
the data are reproduced with permission from [106].

(a)

(b)

As aforementioned, the FENE chain model is very simple and efficient for large-scale simulations.
It is very suitable as a generic model to explore and test the dynamic and mechanical properties of
polymers. Therefore, it is one of the most widely used models to study polymeric materials. However,
its disadvantage is also very obvious. The potential functions of FENE chains are oversimplified. For
example, the backbone stiffness of polymer chains is not considered [115], since a bending potential,
as employed for semiflexible chains [16,116–118], is not explicitly included. It is difficult to directly
compare the obtained results with real polymer chemistry and physics, although different mapping
methods between FENE chains and real polymers have been suggested [79,106].

To overcome these issues, a backbone bending potential was incorporated into the FENE model as
Vbend = kbend[1 − cos(θ − θ0)], where θ0 = 180◦ is the equilibrium angle [116]. When increasing the
bending stiffness, kbend, from 0 to 2ε, the entanglement length, Ne, was reduced from 70 to 20 [97,119],
thus increasing the effective chain length. With this bending potential added into the FENE model,
a scaling law between the entanglement length and the reduced polymer density was derived from
computer simulation results and scaling arguments [120]. The obtained scaling law is found to be
consistent with the experimental results on different polymer classes for the entire range, from loosely
to tightly entangled polymers [120]. Therefore, including the bending potential into the FENE model
is a very common extension [16,121–123]. For example, the FENE model with finite bending stiffness
has been applied to study the static structure and dynamics of ring polymers [124–126]. Aside from
including a bending potential, there have now been a number of studies of the FENE model where the
cutoff has been increased to include the attractive well, i.e., rcutoff =1.5∼2.5 σ. With the attractive
well, the FENE model has been applied to study the glass transition temperature [127–130], scission



Polymers 2013, 5 764

and recombination in worm-like micelles and equilibrium polymers [131–134], surface tension [135],
dielectric relaxation [136], polymer welding [137,138], strain hardening [121,122] and other properties.

3.3. Slip-Link Model

Both the BFM and FENE model are used to simulate generic polymer chains at the level of a Kuhn
step length. To further extend the spatial and temporal scales of these generic simulation methods, Hua
and Schieber [33,80,81] performed the pioneering works in developing the slip-link model, based on the
concept of the tube model, as illustrated in Figure 5a. In the slip-link model, the molecular details on
the monomer or Kuhn-length level are smeared out, while the segmental network of generic polymers is
directly modeled, which is similar to a crosslinked polymer network. However, the crosslinks in the
slip-link model represent the entanglements in a polymer melt and are not permanent. They are
temporary and constrain the motion of monomers of each chain into a tubular region by allowing
them to slide through the slip-link constraints. The motion of segments is updated stochastically,
and the positions of slip-links are either fixed in space, or mobile. When either of the constrained
segments slithers out of a slip-link constraint, they are considered to be disentangled, and the slip-link
is destroyed. Conversely, the end of one segment can hop towards another segment and create another
new entanglement or slip-link. From the tube model [5,6], it is known that the motion of the PP makes
the primary contribution to the rheological properties of entangled polymer melts. Therefore, from
the microscopic information given by the slip-link model, we can precisely access the longest polymer
chain relaxation time, which is quite impossible in MD simulations of dynamically entangled polymer
chains. Moreover, from the ordering, spatial location and aging of the entanglements or slip-links in the
simulations, the macroscopic properties of polymer melts, i.e., stress and dielectric relaxation, can be
calculated through mathematical formulations [80,81].

Figure 5. Illustrations for (a) the slip-link model and (b) shear relaxation moduli G(t) given
by different models. Figures reproduced with permission from [80].

(a) (b)

In contrast to the original Doi-Edwards tube model [6], the slip-link model of Hua and Schieber [80]
accounts for (i) the effect of the relative velocity on the chain-tube friction; (ii) the chain stretching
induced by additional chain-tube interactions; (iii) segment connectivity; (iv) chain-length fluctuation or
breathing and (v) constraint release. The governing equations in the slip-link model can be separated
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into two parts [80]: the chain motion governed by Langevin equations and the tube motion governed by
deterministic convection and stochastic constraint release processes. The motion of a chain is confined
by its tube, which is assumed to be convected affinely with the flow field. In addition, the tube can
undergo a constraint-release process along its contour. As shown in Figure 5a, the chain is modeled
by a bead-spring chain with N beads, confined to a tube. The chain can escape the tube from its two
ends by reptation or random motion, governed by the Langevin equation. The orientation of the tube
segment during the deformation can be directly obtained from the deformation gradient tensor, since it
is deformed affinely with the flow. However, we should emphasize that the chain inside the tube does
not convect affinely with the flow, due to the friction between the chain and its tube. Thus, the equations
of motion for both the chain and its tube have to be solved simultaneously in the slip-link model. There
are five fundamental parameters in this model: the friction coefficient, ζ , the number of beads per chain,
N , the Kuhn step length, b, the number of Kuhn steps, NK , and the tube diameter, app. Here, NK and
b are known for a specific polymer from the polymer chemistry. ζ and app can be obtained through the
average number of entanglements per chain, 〈Z〉eq, and disentanglement time, τd. The shear relaxation
moduli, G(t), simulated with different models are shown in Figure 5b. It is clear that the G(t) given by
the Doi-Edwards model decays very quickly, compared with the slip-link model, since the Doi-Edwards
model only considers reptation, whereas the slip-link model contains other relaxation mechanisms, i.e.,
the chain fluctuation and constraint release. When comparing the results of the slip-link model with
and without constraint release, the stress relaxation is enhanced with its inclusion; the zero-rate shear
viscosity, η0 =

∫
G (t) dt, is reduced by a factor of 3/5 when constraint release is included [80].

Since the first slip slink model was introduced by Hua and Schieber [80], several related models have
been developed with different resolutions and algorithmic details. Shanbhag et al. [139] developed
a dual slip-link model with chain-end fluctuations for entangled star polymers, which explained the
observed deviations from the “dynamic dilution” equation in the dielectric and stress relaxation data. Doi
and Takimoto [140] adopted the dual slip-link model to study the nonlinear rheology of linear and star
polymers with arbitrary molecular weight distribution. The strain-hardening behavior of polymer blends
has been observed with 5% highly entangled chains [140]. Likhtman [141] introduced a new single-chain
dynamic slip-link model to describe the experimental results for neutron spin echo, linear rheology and
diffusion of monodisperse polymer melts. All the parameters in this model were obtained from one
experiment and were applied to predict other experimental results. Schieber and his co-workers studied
the fluctuation effect on the chain’s entanglement and viscosity using a mean-field model [142,143].
Masubuchi et al. [144] proposed a primitive chain network (PCN) model from the concept of the
slip-link model. In the PCN model, the polymer chain is coarse-grained into segments connected by
entanglements. Different segments are coupled together through the force balance at the entanglement
node. The Langevin equation is applied to update the positions of these entanglement nodes, by
incorporating the tension force from chain segments and an osmotic force caused by density fluctuations.
The entanglement nodes are modeled as slip-links. The creation and annihilation of entanglements are
controlled by the number of monomers at chain ends. The longest relaxation time was found to scale
with the number of entanglements, Z, as Z3.5±0.1, while the self-diffusion coefficient was found to scale
as Dcm ∼ Z−2.4±0.2; both agree well with experimental results [144]. Later on, the PCN model was
extended to study the relationship between entanglement length and plateau modulus [145–149]. It was
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also extended to study star and branched polymers [150], nonlinear rheology [151–153], phase separation
in polymer blends [154,155], block copolymers [156] and the dynamics of confined polymers [157].
Chappa et al. [158] proposed a translationally invariant slip-link model for the dynamics of entangled
polymers. The proposed model can correctly describe many aspects of the dynamic and rheological
properties of entangled polymer melts, i.e., segmental mean-squared displacement, shear thinning and
reduction of entanglements under shear flow [158]. In addition, Ramı́rez-Hernández et al. presented a
more general formalism based on the slip-link model to quantitatively capture the linear rheology of pure
homopolymers and their blends, as well as the nonlinear rheology of highly entangled polymers and the
dynamics of diblock copolymers [159]. However, so far, there is no direct mapping from the BFM or
FENE model to the slip-link model, which could identify the explicit spatial locations of entanglement
nodes modeled by slip-links. Such a mapping scheme could help to discriminate between the proposed
slip-link models.

4. Systematic Coarse-Graining Methods

4.1. Iterative Boltzmann Inversion Method

According to their different purposes, the systematic coarse-graining methods (i.e., those with low
degrees of coarse graining) can be divided into two different methodological approaches: parameterized
and derived coarse-graining methods. In the parameterized coarse-graining methods, the all-atomistic
simulations are used to calculate target properties, i.e., pair distribution function or force distribution,
and the coarse-graining potentials are constructed to reproduce these target quantities. However, they
cannot be guaranteed to reproduce all the properties of the original system, as discussed below. The
derived coarse-graining methods employ direct all-atomistic simulations between the defined super
atoms to derive the corresponding coarse-grained interactions. The derived potentials are not optimized
to reproduce the target quantities; these quantities are, instead, predicted by the derived coarse-grained
model. These derived potentials have clear physical meanings, representing the potential of mean force
between super atoms. Therefore, they also have good transferability and can be systematically modified
to include multibody effects, such as the effect of solvent in implicit-solvent models [160,161]. There
are three methods belonging to the derived coarse-graining methods: pair potential of mean force [160],
effective force coarse-graining [162] and conditional reversible work [163]. For a comparison between
these methods, we refer to [43].

In the parameterized coarse-graining methods, there are structure- and force-based methods,
depending on the target quantities. If the method aims to reproduce the target pair distribution functions
given by the all-atomistic simulations, then it is structure-based. The structure-based methods include
the iterative Boltzmann inversion (IBI) method [82,83], the Kirkwood-Buff IBI method [164], the
inverse Monte Carlo (IMC) method [165], the relative entropy method [166] and the generalized
Yvon–Born–Green theory [167]. All structure-based methods follow the IBI method in spirit, but with
different optimization or mapping schemes. The force-based methods aim to match the force distribution
on a super atom within the coarse-grained model to that obtained from all-atomistic simulation. There are
two methods belonging to the force-based methods: the force-matching method [168] and the multiscale
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coarse-graining method [169,170]. The latter was validated through rigorous statistical thermodynamic
formulations by Noid et al. [171–173]. Rühle et al. [174] implemented the IBI, IMC and force-matching
methods into a toolkit and compared them by coarse-graining water molecules, liquid methanol, liquid
propane and a single molecule of hexane. They found that each method had its own advantages and
disadvantages. Readers interested in more details of the related methods mentioned may wish to inspect
the referenced materials. Of the methods mentioned, the IBI method is one of most widely used and is
discussed in detail below.

As shown in Figure 6, the all-atomistic model contains n atoms with Cartesian coordinates,
rn = {r1, ..., rn}. These n atoms interact with each other through the inter-atomic potential, u(rn).
According to the canonical equilibrium distribution function [175], the configurational probability
distribution of atomic positions, rn, for the all-atomistic model at given volume, V , and temperature,
T , is [82,83]:

pr(r
n) =

1

zn
e−u(rn)/kBT (3)

where zn = z (n, V, T ) =
∫
drne−u(rn)/kBT is the partition function, an integral over all the possible

atomic coordinates. By grouping a small number of atoms into one single interaction site, given in
Figure 6, the all-atomistic model can be mapped into a coarse-grained model with N super atoms. The
coordinates of theN super atoms in the coarse-grained model are represented by RN . The corresponding
mapping matrix MRI between rn and RN is defined as RN = MRIr

n. Analogous to the all-atomistic
representation, the probability distribution of positions for these super atoms at the given V and T is
obtained as the following:

PR(RN) =
1

ZN
e−U(RN )/kBT (4)

where ZN = Z (N, V, T ) =
∫
dRNe−U(RN )/kBT is the partition function for the coarse-grained system.

TheU(RN) is the inter-atomic potential function for the super atoms. In order for the all-atomistic model
to be consistent with its corresponding coarse-grained model, the two probability distribution functions
should satisfy the following condition:

PR(RN) = pR(RN) (5)

Here, pR(RN) =
∫
drnpr(r

n)δ(RN −MRIr
n). Consequently, a rigorous connection between the

potential functions, u (rn) and U
(
RN
)
, is defined through an ab initio coarse-graining procedure:

e−U(RN )kBT =
ZN
zn

∫
drne−u(rn)/kBT δ

[
RN −MRIr

n
]

(6)

From the above equation, it is clear that the derived coarse-grained potential function, U(RN), is not
a conventional potential energy function [82,83,176,177]. The potential function, U(RN), contains
many-body effects and highly depends on the configurational free energy function or potential of mean
force (PMF) of the thermodynamic state point. Thus, U(RN) relies both on energetic and entropic
effects, which should affect the dynamic behavior of the coarse-grained model. Such an effect will be
explained below.



Polymers 2013, 5 768

Figure 6. Illustration for mapping from the all-atomistic model (rn) to the coarse-grained
model (RN ), with a mapping operator, MRI, using the polymer cis-polyisoprene.
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In practice, the probability distribution function for the all-atomistic model, pr(rn), can be estimated
directly from trajectories of Monte Carlo or MD simulations. To be specific, the potential function for
the corresponding coarse-grained system is determined through the following equation [82,176]:

U(RN) = −kBT ln pR(RN) (7)

That is, according to the relationship between pr(rn) and pR(RN), the potential function, U(RN), can
be numerically determined. In most cases, the probability distribution function, pR, is considered to
depend on the following four variables: pair distance, r, bond length, l, bond angle, θ, and dihedral
angle, ψ, as pR(RN) = pR (r, l, θ, ψ). If we assume that these four variables are independent of each
other, then pR (r, l, θ, ψ) = pR (r) pR (l) pR (θ) pR (ψ), and the potential function for the coarse-grained
model becomes U(RN) = U(r, l, θ, ψ) = U(r)+U(l)+U(θ)+U(ψ); i.e., U(q) = −kBT ln pR (q) with
q = r, l, θ, ψ for pair, bond, angle and dihedral interactions, respectively. In the interest of reproducing
the distribution function of the all-atomistic model as accurately as possible via the coarse-grained
model, additional iterations of this numerical process are often undertaken [92,178]:

Un+1 (q) = Un (q) + ∆Un (q) (8)

∆Un (q) = kBT ln
pnR (q)

ptarget
R (q)

(9)

where ptarget
R are the target distribution functions calculated from the all-atomistic simulations. Thus, the

distribution functions, pR, can converge to the target distribution functions, ptarget
R , after several iterations.

The typical procedure for the IBI is illustrated in Figure 7. The target distributions, ptarget
R , are

obtained from all-atomistic simulations after defining the super atoms for the coarse-grained model,
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which is not shown in this workflow. The “Global initialization” module organizes all the paths for the
input files, executables, etc. Next, the “Iteration initialization” module converts the target distribution
functions, ptarget

R , into the internal format and smooths them. Subsequently, the smoothed target functions
are used to calculate the initial guesses for the potential functions of the coarse-grained model in the
“Prepare sampling” module. With the input files from the “Iteration initialization” module and the
potential files from the “Prepare sampling” module, the “Sampling” module will run the canonical
MD or Monte Carlo simulations to generate the trajectories of the coarse-grained model. From these
trajectories, the distribution functions, pnR, are calculated, as well as the potential updates, ∆Un, in the
“Calculate updates” module. After this, the potential updates, ∆Un, are smoothed and extrapolated in
the “Post-processing of updates” module. The updated potential functions, Un+1, are calculated via
Un+1 = Un + ∆Un in the “Update potentials” module. The updated potential functions, Un+1, are
further smoothed and extrapolated in the “Post-processing of potentials” module. The convergence of the
potential updates, ∆Un, or distribution functions, pR, will be further evaluated. If a convergence criterion
is met, the iteration process is stopped and the obtained potential function returned. Otherwise, the
algorithm proceeds with the next iteration step to optimize the potential functions. Within this process,
the “Sampling” and “Calculate updates” are obviously the most time-consuming modules.

Figure 7. Workflow chart for the Iterative Boltzmann Inversion (IBI) method. The figure is
taken and modified from [174].
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Here, we use cis-polyisoprene (PI) polymer, which is one of the most widely used polymers, as
an example to demonstrate the IBI method. As shown in Figure 6, there are five carbon atoms per
monomer. Four of them are connected sequentially to form the backbone. The fifth one is connected
to the backbone as a side chain. The center of the monomer lies on the center of the carbon-carbon
double bond, and the PI polymer chain is formed by all head-to-tail linkages between monomers. The
all-atomistic model for PI was defined by 100 chains with 10 monomers per chain, which was built
using the Amorphous Cell module in the Materials Studio software package [179]. The side length
of the simulation box was around 54 Å, with periodic boundary conditions. The ab initio force field
COMPASS [180] was used for the all-atomistic simulations. The MD simulation was performed under
the NV T ensemble with a temperature of T = 413 K and a time step of t = 1 fs. Twenty snapshots of
the trajectory were taken over a 10 ns simulation. The Amorphous Cell module may generate unphysical
initial structures for polymers, but investigation of the rheological properties of polymers requires proper
equilibration. Therefore, we compared our equilibrated all-atomistic cis-PI polymer structure with that
reported by other researchers [181], through the radius of gyration, end-to-end distance and the pair
distribution function between different monomers. All these quantities are found to be in accordance
with the published results [181], and we therefore consider the cis-PI polymer used in our work to be
well equilibrated. As shown in Figure 6, the center of the super atom in the coarse-grained model was
defined as the center of the carbon-carbon bond connecting two monomers, instead of the center of the PI
monomer (to be discussed in the following section). With the super atom thus defined, the super-atomic
coordinates can be directly mapped from the all-atomistic model. The distribution functions, pR(q),
obtained from the all-atomistic simulation trajectories, are shown in Figure 8.

Once the target distribution functions, ptarget
R , were obtained from all-atomistic simulations, the

initial-guess potential functions for the corresponding coarse-grained model were calculated as
U0(l) = −kBT ln ptarget

R (l), U0(θ) = −kBT ln
[
ptarget
R (θ)/sin(θ)

]
, U0(ψ) = −kBT ln ptarget

R (ψ) and
U0(r) = −kBT ln ptarget

R (r). The appearance of sin(θ) in U0(θ) is a result of the mathematical derivation
of the IBI method and is explained in [82,83,176,177]. These initial-guess potentials were used in
canonical coarse-grained MD simulations and, then, iteratively optimized according to Equation (8).
After 15 iterations, the obtained distribution functions from the coarse-grained MD simulations were
found to be in agreement with the target distribution functions, as shown in Figure 8. The final potential
functions for the coarse-grained model for PI obtained after completion of the iteration process are shown
in Figure 9. Here, we found that 15 iterations of the IBI method were sufficient to yield good results for
our PI polymer, due to the correct definition of super atom and the initial potentials used. In general,
the number of iterations required within the IBI method depends on polymer structure, the definition of
super atom, degree of coarse-graining, initial potentials, etc., and hundreds of iterations may be required
to reach convergence [174]. It should be noted, as shown in Figure 9d, that the pair interaction is
purely repulsive, due to the lack of correlation “spikes” in ptarget

R (r), as shown in Figure 8d. This is a
common problem with systematically coarse-grained potentials, and it induces anomalous pressures in
simulations. To obtain the correct pressure for the coarse-grained model, a linear attractive function can
be added to the tail of the pair potential, as discussed below. The potentials given in Figure 9 should be
used only for the NVT ensemble that operates at the correct density of the PI polymer.



Polymers 2013, 5 771

Figure 8. Distribution functions for (a) bond length; (b) bond angle; (c) dihedral angle;
and (d) pair distance of all atomistic (solid lines) and coarse-grained (dots) models of
cis-polyisoprene (PI) melts at 413 K. Figure reproduced with permission from [92].

(c)

(b)(a)

(d)

Figure 9. Optimized potential functions for (a) bond; (b) angle; (c) dihedral and (d) pair
interactions of coarse-grained cis-PI melts at 413 K. Figure reproduced with permission
from [92].

(c)

(b)(a)

(d)
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Although the IBI method is a very straightforward and systematic coarse-graining method with
rigorous thermodynamical foundations [82,83,176,177], there are several important issues that require
attention and further discussion.

4.1.1. Definition of Super Atom

The aforementioned mapping matrix, MRI, is not unique, since there are multiple ways to define the
super atoms. When different mapping matrices are used, the obtained coarse-grained potential functions
are also quite different. The obvious question is, “How to define the super atom?” or alternatively, “Is
there a criterion to determine whether a given super-atom definition is appropriate?” This is actually a
very important question when using the IBI method. As shown in Figure 6, there are at least two ways to
define the center of super atoms for cis-PI. One is the center of the PI monomer, and the other is the center
of the carbon-carbon bond connecting two monomers together. The distribution functions, pR(l), for
both of these definitions have been obtained (Figure 10). In the first case, pR(l) is characterized well by
a single Gaussian, and from Equation (7), the corresponding bond potential function is harmonic, where
the height-to-width ratio of the Gaussian defines the strength of the harmonic bond and the equilibrium
bond length is determined by the location of the peak. However, in the second case, pR(l) is doubly
peaked (see Figure 10b). The underlying reason for these two different distributions is that the carbon-
carbon double bond is very rigid in torsion, while the carbon-carbon single bonds can easily flip from one
torsional state to another. Thus, if the super-atomic center is defined as the center of mass of the cis-PI
monomer (i.e., the carbon-carbon double bond), the pR(l) will have two peaks, corresponding to the two
torsional states of the carbon-carbon single bonds that effectively connect the super atoms together. Of
course, this cannot be modeled by a single harmonic potential. Similar behavior is also found in cis-1-4
PI and trans-PI polymers by Faller and his co-workers [37,68,182–186].

Figure 10. Bond-length distribution functions for a super atom of cis-PI defined (a) at the
center of a carbon-carbon single bond connecting two monomers and (b) at the center of the
monomer. The inserts show the bond-length versus bond-angle distributions.

(b)(a)

The multiplicity of peaks for pR(l) can lead to interdependence of the bond-length and -angle potential
functions. As shown in the insert of Figure 10a, the bonds and angles can be plotted following the idea
of a Ramachandran diagram [187]. Comparing the two different super-atom definitions, pR(l), with a
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single peak demonstrates a more uniform distribution of bond lengths, l, and angles, θ, suggesting their
independence. In the case of the doubly peaked pR(l), the correlation between l and θ is not uniform,
indicating their interdependence (Figure 10b). Correlation uniformity is a basic criterion highlighting
the proper choice of the super atom in coarse-graining, as it relates to whether the factorization
assumption of the probability distributions is valid. Such a criterion has been checked in detail for
different coarse-graining models, through combined pR(θ) versus pR(φ) distribution plots (see Figure 3
in [188]). It is also more convenient to represent a group of atoms as a spherical super atom with an
isotropic potential, instead of an ellipsoidal super atom with anisotropic potential. In most studies, the
super atom is defined to be a spherical particle [37,177,184,189–191], but there are also some studies
attempting to do generalizations for anisotropic potentials [192,193]. However, the potential functions
and the coarse-grained MD simulations become rather complex, and only slightly higher accuracy can
be achieved. When a single spherical super atom is not good enough to characterize a group of atoms,
it is more feasible to use more than one spherical super atom per monomer than a single non-spherical
one. For example, to model polycarbonate polymers, Abrams and Kremer [194] utilized five spherical
super atoms to represent one all-atomistic monomer.

Another interesting example is the coarse-graining of polystyrene (PS) via the IBI method, as
illustrated in Figure 11, which has been extensively studied using different methods. Müller-Plathe
and his co-workers [195–197] adopted the mapping scheme shown in Figure 11a using an IBI method
with pressure correction. The developed model successfully reproduces the gyration radius and the
Flory characteristic ratio of PS in melts (500 K). However, the obtained entanglement length is much
smaller than the experimental value. Through slight modifications, Spyriouni et al. [198] improved the
coarse-grained potential functions from previous works [196,197]. The optimized coarse-grained model
can capture the correct entanglement length of PS melts [198]. The structure parameters, i.e., packing
length and tube diameter, were also obtained and found to be in agreement with experiments [199].
However, the obtained isothermal compressibility is far from the experimental value, which indicates
poor transferability of the developed potential to pressures different from the one used in the all-atomistic
simulation. Sun and Faller systematically developed a coarse-grained model for isotactic PS melts from
the unentangled to the entangled regime using the super atom definition shown in Figure 11b [185,200].
The obtained entanglement length at 450 K is found to be in agreement with experimental observations.
Qian et al. [69] chose another mapping scheme (see Figure 11c). The newly obtained potentials can
reproduce the isothermal compressibility and structure properties of the PS melts from 400 K to 500 K.
Kremer and his co-workers used yet another mapping scheme, as shown in Figure 11d [188,201]. They
split the PS monomer into two parts, and each of them was represented by one super atom, which is a
so-called “2:1” coarse-grained model. The derived model can represent the PS sequence with varying
tacticities and has been validated for the structural and dynamic properties of atactic PS [188,201]. These
models have recently been used to distinguish the dynamics of iso-, syndio- and atactic PS polymers.
Interestingly, the time scale factors are not identical for these models [42]. Moreover, the model can
be applied to study both the mechanical properties of PS glasses [202,203] and the dynamic properties
of PS melts [204,205]. From these studies, it is important to know that although there are different
ways to define the super atom in deriving a coarse-grained model, the static, dynamic or thermodynamic
properties of the coarse-grained model should be tested and validated before it is further applied [42].
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Figure 11. Different definitions for the super atoms of coarse-grained polystyrene (PS):
(a) [195–197]; (b) [185,200]; (c) [69]; and (d) [188,201].
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4.1.2. Smoothing, Extrapolation and Convergence

As mentioned in Figure 7, the obtained distribution and potential functions need to be smoothed
and extrapolated. Moreover, some of the distribution functions, i.e., pR(θ), pR(ψ) and pR(r), shown
in Figure 8 are very irregular. Thus, these distribution functions cannot be easily fitted, hindering the
derivation of the effective coarse-graining potentials. Milano et al. [196] developed and discussed
analytical forms for these complex distribution functions. Since these distribution functions always
exhibit multiple peaks, they applied multi-centered Gaussian distribution functions to fit them [196]:

pR(q) =
n∑
i=1

Ai

wi
√
π/2

e
−2

(
q−qci
wi

)2

(10)

where qci is the location of the ith peak, and Ai and wi represent the corresponding total area and width,
respectively. According to Equation (7), the potential function for each distribution is obtained via:

U(q) = −kBT ln
n∑
i=1

Ai

wi
√
π/2

e
−2

(
q−qci
wi

)2

(11)

The corresponding force is easily obtained analytically as F (q) = −dU(q)/dq. The advantage of
such an analytical multi-centered Gaussian distribution function is obvious: they are continuous and
differentiable at any order. Therefore, during the iteration process, the potential functions for the
coarse-grained model converge rather quickly. Moreover, the fitted and extrapolated distributions are
non-zero everywhere. Thus, the corresponding energy also always has finite value, which avoids any
energy singularity in the simulation. In addition, such a distribution function is easily implemented
into the existing software. Müller-Plathe and his collaborators developed the “It is Boltzmann
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Inversion software for Coarse Graining Simulations” (IBIsCO) code to incorporate this form into their
coarse-grained MD simulations [206,207]. It is also possible to use the tabulated form for these complex
potential functions. Luo and Sommer [208] developed a tabulated angle potential function with cubic
spline interpolation to smooth both potential and force in simulations. To date, there is support for
tabulated forms for all the potential functions, including pair, bond, angle and dihedral interactions, in
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [209]. Since the system
pressure and density are very sensitive to the vdW interaction, the smoothness and extrapolation of the
pair or vdW interaction are also important. Müller-Plathe and his co-workers adopted the automatic
simplex optimization to fit this potential function [83,210–212]. They furthermore developed different
analytical functions to fit pR(r), as well [83,211].

During the smoothing and iteration process of the IBI method, the rate of convergence is of utmost
practical relevance, especially for multi-component systems [174]. For one-component systems, the
coarse-grained potentials easily converge, as there is only one target distribution function. However,
for a two-component system, for example, consisting of components, Sa and Sb, there are three target
radial distribution functions, (gaa(r), gbb(r), and gab(r)), and three corresponding effective pair potentials
(Waa(r), Wbb(r) and Wab(r)), which are correlated with each other. However, in the IBI method,
the updates for gaa(r), gbb(r), gab(r) do not account for such cross-correlations. The convergence of
the IBI method is therefore not easily satisfied for multi-component systems. To overcome this issue,
Lyubartsev and Laaksonen [165] developed the IMC method, in which the correlation between different
distribution functions is accounted for during the updating and iterating process, and the effective
potentials of the multi-component system rather quickly converge. The convergence rate can be further
improved using a smoothing technique on the potential update, ∆U . Here, we should emphasize that
the smoothing should not be applied to the potential, U , itself, since it has important structural features
that can be destroyed if smoothing is applied haphazardly. Using a multiplicative prefactor for the
update function of the pair potential, Reith et al. [212] further improved the convergence of the pair
potential in the IBI method. Murtola et al. [213] adopted thermodynamic constraints in the IMC method
to improve the convergence. Recently, Wang et al. [214,215] adopted a single-step coarse-grained
potential scheme for poly(ethylene terephthalate) (PET), by invoking the Ornstein-Zernike equation with
the Percus-Yevick approximation [214], sidestepping iteration and convergence issues. The obtained
coarse-grained potentials can satisfactorily reproduce the structural and dynamic properties of PET
obtained via atomistic MD simulations [215].

4.1.3. Dynamic Rescaling

In the IBI method, a group of atoms is lumped together into a spherical super atom. Thus, the internal
degrees of freedom inside the super atom have been averaged out, which can change the entropy and,
thus, the free-energy landscape of the system, altering the its internal dynamics after coarse-graining.
In addition, since a cluster of atoms is simplified into a spherical super atom, it can also change the
amount of surface of each molecule that is available to surrounding molecules. Consider an all-atomistic
polymer chain immersed in water, and let the total surface available to the solvent be denoted by Sall

solvent.
If we switch from the all-atomistic polymer chain to a bead-spring chain, whose beads are represented
by spherical particles, the solvent-accessible surface of the bead-spring chain is SCG

solvent. Obviously,
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SCG
solvent ≤ Sall

solvent, since the surface roughness of the monomer has been smeared out in the bead-spring
chain. As such, the hydrodynamic radius, rhydr, of the coarse-grained super atom in each situation is
also different. According to Stokes’s law [216], the friction coefficient, ζ , is related to the hydrodynamic
radius, rhydr, through the solvent viscosity, ηsolvent, as ζ = 6πηsolventrhydr. Thus, in the coarse-graining
process, the internal friction coefficient between monomers is typically also changed, leading to incorrect
dynamic behavior of the coarse-grained system [37,217,218]. It is therefore necessary to perform
dynamic mapping (i.e., rescale the dynamics) in order to simulate the correct behavior.

Faller [37] proposed several methods to perform dynamic mapping: by chain diffusion, through
the segmental correlation times in the Rouse model and by direct mapping of the Lennard-Jones
time. However, none of these methods can recover exactly the same dynamics of all-atomistic
simulations. Harmandaris and Kremer [204,205,219,220] used short-chain atomistic and coarse-grained
simulation to calculate a time-mapping constant based on the friction coefficients. In their approach,
they assumed that the softer coarse-grained potential induces a reduced friction coefficient, ζCG,
between the super atoms. If we denote the friction coefficient for the realizations of these super
atoms in the all-atomistic simulation as ζAA, the corresponding time-mapping factor is determined
as SAA−CG = ζAA/ζCG [204], in accord with the Rouse model. However, it is quite difficult to
determine analytical expressions for the friction coefficients. Alternatively, one can calculate SAA−CG

numerically, using the mean-squared displacement (MSD) of the monomers as the time-scaling metric,
since the MSD is inversely proportional to the friction coefficient for unentangled polymer chains.
As such, SAA−CG can be estimated as MSDCG/MSDAA. Although such a dynamic rescaling method
does not have rigorous theoretical foundations, it has been used successfully for low degrees of
coarse graining [92,183,184,197,200,201,221–227]. Using this mapping method, Harmandaris and
Kremer [204,205] successfully mapped the dynamic behavior of PS melts from the all-atomistic scale to
the coarse-grained level, as shown in Figure 12a,b. The obtained diffusion coefficients for unentangled
and entangled PS melts were in agreement with the experimental results [204]. Recently, Li et al. [92]
adopted the same method to map the dynamic behavior of cis-PI melts (Figure 12c,d), with a mapping
ratio of SAA−CG = 11.47. After rescaling the time of the coarse-grained simulation by this mapping
ratio, both translational (MSD) and rotational (autocorrelation function of end-to-end unit vector)
dynamics of cis-PI melts were correctly captured (see Figure 12c,d). Moreover, the diffusion coefficient
of the highly entangled cis-PI was also directly predicted from the coarse-grained simulation without any
adjustable parameters [92]. Note that in the coarse-grained PS melts, one PS monomer is coarse-grained
into two super atoms, as shown in Figure 10d, and in the coarse-grained model of cis-PI, each of the PI
monomers is mapped to a single super atom (see Figure 6). This small degree of coarse-graining should
only produce a minor change in system entropy (compared with the change of interacting surfaces),
so it is ignored in the time mapping. However, entropy change plays a much more important role
in highly coarse-grained models. Finally, we would like to emphasize that time-scaling is one of the
central challenges in the coarse-graining process [75,228]. It is known that different modes of motions
in a system can have different time-scaling factors compared to the underlying all-atomistic model; this
phenomenon is referred to as “dynamical heterogeneity” [75,228,229]. Dynamical heterogeneity is a
significant problem in studying the structure formation of polymer mixtures.
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Figure 12. (a) Autocorrelation function of end-to-end unit vector, 〈R(t) · R(0)〉, and (b)
mean-squared displacement g3(t) versus time for both united-atom (dots) and coarse-grained
(lines) PS melts at 463 K; (c) 〈R(t) · R(0)〉 and (d) mean-squared displacement, g1(t),
versus time for both all-atomistic and coarse-grained cis-PI melts at 413 K. The time of the
coarse-grained simulation has been rescaled by a factor of 11.47 in (c) and (d). Figures
reproduced with permission from [92,204].

(c)

(b)(a)

(d)

4.1.4. Transferability and Thermodynamic Consistency

In the IBI method, the distribution functions are obtained for a specific ensemble (fixed number,
N , of particles, temperature, T , and volume, V , or pressure, p). The effective potential functions are
optimized against the target distribution functions, which are calculated from one set of thermodynamic
conditions. The effective potential functions, however, depend on the free energy of the system, which is
also state-dependent. Thus, the potential functions derived from one thermodynamic state are not usually
transferable to another set of conditions (N , T and V or p), as discussed by Luis [230]. Therefore,
usually, the effective potential functions will require a process of optimization for each thermodynamic
state of the coarse-grained system. Naive use of interaction potentials at the coarse-grained level
developed from the IBI method can lead to incorrect values for the thermodynamic properties of
polymers. This is because the main goal of the IBI method is to correctly reproduce the static structure
of the polymer chains by means of a set of equivalent potentials of mean forces, and as such, the
effective potentials obtained from the IBI method are only approximate, and many-body effects are
ignored beyond a certain number of super atoms.
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However, there are several studies demonstrating that the effective potential functions of the
coarse-grained model have a limited range of transferability into a subset of thermodynamics
states [69,188,201,231–236]. Doi and his co-workers studied the mean densities and segment
distribution functions of coarse-grained and united atom models for linear PE from 300–800 K and
found that they agree well at all temperatures, except 300 K [231]. Thus, they concluded that the derived
potential functions could be applied to the PE melts over a broad temperature range. Müller-Plathe and
his co-workers [232] studied the transferability of the coarse-grained force fields derived with the IBI
method for PS and polyamide-6,6 (PA66) polymers, systematically testing the temperature and pressure
effects on the static, dynamic and thermodynamic properties by comparing the coarse-grained results
with the all-atomistic ones. They found that the coarse-grained PS model (with the center of the super
atoms defined on the methylene group, as shown in Figure 10b) was only transferable over a very narrow
temperature range, and its bulk density change cannot be correctly predicted by the coarse-grained
model when the temperature is about 80 K below the optimization temperature (500 K) [232]. In
addition, the isothermal compressibility of the PS melts was also overestimated by the coarse-grained
model. However, for the PA66 polymers, the derived coarse-grained model is fully transferable for
different temperature and pressure states. All the intra- and inter-structural rearrangements induced by
the temperature change can be correctly reproduced by the coarse-grained model [232]. Moreover,
the isothermal compressibility of PA66 polymers calculated from the coarse-grained simulations at
different temperatures is in accordance with the experimental values [232]. They also found that
chain length did not affect the transferability of the derived potentials, and that the transferability of
the PA66 coarse-grained potential was due to the lower degree of coarse graining, compared with the
PS model [232]. Later, Müller-Plathe and his co-workers studied the temperature transferability of
the coarse-grained potentials for ethylbenzene (EB), PS and their mixtures [69]. The center of the
super atoms for PS and EB were defined to coincide with the centers of mass for each monomer, as
shown in Figure 11c. The thermal expansion coefficients for PS and EB polymers were reproduced
well by their coarse-grained simulations, compared with the all-atomistic simulations. It was also
found that the derived coarse-grained potentials for PS melts were transferable within the temperature
range 400–500 K [69]. However, the coarse-grained potential for EB is temperature-dependent, with a
temperature shift factor,

√
T/T0, such that U(T ) = U0(T0)

√
T/T0 [69]. The coarse-grained potential

for the EB polymer was derived at a temperature of T0 = 298K. The coarse-grained model for PS melts
developed by Harmandaris et al. [219], with super atoms defined in Figure 10d, can capture the correct
temperature and pressure dependence of PS dynamics. From the above discussion, we can see that the
transferability of the coarse-grained potentials derived by the IBI method can be highly dependent on
the definition of super atoms, and special attention should be paid to this choice. For homopolymer
melts, for example, polyethylene [237], polybutadiene [226,238] and other polymers, the coarse-grained
potentials show a remarkable transferability over a large range of temperatures.

In addition to the transferability of the coarse-grained potentials, the thermodynamic consistency of
the model should also be considered. For example, in the long range, the super atoms are homogeneously
arranged in space, such that pR(r) = 1 for r ≥ 15 Å, as shown in Figure 8d. Thus, the corresponding
pair potential will be zero. However, in reality, the long-range interactions between these super atoms
should be attractive, which leads to U(r) > 0. Due to the missing long-range attraction, the pressure in
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the coarse-grained model can be overestimated [83,174,211,212]. To recover the correct pressure for the
coarse-grained model, a linear, attractive tail function is usually added into the pair potential:

∆Upressure(r) = A(1− r/rcut) (12)

where rcut is the cutoff distance for the pair potential and A is a fitting parameter to be used for pressure
correction. The above equation also implies that ∆Upressure(0) = A and ∆Upressure(rcut) = 0. This
correction term mostly manifests itself when r > 1 nm. Thus, the short range pair distribution of the
super atoms will not be greatly affected. Such a linear, attractive tail function has been demonstrated to
recover the correct pressure for coarse-grained polymer systems [83,211,212,239,240].

4.2. Blob Model and Uncrossability of Coarse-Grained Chains

As we have mentioned for the IBI method, the definition of super atoms is not unique. Therefore,
it is possible to define the super atom to represent several monomers of the polymer chain in order to
extend the available length and time scale of the coarse-grained simulation. Here, the super atom is
considered to be a spherical blob of radius Rblob, which represents the center of mass for χ consecutive
monomers. This is the basis of the so-called “blob model” [84,85,241], illustrated in Figure 13a. All
the potential functions for the blob model are derived systematically from all-atomistic simulation, as in
the IBI method. The blob must be spherical, so χ cannot be arbitrarily large. Otherwise, the size of the
blob will exceed the tube diameter of the polymer chain. However, in order to approach the long-time
relaxation behavior of the polymer chain, χ should be large enough to allow a large integration time step
in simulation.

In modeling of polyethylene (PE) polymers, Padding and Briels chose χ to be 20 [84], which
is about 1/3 of the entanglement length of PE [242]. By following the same principle of the IBI
method, the potential functions for the blob model were systematically derived from the all-atomistic
simulation [243]. Since the blob represents about 20 monomers of PE, the dihedral interactions between
these monomers are very weak and, thus, ignored in simulation. As such, the potential functions for the
blob model usually consist of non-bonded (vdW) interaction and bonded (bond and angle) interactions.
According to Padding and Briels, the non-bonded interaction consists of a single repulsive Gaussian
function [84]:

U (r) = c0e
−(r/b0)2 (13)

where c0 and b0 are fitted parameters. The bond potential consists of a repulsive term described by two
Gaussians and an attractive term described by a single power law [84]:

U(l) = U rep (l) + Uatt(l) = c1e
−(l/b1)2 + c2e

−(l/b2)2 + c3l
µ (14)

where c1, c2, c3, b1, b2 and µ are fitting parameters. The angle (or bending) potential is characterized by
a cosine function [84]:

U(θ) = c4(1− cos θ)ν (15)

Here, c4 and ν are fitted to all-atomistic simulation results. The potential functions for non-bonded and
bonded interactions (Equations (13) and (14)) of the blob model for PE are plotted in Figure 13b.
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Figure 13. Illustrations for (a) the blob model and (b) potential functions for bonded (U b,
squares) and non-bonded (U nb, circles) interactions. In (b), the scattered data are taken
from [85]. The solid lines are fitted with Equations (13) and (14).

(b)(a)

As more atoms are coarse-grained into one super atom, the broader the distribution functions become,
because averages are taken over more degrees of freedom. Accordingly, the potential interactions
become increasingly soft (see Figures 9 and 13). As a result, in highly coarse-grained models, i.e., the
blob model, unphysical bond crossings may occur, an unwanted effect that tends to reduce the number
of entanglements in the modeling of long polymer chains. Since the entanglement effect is crucial
for polymer rheology [244], it is very important to avoid the bond-crossing phenomenon in the blob
model. Padding and Briels [245] developed the TWENTANGLEMENT algorithm to achieve this goal.
The bond-uncrossability constraint in the TWENTANGLEMENT algorithm was implemented through
elastic bands formed by bonds between consecutive blobs, as shown in Figure 13a. If a bond crossing is
attempted, an “entanglement” is created at the crossing point, X, whose position is determined by force
equilibrium, and crossing is prevented by modification of the attractive part of the bonded potential,
(c3l

µ, in Equation (14)) by substituting the path length, Li,i+1, between two blobs (Rblob
i and Rblob

i+1 ) via
the crossing point, X [84]:

Li,i+1 = |Rblob
i −X|+ |X−Rblob

i+1 | (16)

More details about the TWENTANGLEMENT algorithm are available from [84]. Here, we
should emphasize that these so-called “entanglements” are not the classical entanglements introduced
within the tube model [5,6]. These “entanglements” are created and annihilated in the dynamic
simulation of polymer melts, without imposing a network structure a priori. Earlier studies using
dissipative-particle-dynamic (DPD) models did not apply constraints to prevent chain crossing and, as a
result, could not be used to study entangled chains. However, Nikunen et al. [246] developed a simple
and computationally efficient criterion for avoiding chain crossing in DPD simulations, and the new
model could capture the reptation behavior of entangled chains. The estimated entanglement length of
DPD polymers is found to be consistent with the classical MD simulations [247,248]. These works
build on studies by Goujon et al. [249], who developed a repulsive potential between segments [250]
in DPD simulation to avoid bond crossing. The blob model has been adopted to study the dynamic and
rheological properties of PE and poly(ethylene-alt-propylene) (PEP) polymers [84,85,241]. The obtained
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results are found to be in agreement with the experimental measurements and all-atomistic/united atom
simulation results. As shown in Figure 14, Padding and Briels applied the blob model to study PE
polymer melts with chain lengths ranging between 80 and 1000 (blobs from four to 50) [85]. For
unentangled PE chains, the simulation results indicate the self-diffusion coefficient scales asDcm ∼ N−1

and zero-rate shear viscosity scales as η0 ∼ N1. For highly entangled PE chains, this model predicts
Dcm ∼ N−2 and η0 ∼ N3.6, well in accordance with the tube model [6,7].

Figure 14. (a) Self-diffusion coefficient, Dcm, and (b) zero-rate shear viscosity, η0, for PE
melts at 450 K. The experimental data are given by Pearson et al. [251]. The MD data are
given by Mondello et al. [2], Padding et al. [85] and Paul et al. [252].

(a) (b)

Similar to the IBI method, the time in the blob model should also be rescaled to capture the correct
dynamics of polymer chains. In the blob model, such a rescaling has been achieved by adjusting the
friction coefficient of the Langevin equation to a value measured in all-atomistic simulation [85]. Since
the blobs are assumed to be spherical and isotropic in space, it is also reasonable to assume an isotropic
friction force on each blob that is independent of the other blobs. This way, the friction force can be
calculated by fixing one blob in the all-atomistic simulation box and measuring the constraint force. Part
of this constraint force balances the mean forces induced by the interactions from neighboring blobs.
The other part arises from a random fluctuation force, which is related to the friction coefficient. By
way of a Fourier transformation and truncation of the constraint force below the oscillation frequency
of mean force, the part induced by the random fluctuation force can be isolated and used to calculate
the friction coefficient, which was estimated by Padding and Briels to be about 8 ps−1 for C120H242 at
450 K [85]. By using such a friction coefficient in the blob model, the correct diffusion coefficients of
PE polymer melts can be predicted as shown in Figure 14a.

4.3. Super Coarse-Graining Method

In the IBI method, each polymer monomer is typically coarse-grained into one or two super atoms.
This amounts to a rather low degree of coarse-graining. In the blob model, around 20 monomers are
coarse-grained into a single blob, which is still a moderate degree of coarse-graining, since the polymer
chain length is typically far in excess of this number. To approach the extremely large spatial and
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temporal scales of polymer melts, there is a need for a super coarse-grained model, in which an entire
polymer chain is replaced by a single particle. In this kind of simulation, only the displacements of the
polymer chains’ centers of mass are considered, and the high-frequency linear and non-linear rheology
of the polymers are ignored.

Murat and Kremer [70] first adopted this concept and developed an extremely efficient, but rather
general, model for polymer melts, where each polymer chain is represented by a soft ellipsoidal particle.
These ellipsoids are characterized by their sizes and shapes, which are induced by the conformation
of the underlying polymer chains. The occurrence probability of each ellipsoid particle is determined
by its internal free energy. The interaction between two ellipsoid particles is considered to depend on
the spatial overlap of their monomer density distribution functions [70]. Since the internal degrees of
freedom of the polymer chains have been smeared out, a large number (on the order of 104) of long
chains can be simulated with this super coarse-grained model within a reasonable computer time on
a single work-station processor [70]. Moreover, the generic Gaussian statistics of the polymer melts
can be realized. However, in their model, the entanglement effect between different chains had been
ignored. More recently, the method has been extended to chains of Gaussian blobs by Pierleoni and
his co-workers [253,254] and Kremer and his co-workers [255,256], allowing for much more efficient
implementations. Kindt and Briels [86] developed a single-particle model to study entangled polymer
chain dynamics. In this model, the entanglement number, nij , is introduced between particle pairs, i and
j, which accounts for the deviation of the the ignored degrees of freedom from the equilibrium state.
Moreover, the deviations of nij from the equilibrium values induce transient forces. The displacements
of the centers of mass of polymer chains are governed by these transient forces and the conservative
forces originating from the potential of mean force. The equilibrium entanglement number, n0(rij), is
set as [86]:

n0(rij) =

{
c(rij − rc)2, rij ≤ rc

0, rij > rc
(17)

Here, rc is a cutoff radius that represents the interaction range of the underlying polymer chains. Usually,
rc is taken to be a multiple of the radius of gyration, RG, of the polymer chains; it was taken to be
rc = 2.5RG in these particular simulations. The prefactor, c = 15/2πr5

c , is used to normalize n0, and
the compressibility of the super coarse-grained system is considered through the free energy, Ac, of the
ignored degrees of freedom in the given configuration, R3N [84,86], as follows:

Ac(R
3N) =

∑
i,j

cG exp
(
−r2

ijb
2
0

)
(18)

As the level of coarse-graining increases, the potential strength, cG, decreases, while the Gaussian width,
b0, increases. The density distribution of particles is determined by the conservative force, Fci, obtained
by Taylor expansion of the free energy of the ignored degrees of freedom around the homogeneous
state [86]:

Fci = −∇iAc [ρ] = − 1

ρ3κT

N∑
j=1

(∆i + ∆j)∇i ω (rij) (19)

where ρ is the macroscopic number density of the polymer chains, κT is the isothermal compressibility
and ∆i =

∑
j ω(rij)− ρ is the excess local density of particle, i. The equations of motion for the super
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coarse-grained system are governed by the Smoluchowski diffusion equation with friction coefficient, ζ ,
and strength of entanglement fluctuation, αf , around the equilibrium, n0 [86,257]. There are a total of
seven parameters in the super coarse-grained model, i.e., mass density, ρM , isothermal compressibility,
κT , radius of gyration, RG, disentanglement time, τd, time step, ∆t, fluctuation strength, αf , and
friction per entanglement, ζe. All these parameters can be measured or calculated from experiments and
all-atomistic simulations, except αf and ζe, which can be fitted to match a desired diffusion coefficient
and zero-rate shear viscosity. The time step, ∆t, is limited by the value of αf/ζe. The computer times
and accelerations for different simulation methods were compared by Kindt and Briels [86], as shown
in Table II of [86]. The acceleration of the super coarse-grained model, compared with the all atomistic
model, is by a factor of about 106 [86]. The developed model has been adopted to study the static
structure and the linear and nonlinear rheology of PE (C800H1602) at 450 K [86], as shown in Figure 15.
Figure 15a shows the storage and loss moduli, G′ and G′′, of the PE polymer, calculated from a direct
Fourier transform on the measured relaxation modulus, G(t). The overall shapes of G′ and G′′ are found
to be in agreement with experimental observation [109] and theoretical prediction [14]. Moreover, in
the intermediate range, the loss modulus, G′′, is found to be proportional to ω−1/4, a scaling induced
by the CLF and CR effect [14]. The super coarse-grained model has also been demonstrated to predict
the nonlinear rheology of polymer melts. The dynamic viscosity of PE (C800H1602) was calculated by
NEMD simulations and agrees reasonably well with the viscosity obtained by the Cox-Merz rule, as
shown in Figure 15b. In addition, shear-thinning behavior of the polymer melts under high shear rate
was also observed [86]. Zhu et al. [258] adopted the same methodology with a stochastic relationship
between the probability of appearance of an entanglement between any pairs of neighboring chains and
the rate of creation and annihilation of entanglements in a given time interval. The probability of the
entanglement annihilation was tuned to keep the total number of entanglements in the system close to
the target value. The developed model was validated by simulating the static, dynamic and rheological
properties of PE (C1000H2002) at 450 K [258].

It may be astonishing to see that such a simple super coarse-grained model can capture the correct
statics, dynamics and linear and nonlinear rheology of polymer melts. The rheology of highly entangled
polymer chains is induced by the entanglements between different chains, which can confine the motion
of a single chain into a tube-like region. So, how can the single particle model capture the correct
reptation behavior of polymer chain? Briels has given several qualitative explanations concerning this
issue [259]. In the above super coarse-grained model, if the distance, rij , between two particles were
suddenly changed, the equilibrium number of entanglements, n0, would also change. However, the
relaxation from non-equilibrium, n(rij), to equilibrium, n0, will take a finite time. Thus, memory effects
and the spatial correlations in the motion of these particles will induce transient forces, which are very
strong and cannot be derived from a potential of mean force. Such transient forces have been shown to
be quadratic in the deviations of n0, originating from a penalty free energy equation [259]. The main
effect of the tube is to confine the motion of a polymer chain to a curvilinear path, especially for the
center mass of the chain. The transient forces act similarly to tie the particles to their instantaneous
coordinates harmonically. This basic idea of a harmonic penalty was also put forward in earlier
works [260]. Beyond the Rouse time, τR, the polymer chain diffuses along the central line of the
tube; it performs one-dimensional Brownian motion, with the center of mass of the chain moving
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randomly. Similarly, the transient forces move the particles into random directions. In this way, the
super coarse-grained model, with the whole polymer chain simplified into a single particle, can capture
the correct dynamic and rheological properties of entangled polymer chains. The above model is also
referred to as the transient force model or responsive particle dynamics model [259]. The transient force
model has been demonstrated to correctly reproduce the large temporal linear and nonlinear rheological
properties of linear polymer melts [86,261,262], telechelic [263] and star polymers [264] and polymeric
adhesives [265,266]. Its thermodynamic aspects are discussed in [267].

Figure 15. (a) Storage, G′, and loss, G′′, moduli and (b) the flow curve, viscosity, η, versus
shear rate, γ̇, for PE (C800H1602) at 450 K. In (a), the slope of the straight, solid line is
≈-0.25. In (b), the solid curve is extracted from the equilibrium simulations, according to
the Cox-Merz rule, while the circles and squares are measured in shear simulations through
linear background and variable flow field, respectively. Figures reproduced with permission
from [86].

(a) (b)

Very recently, Guenza and her co-workers developed another super coarse-grained model by
coarse-graining the polymer chain into a sphere with radius equal to RG, based on the Ornstein-Zernike
equations [71,72,87,88,217,218,268–272]. The newly derived model is different from the previous IBI
models or super coarse-grained model in four aspects: (i) the model was derived analytically through
the Ornstein-Zernike equation [11]; (ii) it is not state-dependent, in contrast with the effective potential
functions derived through the IBI method; (iii) the analytical solution does not need further optimization
against the more detailed model; and (iv) the thermodynamic quantities (as well as the self-diffusion
coefficient) of the super coarse-grained model can also be analytically determined. However, as with all
highly coarse-grained models, the internal degrees of freedom are smeared out. For example, only the
diffusion coefficient of the centers of mass of polymer chains can be directly obtained.

In deriving this super coarse-grained analytical model, Guenza and her co-workers first mapped
an all-atomistic polymer chain onto a freely-rotating chain model [217,218]. They then applied the
hard-bead approximation to evaluate the integrals of the Ornstein-Zernike equation [273]. The whole
polymer chain is simplified as a soft-colloidal particle with radius, RG, and it interacts with other
particles through a pair potential in a range of a few RG. The center of the soft-colloidal particle lies
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on the center of mass of its corresponding polymer chain. The total intermolecular correlation function
between these centers can be formulated for long chains (N →∞) as [218]:

hcc (r) ≈ −39

16
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RG

(
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√
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)
e
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Here, ξp is the length scale of density fluctuation, which is determined by the length scale of the
correlation hole, the molecular number density and RG. For N > 30, the approximation of hcc given
above is exact [73,274]. The inter-particle potential in this super coarse-grained model is then obtained
using a hypernetted-chain closure approximation [175,218]:

βU cc = hcc (r)− ln [1 + hcc (r)]− ccc (r) (21)

where β = 1/kBT and ccc(r) is determined by the hcc(r) in the reciprocal space.
Although Equation (20) may correctly represent the structure of the polymers, the dynamic behavior

of this super coarse-grained model is artificially fast, due to the high degree of coarse-graining, a feature
also seen to lesser degrees in the IBI method and the blob model. As previously mentioned, there
are two reasons for this artificially fast dynamics. One is the free energy change induced by smearing
out the internal degrees of freedom of the polymer chain, since the local states are ignored and the
system entropy is decreased. The other is the shape change of the molecule, since the solvent-accessible
surface/volume is not preserved. The latter plays the dominant role in the dynamic rescaling of the IBI
model or blob model. However, the former becomes very important for such a highly coarse-grained
model. To consider this effect for the dynamic rescaling, an a posteriori correction in terms of the
entropy contribution to the dynamics of the coarse-grained system must be included [218,272]. The
proposed time-rescaling factor induced by the free-energy change is [218,272]:

Sentropy = RG

√
M

kBT

3

2
N (22)

whereM is the molecular mass of the chain, RG its radius of gyration andN is the number of monomers
per chain. The 3N/2 factor was introduced to account for the averaging-out of the internal degrees of
freedom during the coarse-graining. The other rescaling factor induced by the change of the internal
friction coefficient is introduced as [218,272]:

Sfriction =
ζ

Nζm
(23)

where ζ and ζm are the friction coefficients of the super coarse-grained and freely-rotating chain systems,
respectively. Whereas rescaling in the IBI model must be performed numerically, in this case, there are
analytical equations for ζ and ζm [218,272]. Thus, the rescaling factors, Sentropy and Sfriction, can be
analytically determined without performing any numerical simulation. The only parameter that needs
to be determined is the effective hard sphere diameter, d, for the freely-rotating chains. For a specific
thermodynamic condition, the value of d only depends on the local monomer structure, not the degree
of polymerization, N . By following the Rouse model, the value of d can be easily determined by
the diffusion coefficient of the freely-rotating chains [218,272]. For example, the values of d for PE
and cis-1,4-polybutadiene (PB) polymers are 2.1 Å and 1.47 Å, respectively. In modeling entangled
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polymer melts, a one-loop perturbation was added into the dynamic rescaling approach to account
for the presence of entanglements [218]. The dynamics of the super coarse-grained system can then
be integrated through the generalized Langevin equation. This super coarse-grained model has been
implemented into LAMMPS by Guenza and her co-workers [218].

Figure 16 shows the calculated diffusion coefficients, Dcm, for PE and cis-1,4-PB polymers with
different chain lengths. Obviously, the obtained diffusion coefficients are in agreement with the previous
united atom simulation results and the experimental values. The scaling relationship between the chain
length,N andDcm, is observed to beDcm ∼ N−1 andDcm ∼ N−2 for unentangled and entangled chains,
respectively. One advantage of such a super coarse-grained model is that the speed-up of the simulation
is increased by a factor of 106, compared with the all-atomistic simulations. The spatial and temporal
scales that are unapproachable by the all-atomistic simulations can be approached through the super
coarse-grained model, since the internal degrees of freedom of the chain are ignored. Such a model can
also be adopted to predict Dcm of ultra-long chains, which can be further compared with experimental
results. Although the diffusion coefficient, Dcm, is the only quantity that can be directly calculated from
such a super coarse-grained model, the monomer friction coefficient can also be deduced and used as
input to a Langevin equation to simulate the internal dynamics of the chain. Through the generalized
Langevin equation for cooperative dynamics, Lyubimov et al. [272] studied the dynamic structure factor,
S(q, t), of cis-1,4-PB melts with chain lengths, N = 96 and N = 400. The obtained S(q, t) are found to
be in accordance with the results from the united atom model [272]. The structure and thermodynamic
consistency between the all-atomistic model and its corresponding super coarse-grained model has also
been studied and verified [270,271]. However, rheological properties of such a highly coarse-grained
model have not been reported.

Figure 16. Center of mass self-diffusion coefficient, Dcm, for (a) polyethylene (PE) and
(b) cis-1,4-PB polymer melts. In (a), the downward and upward triangles denote 400
K and 509 K, respectively. Unfilled circles are experimental results at 509 K. In (b),
filled and unfilled symbols are data from united-atom and super coarse-grained simulations,
respectively. Figure a,b are reproduced with permission from [218,272], respectively.

(a) (b)
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5. Multiple-Scale-Bridging Methods

5.1. Dynamic Mapping onto Tube Model

Since the rheological properties of entangled polymer melts are dominated by
entanglements, many computational works have been undertaken to extract the underlying primitive
path (PP) and entanglement characteristics predicted by the tube model directly from the atomistic
simulations [76,79,97,119,178,198,223,242,275–285]. All of the studies are based on the tube
concept developed by Doi and Edwards [6] in which the PP is considered to be the shortest
entanglement-preserving path between two ends of the polymer chain, as they are fixed in space.
Everaers et al. [97,119] applied an energy-minimization method to extract a tube diameter and
entanglement length from all-atomistic simulations of linear polymer chains. In this method, all
the ends of the polymer chains are fixed in space. Then, most of the intra-chain interactions
(vdW, angle and dihedral interactions) are turned off, while the inter-chain excluded volume
interactions are retained. The bonded atoms or monomers only interact with each other through a
FENE type potential. Afterward, the energy of the whole system is slowly minimized by cooling
the system down to temperature, T = 0 K. The bond lengths and system energy are monitored
in this process to ensure that the topological state of the PP network approaches a stationary
value. Such a method is also referred to as the primitive path analysis (PPA) method [97,119].
Uchida et al. [120] combined computer simulations of the FENE model with bending, the PPA of the
polymer topological state and scaling arguments to develop a unified picture of the relationship between
plateau moduli and reduced polymer density. The obtained results agree with experimental observations
of the normalized plateau moduli of both loosely and tightly entangled polymers over 13 decades in
frequency space, from 10−6 to 107 s−1 [120]. Recently, Everaers [286] compared the entanglement
length, Ne, given by the PPA, tube models and slip-link models, and proposed a simple relationship
between topological and rheological entanglement length.

Within the original PPA method, the PP was defined as the path with minimum total energy, not
as the shortest path between two ends of the chain, and PPA results are known to weakly depend
on implementation details, such as a temperature ramp and bead size [276,287]. Later on, Kröger
and Tzoumanekas et al. introduced the Z1 code [281,287] and contour reduction topological analysis
(CReTA) [283] methods, respectively, to minimize the total contour length rather than the elastic energy,
to supply a shortest parameter-free path for analyzing entanglement information of polymeric systems.
Both Z1 and CReTA codes are purely geometric methods, which were found to give the same results
on the same polymer systems [287]. The less computationally expensive Z1 code [279,281] begins to
construct the PP network by fixing the ends of polymer chains and replacing each polymer chain by a
series of infinitesimally thin, impenetrable and tensionless straight lines. The length of these multiple
disconnected paths is then monotonically reduced, subject to chain-uncrossability, by introducing a
smaller number of nodes. Upon iterating the procedure, each multiple disconnected path converges
to a final state, the shortest path representing the PP. Recently, Schieber and his co-workers have
developed an analytical expression for the PP length of entangled polymer chains [288–290], based
on statistical mechanics of a chain as a random walk with randomly distributed entanglements. A
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single PP is often characterized by its conformational properties, i.e., PP length, Lpp, number of interior
kinks/entanglements, Z, and the end-to-end distance, Ree. According to the tube model [6], the real
polymer chain and its corresponding PP both can be considered as random walks with the same Ree, but
as different contour lengths. Thus, the tube diameter can be estimated as [6]:

app =
〈R2

ee〉
〈Lpp〉

(24)

Similarly, the entanglement length, Ne, can be calculated via [6]:

Ne = N
〈R2

ee〉
〈Lpp〉2

(25)

while this expression for Ne is generally N -dependent and requires simulations with N � Ne to
determine Ne precisely, there are also modified expressions that determine lower and upper bounds
for Ne. Most useful are the ideal Ne-estimators that converge to Ne for chain lengths, N ≤ Ne. Such
estimators are discussed in detail and tested by Hoy et al. [242].

Based on the Z1 code [281], Stephanou et al. [74,89,291–293] developed a dynamic mapping method
to quantify polymer chain reptation in entangled polymer melts. As shown in Figure 17a, a virtual tube
with diameter, app, is constructed around a real polymer chain and its PP, where the tube diameter, app,
can be determined independently through either the calculation of the MSD for the innermost monomers
of the polymer chains or the time displacement of the primitive chain segment orthogonal to the initial
PP. As shown in Figure 17b, the tube is separated into consecutive cylinders. Here, each cylinder piece
corresponds to an entanglement strand of the PP with a diameter, app. At time, t = 0, the entanglement
structure is A1-A2-A3-A4-A5, with each point representing a kink/entanglement along the PP. After
time, t > 0, the original polymer chain moves, as does its PP. The previous entanglement points thus
move to a new configuration, which we denote as B1-B2-B3-B4-B5. The perpendicular distance traveled
by each entanglement point, x(s), can be calculated and compared with the tube radius, app/2. Here,
s ∈ [0, 1] labels the contour position of the PP segment. If x(s) > app/2, the segment, s, is considered
to have escaped the initial tube perpendicularly, and the function, ψ(s), whose average is taken over an
ensemble of chains, describes the probability for the segment, s, to remain inside the original tube after
time, t, is set to be 0. Conversely, if x(s) < app/2, the segment s has not laterally escaped the tube.
However, we need to further check if it has escaped the tube longitudinally along the curvilinear axis.
If not, ψ(s) = 1. Such criteria work well for short times. However, for long time simulations, since
the chain fluctuates and can retract back into its tube, these criteria are modified in accord with the tube
theory [6]: (i) if x(s) < app/2, then ψ(s, t) = 1; (ii) if app/2 < x(s) < app, then ψ(s, t) = 0, but
the segment is allowed to return back to its original tube; (iii) if x(s) > app, then ψ(s, t) = 0, and the
segment, s, cannot return to its original tube, which means ψ(s, t) = 0 for subsequent times, as well.
Therefore, as shown in Figure 17b, we have ψ(B1, t) = 0, ψ(B2, t) = 1, ψ(B3, t) = 0, ψ(B4, t) = 1

and ψ(B5, t) = 0.
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Figure 17. Schematic of tube construction around the primitive path (PP) of a polymer chain
to calculate function, ψ(s, t). Figure reproduced with permission from [89].

Figure 18 shows successive illustrations of the instantaneous conformation of a reptating polymer
chain with CR. For clarity, the conformations of a single chain are shown here. The movement of the
chain and its PP can be clearly seen in Figure 18. It is obvious that the reptation behavior is not only due
to the movement of the PP, but also due to fluctuations of the entanglements, which is accounted for by
the CLF and CR effects. Specifically, the CR effect makes the main contribution to the relaxation of local
transverse modes along the contour of PP, allowing some parts of the chain to explore the space outside of
the average tube region for a certain time before disengagement (Figure 18c). These effects can be further
enhanced by the thermally-induced local fluctuations perpendicular to the main PP orientation. As time
goes on, more and more segments disengage the tube. Eventually, the entire chain can escape the original
tube and form another new tube with its surrounding chains. As previously mentioned, the function,
ψ(s, t), can be obtained at any time, t, and averaged over all the chains in the system. As the molecular
simulations can provide us with the atomistic trajectories at all times, these trajectories can be mapped
onto the tube model by the Z1 code, as shown in Figure 3 in [89]. Therefore, the function, ψ(s, t), can be
numerically obtained from the molecular simulations combined with Z1 analysis. Moreover, to improve
the statics, the multiple-time-origins technique is adopted during the calculation of ψ(s, t). The portion
of PP remaining inside its original tube after time, t, can be subsequently obtained as:

Ψ (t) =
1

Lpp

∫ Lpp

0

ψ (s, t) ds (26)
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The tube survivability function, Ψ (t), is the key to the linear viscoelastic properties of polymers. The
relaxation modulus reads [6]:

G (t) = G0
NΨ (t) (27)

where G0
N is the plateau modulus. In addition, the zero-rate shear viscosity, η0, and the storage, G′(ω),

and loss, G′′(ω), moduli can be obtained as [6]:

η0 =

∫ ∞
0

G (t) dt = G0
N

∫ ∞
0

Ψ (t) dt (28)

G′ (ω) = ω

∫ ∞
0

G (t) sin (ωt) dt = G0
Nω

∫ ∞
0

Ψ (t) sin (ωt) dt (29)

G′′ (ω) = ω

∫ ∞
0

G (t) cos (ωt) dt = G0
Nω

∫ ∞
0

Ψ (t) cos (ωt) dt (30)

Here, we should emphasize that the tube survivability, Ψ (t), is directly computed from the
molecular simulations, without making any assumption aside from the tube concept. The
original tube theory [6] provides a simple analytical expression for ψ (s, t) as ψ (s, t) =∑

p:odd (4/pπ) sin (pπs/Lpp) exp (−p2t/τd), which implies the scaling behaviors, η0 ∼ N3 and
Dcm ∼ N−2, which, in fact, do not completely agree with experimental results [7,294], due to the
inconsistency between the analytical expression of Ψ (t) and its true value.

Figure 18. Reptation behavior of a polymer chain with contour length fluctuation (CLF) and
constraint release (CR) effects. The dashed center line represents the original primitive path,
while the solid red line represents the actual polymer chain, whose instantaneous primitive
path is not specifically indicated. The CLF effect is associated with the variation of the
primitive path length resulting from the retraction and subsequent expansion of the polymer
chain within the tube. The CR effect is illustrated by the polymer’s lateral escape from the
tube in (c).

(c)

(b)(a)

(d)

old
new

partially relaxed

Figure 19 shows the tube survivability, Ψ (t), zero-rate shear viscosity, η0, and the storage, G′(ω), and
loss, G′′(ω), moduli of PE (C500H1002) polymer melts at 450 K. In Figure 19a, the Ψ (t) is compared with
the double reptation model [295,296] and dual constraint model [297,298]. Although all three of these
models give similar trends in Ψ(t), the double reptation model is found to overestimate the data obtained
by direct PP analysis, due to the neglect of the CLF effect, while the dual constraint model is found to
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underestimate the data given by the PP analysis, due to the overestimation of CLF effect. Thus, there also
exists some inconsistency for G′(ω) and G′′(ω) between these three models, as shown in Figure 19c,d.
Moreover, the zero-rate shear viscosities of PE melts obtained by the PP analysis are found to be in
agreement with the experimental values, as given in Figure 19b. Baig et al. [74] utilized the same PP
analysis method to study the dynamics of binary mixtures of entangled cis-1,4-PB melts and to explore
the matrix chain length and composition effects of the CLF and CR mechanisms. Probe chains of C600

cis-1,4-PB were immersed in matrices of varying chain lengths (from C100 to C1000 cis-1,4-PB). They
found that the values of static topological properties, i.e., the average values of Lpp and its fluctuation,
did not change with different matrices. However, the different matrices have significant effects on the
dynamical properties, i.e., ψ(t, s), Ψ(t), the time autocorrelation functions for Lpp and the end-to-end
unit vector [74]. As the length of the matrix chains decreases, the functions, ψ(t, s) and Ψ(t), of probe
chains are found to decrease more rapidly. Furthermore, the relaxation of longer chains is delayed as
the concentration of shorter matrix chains decreases [74]. More importantly, the CR effect is found to
be the dominant relaxation mechanism in the mixtures of longer and shorter cis-1,4-PB polymers, since
the CLF effect appears to be independent of the compositional differences [74]. Later on, such a method
was applied to improve the theoretical descriptions on the CLF and CR effects in the tube model [293].

Figure 19. Results of (a) tube survivability function, Ψ (t); (b) zero-rate shear viscosity,
η0; (c) storage, G′(ω), modulus; and (d) loss, G′′(ω), modulus of PE (C500H1002) polymer
melts at 450 K. In (a), (c) and (d), the double reptation and dual constraint models are
given by [295,296] and [297,298], respectively. In (b), the unfilled symbols are given by
experiments. Figures reproduced with permission from [89].

(c)
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5.2. Molecularly-Derived Constitutive Equation

Recently, Ilg et al. [90,236,299–301] developed a molecularly-derived constitutive equation for
low-molecular-weight FENE polymer melts from thermodynamically guided simulations and,
also, applied similar concepts to sheared demixing systems [302], liquid crystals [303–306]
and ferrofluids [307,308]. They have applied established concepts of non-equilibrium
thermodynamics [309,310] and an alternating Monte-Carlo/molecular-dynamics scheme to derive
a constitutive model for polymer melts under arbitrary flows (including shear and elongation). Here,
we should emphasize that the molecularly-derived constitutive equation is based on a rigorous
thermodynamics formulation, through an analytical super coarse-graining method. Therefore, it can
be applied not only to generic polymers (i.e., FENE), but also polymers with chemical details; in fact,
smaller-scale (i.e., MD or coarse-grained MD (CGMD)) simulation results are used as input. The issues
of representability (associated with generic coarse-grained models) and transferability (associated with
systematically coarse-grained models) in this method, therefore, arise from whatever smaller-scale
model is chosen and can be avoided altogether by using an all-atomistic model as input. The main
ingredient of this thermodynamically-guided method is the assumption that the non-equilibrium
stationary state of the system is captured by a generalized canonical ensemble with the probability of
state z being:

ρ (z) = feq (z) e−Λ:Π(z)−Λ0 (31)

where z = {rj,pj} are phase-space variables with rj and pj denoting particle positions and momenta,
respectively. feq (z) ∼ exp [−H(z)/kBT], where H(z) represents the microscopic Hamiltonian. Λ(x)

are Lagrange multipliers determined by the measured values of slow variables, x = 〈Π (z)〉, and Λ0

is a normalization constant. Here, the mesoscale behavior of the polymer melt is represented by the
“structural” or “collective” variables, Π, which are assumed to be able to capture all the relevant physical
processes on the time scale of interest. In their study, Ilg et al. chose the slow conformational variable
to be the mean gyration tensor of polymer chains, considering that its decay is slow compared with
fluctuations of bond lengths, angles and intermolecular distances or the higher normal modes [309,311].
The macroscopic hydrodynamic velocity field is ignored in Equation (31), since it equilibrates extremely
rapidly on the length scale of individual polymer chains. Thus, the time evolution for the slow variables,
x, can be written as [90]:

ẋ = ẋrev + M :
δS

δx
,

δS

δx
= kBΛ (32)

where ẋrev is the reversible contribution in terms of a Poisson bracket. The macroscopic entropy,
S(x) = −kB 〈ln ρ〉, is obtained with the distribution from Equation (31). The entropy gradient, δS/δx,
determines the irreversible contribution through conjugation with M, a symmetric and semi-positive
definite friction matrix obtained by a Green-Kubo type formula [309,312]:

M = 〈M(z(t))〉 , M =
1

2kBτs
∆τsΠ(z)⊗∆τsΠ (z) (33)

Here, ∆τsΠ(z) represents the fast fluctuation of Π on the time scale, τs, which separates the evolution
of the slow variables, x, from the rapid dynamics of the remaining degrees of freedom. The reversible
part of the motion, ẋrev, can be obtained analytically by the transformation behavior of Π [309]. For
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example, as x represents the gyration tensor of polymer chains under homogeneous flow, v(r) = κ · r
and κ = (∇v)T , one has ẋrev(x,κ) = x · κT + κ · x. The remaining building blocks, Λ and M, can be
determined self-consistently through a hybrid iteration scheme, as given below [90]:

• Step (i): Choose initial values for the Lagrange multipliers, Λ

• Step (ii): Generate n-independent configurations distributed according to the generalized
canonical ensemble in Equation (31)

• Step (iii): Solve Hamilton’s unconstrained equations of motion for all n systems during a short
time interval, τs

• Step (iv): Calculate the friction matrix, M, from Equation (33) and x directly from the n

trajectories produced in (iii)

• Step (v): Calculate an updated value for Λ by solving Equation (32) for Λ with ẋ = 0 (in terms of
M, x and κ; the transposed velocity gradient, κ, is “hidden” in ẋrev)

Note here the updated Lagrange multiplier obtained in step (v) can be used to reenter the procedure at step
(i) for iteration, which will allow one to calculate the converged Λ. In step (ii), the Monte Carlo method
is used to generate the equilibrated configurations for polymer chains with the same Lagrange multipliers
used in step (i). In step (iii), NEMD simulations are performed on the configurations generated in step
(ii) to calculate and store trajectories, z(t), during a short time interval, t ∈ [0, τs]. Here, we should
emphasize that the duration of the MD simulation in step (iii) is very short, compared with conventional
NEMD simulations, which should be larger than the inverse of the shear rate, γ̇−1. With all these n
trajectories, z(t), at hand, the friction term, M, can be evaluated in terms of the slow variables, Π(z(t)),
according to Equation (33) in step (iv). Here, the number of samples, n, should be large enough to
obtain an accurate estimation of M. Afterward, Λ is updated according to Equation (32) and the value
of M from step (iv). For a wide range of shear rates, γ̇−1, consistent sets of x, Λ(x) and M(x) can be
obtained. The stress tensor of the polymer melt under shear flow can then be calculated as [90,299,313]

σ = −2npkBTx ·Λ (34)

where np is the polymer number density.
The above method can be applied to study both homogeneous, stationary flow situations for polymer

melts and transient flows, as its implementation does not require flow-adapted periodic boundary
conditions. Ilg and Kröger applied this method to study low-molecular-weight polymer melts under
shear and other flows [299]. Figure 20 shows the transient behavior of FENE chains with N = 20,
under planar shear flow. For small shear rates, the transient viscosity, η+, increases monotonically and
approaches its steady-state value for the strains, γ = γ̇t ≥ 1. However, for large strain rates (γ̇ ≥ 10−2,
as shown in Figure 20a), there is an overshoot for η+ before it reaches its stationary value. A similar
behavior is also found for the transient first normal stress difference, Ψ+

1 = σxx − σyy, as shown in
Figure 20b. These behaviors are experimentally observed [314,315] and have also been captured by
different constitutive models [316,317]; however, these models tend to exhibit the inconvenient feature
that they describe some types of flow very well, while failing for others [19]. In addition, the flow curves
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for η, Ψ1 and the second normal stress difference, Ψ2 = σyy−σzz, have been obtained and compare well
with the NEMD results [299]. Baig and his co-workers [318,319] adopted a similar concept to study
the viscoelasticity of polymer melts. They used an expanded Monte Carlo method as the macroscale
solver for a family of viscoelastic models, which are built on the “structural” variable, x. Similar to the
work done by Ilg et al. [90,299,313], x can be obtained from all-atomistic non-equilibrium simulations.
Thus, there is no need to have an explicit form of the macroscopic model. The obtained conformation
tensors, as well as the chain orientation functions of low-molecular weight PE melts are found to agree
with atomistic non-equilibrium simulations [318].

Figure 20. (a) Normalized shear viscosity, η+/η0, and (b) normalized first normal stress
coefficient, Ψ+

1 /Ψ1,0, for FENE chains with length N = 20.

(a) (b)

5.3. Concurrent Modeling of Polymer Melts under Shear Flow

Kumar and his co-workers developed a concurrent multiscale modeling strategy for parallel
simulations of systems with a large spatial extent [91]. In this method, the continuum system is divided
into multiple partitions. Each partition is simulated independently by MD simulations with periodic
boundary conditions. Information is then occasionally passed between different partitions through a
continuum approach without a constitutive model. The proposed method has been demonstrated in the
simulation of polymer melts under rapid one-dimensional shear flow [91]. As shown in Figure 21,
the polymer melt is subjected to a one-dimensional oscillatory shear flow along the x direction. The
system is then partitioned along the y direction into N + 1 blocks. If we consider the entire system
as a coarse-grained problem, it can be solved by determining the behavior at each Gauss point in the
different partitions/blocks. As the Gauss-point behavior can be determined through independent NEMD
simulations with the Lee-Edwards periodic boundary conditions [320], the coarse-grained problem
should be easily solved. The velocity profile along the y direction from the coarse-grained problem
serves as an input for the NEMD simulations of each Gauss point. The two scales are then coupled in
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a Lagrangian framework by following the generalized mathematical homogenization theory [321–323]
for different scales:

mq̈ (xζ)− f (xζ) = 0 for xζ ∈ Θζ (35)

ρü(xζ)−∇ · σ(xζ) = 0 for xζ ∈ Ω (36)

σ(xζ) =
1

2Θζ

∑
A

∑
B6=A

rAB
ζ (xζ)⊗ fAB

ζ (xζ) (37)

Equations (35) and (36) are for the fine scale (MD), scale bridging (modified virial stress) and the coarse
scale (continuum), respectively. On the coarse scale, ρ is the density of the polymer melt, u(x) is
the displacement vector in the continuum (coarse scale) and σ(x) is the Cauchy stress tensor in the
continuum. On the fine scale (molecular level), q(x) is the displacement vector, m is the atomistic mass,
rAB
ζ is the radial vector between atoms A and B and fAB

ζ is the force vector between atoms A and B. Ω

represents the coarse domain, and Θζ represents the fine domain corresponding to the Gauss point, xζ .
From the above equations, we can see that the fine scale is governed by Newton’s second law with all
the atomistic details and corresponding potentials. The stress tensor, σ(x), at the Gauss point can be
calculated based on the modified virial stress [321], which is further used as the input for the continuum
equation of motion (on the coarse scale). The velocity field on the fine scale is updated according to
the velocity field calculated on the coarse scale and used to run NEMD simulations in the next loop.
Thus, σ(x) serves as the bridging law between the coarse-grained and fine-grained scales, and there is
no need to use a constitutive model on the continuum scale. The NEMD simulations on the fine scale
must be run for the duration of the time step used for the coarse grained integrator, ∆t. Moreover, the
starting configurations for the NEMD simulations at Gauss points are taken as the ending configurations
corresponding to the previous coarse-grained time step, which preserves the memory effect of friction.

The above method has been applied to study FENE chains with 120 beads per chain under oscillatory
shear flow in the x direction. The velocity profiles along the y direction were monitored during the
simulations (Figure 22). Reduced LJ units were used, and the period of oscillation was P ∗ = 320. The
system temperature was kept at T ∗0 = 1 by employing thermostats in the y and z directions. Obviously,
at all times, the simulation results given by the proposed concurrent multiscale modeling method are
in agreement with the results from the full MD simulations. When random starting configurations for
each Gauss point were used, the obtained velocity profile was found to differ from the results of the full
MD simulations, which addresses the importance of memory effects. Shear-thinning occurs in polymer
melts under such high shear rates [324] and from the strain-rate dependent viscosity and its definition
σxy = η∂vx/∂y, the above coarse-grained problem can be directly solved without calculating the stress
tensors in the fine scale at the Gauss points. However, the obtained velocity profile does not agree with
the full MD simulations, due to anisotropy of chain conformation under such strong shear flow. The
number of partitions can be adjusted in order to use the optimum number of Gauss points in the proposed
approach, and the velocity profile can be linearly interpolated across the domain. The proposed method
has been demonstrated to reproduce the velocity profile of full-fledged MD simulations, but with a net
computational time gain proportional to the number of beads in the system, Nbead (for large Nbead),
thanks to the domain decomposition and parallelization [91]. The proposed concurrent method is similar
in spirit to the above mentioned molecularly-derived constitutive equation, in that both of them require
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configurational inputs from full MD simulations. However, the concurrent method does not rely on a
constitutive model on the continuum scale.

Figure 21. Description of the setup of the concurrent multiscale modeling method. The
stresses calculated from MD simulations are passed into continuum simulation, while
the velocity profile obtained from continuum simulations is used for the next set of MD
simulations. Figure reproduced with permission from [91].

Stresses

Velocity profile

Figure 22. The velocity profiles for the FENE system with thickness, 282σ, at different
time steps. The small hollow and filled squares are given by the direct MD and concurrent
multiscale simulations, respectively. The broken line is from the steady-state constitutive
equation. The hollow diamonds are obtained from the concurrent multiscale simulations
with equilibrated configurations freshly generated at each time. Figure reproduced with
permission from [91].

(c)

(b)(a)

(d)
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5.4. Hierarchical Modeling of Polymer Rheology

Very recently, Li et al. [92] developed a hierarchical multiscale method in which atomistic
information is passed into a continuum constitutive model to predict the mechanical properties of
linear polymers. The main idea in this hierarchical model is to decompose the material into two
superimposed structures: a crosslinked (hyperelastic) network and a free-chain (viscous) network,
as shown in the Figure 1 of [32]. The crosslinked network is characterized by its strand length,
Nelastic, and strand number density, nelastic, which primarily depend on the processing, e.g., how many
crosslinkers are added and how the crosslinking occurs in polymers. Crosslinks are extremely strong
chemical bonds that are unlikely to break under macroscopic deformation. The crosslinked network
forms a relatively rigid internal frame that deforms in a homogeneous manner. The well-established
Arruda-Boyce model [28,325,326] is used to describe the elastic behavior of the crosslinked network
under deformation:

PE =
∂WAB

∂F
− pJF−T (38)

where PE is the elastic first Piola-Kirchhoff (PK1) stress, WAB is the hyperelastic internal energy, given
in [28], F is the deformation gradient, p is the hydrostatic pressure and J ≡ det (F). The viscous
properties of polymers originate from the dynamic behavior of free chains. According to the tube
model [5,6], assumed to describe the motion of these free chains, the viscous Cauchy stress can be
formulated as [32]:

σV = nv
3kBT

Nb2

〈
L2

pp

〉 ∫ t

0

∑∞

j=1,3,...
Υ(j, t, t′, τd)dt

′ (39)

where Υ is an integrand that depends on the tube survivability, Ψ(t), and polymer chain rotation during
deformation, as shown in [32,92]. The above viscous Cauchy stress can be related to its corresponding
PK1 stress as JσV = PV ·FT [327]. The total stress response of the complex polymeric material under
deformation is then the sum of the elastic stress tensor (Equation (38)) and the viscous stress tensor
(Equation (39)). The parameters in the above equation fall into three categories: polymer chemistry,
dynamics and physics. The chain length, N , and chain density, nv, represent the polymer chemistry
of free chains, which also rely on the synthesis process. The polymer dynamics are represented by the
diffusion coefficient, Dcm, and disentanglement time, τd, which can be obtained through experiments or
MD simulations [92,328,329]. The tube diameter, app, PP length, Lpp, and the Kuhn length, b, represent
polymer physics, according to the tube model [5,6]. The Mittag-Leffler exponent, α, also represents
polymer physics and enters through the modified tube survivability, Ψ(t), which will be shown in the
following section. The tube diameter, app, is related to the disentanglement time, τd, which is also
included in Ψ(t). Through static PP analysis using Z1 code, all these parameters, except α, can be
directly obtained [92,178,242,330]. The evaluation of α requires calibration with experimental results of
the more sophisticated, dynamic PP analysis, whose description follows. In the molecular simulations,
the trajectories of polymer chains can be directly mapped onto the tube model, through the Z1 code [89],
as discussed in Section 5.1. Thus, the tube survivability, Ψ(t), can be directly calculated, as shown
in Figure 19a, which represents the portion of the primitive chain remaining inside the original tube
after time, t. Afterward, the analytical equation for Ψ(t) obtained from the modified Doi-Edwards
theory [32] with the Mittag-Leffler exponent, α, can be used to fit the numerical one obtained from
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molecular simulations. As such, all the parameters in the above constitutive model for the viscoelastic
properties of polymers have physical meanings and can be directly predicted through the molecular
simulations or experiments.

Figure 23 illustrates this multiscale computational framework developed to predict the viscoelastic
properties of polymeric materials from the bottom up. The force field used in the all-atomistic
simulations is obtained through quantum-mechanical calculations and, thus, acts as a bridging law
between the pico- and nano-scales. The IBI method [37] then bridges the nano- and meso-scales by
allowing us to coarse-grain the all-atomistic model. Applying the Z1 code [281] to the coarse-grained
model, the PP network can be obtained and mapped onto the tube model, which bridges the meso-
and micro-scales. Finally, through Equation (39), the tube model can be further utilized to derive the
constitutive model for polymers in the macroscale. Since all the parameters in the macroscale constitutive
model have physical meanings and can be obtained through coarse-grained molecular simulations and PP
analysis [92], the viscoelastic properties of polymeric materials can be directly predicted from the bottom
up without performing experiments. Vice versa, the developed hierarchical multiscale computational
framework can also be applied in the parametric design of the viscoelastic properties of polymers, since
all the parameters involved are signatures of polymer chemistry and physics.

Figure 23. Hierarchical multiscale computational framework adopted to predict the
viscoelastic properties of polymers. Different time and length scales are connected through
different bridging laws. Figure reproduced with permission from [92].
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The predicted storage (G′) and loss (G′′) moduli of cis-PI polymer melts are given in Figure 24.
Including the CLF and Rouse effects (see Appendix in [92]), the predicted moduli are in agreement with
the experimental measurement for multiple molecular weights over a frequency range extending from
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10−4 to 106 rad s−1 (ten decades). For G′ in the terminal region, ω < τ−1
d , we have G′ ∼ ω2. There

is a sharp transition to the plateau region for G′ at higher frequencies. For extremely high frequencies
(ω > τ−1

R ), G′ ∼ ω1/2 in accord with the Rouse model [14,92,331]. Similarly, G′′ ∼ ω in the terminal
region, in accord with the tube model [6]. In the intermediate range (τ−1

d < ω < τ−1
R ), the contribution

of reptation to G′′ is proportional to ω−1/2. However, the CLF effect will play an important role in this
range, as discussed by McLeish and his co-workers [14,331]. In fact, G′′ ∼ ω1/4 in the intermediate
range, due to the combined effects of reptation and CLF. In the high frequency range (ω > τ−1

R ), the
polymer chain does not feel the constraint of its neighboring chains, thus G′′ ∼ ω1/2, in line with the
Rouse model [1]. As shown in Figure 24, the proposed hierarchical computational framework can both
qualitatively and quantitatively capture all of these important features for cis-PI. In addition, the predicted
G′ and G′′ for PE (C500H1002) also agree well with the atomistic simulations by Stephanou et al. [89]
over a broad range of frequencies, ω ∈ [104, 108] s−1, cf. Figure 10 of [92].

Figure 24. (a) Storage, G′; and (b) loss, G′′, moduli of cis-PI polymers with different
molecular weights. The solid lines are given by the hierarchical multiscale computational
framework. The dots are experimental results taken from [332]. Figure reproduced with
permission from [92].

(a) (b)

5.4.1. Mittag-Leffler Exponent α

The Mittag-Leffler exponent, α, plays an important role in the above multiscale computational
framework. In the classical tube theory [6], the tube survivability, Ψ(t), is known to follow from
ψ(s, t) =

∑
p:odd (4/pπ) sin (pπs/Lpp) exp (−p2t/τd). However, this classical analytical equation does

not agree well with the molecular observations, as shown in Figure 19a. Thus, the function, ψ(s, t), was
modified to take the form [32,92]:

ψ(s, t) =
∞∑

p=1,odd

4

pπ
sin

(
pπs

Lpp

)
Eα,1

[
−
(
p2t

τd

)α]
(40)

where the enhancement introduces the standard Mittag-Leffler function, Eα,1, a solution to fractional
diffusion problems. This introduces into the model a new parameter, α, that accounts for the effect of
crosslinks or nonuniform distribution of molecular weight on relaxation (here, 0 ≤ α ≤ 1). Setting
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α = 1 reduces to the standard Doi-Edwards model [6], since E1,1(x) = exp(x). Thus, the nature
of the diffusive process is characterized by the Mittag-Leffler exponent, α, which indicates classical
diffusion when equal to one, and anomalous (fractional) diffusion when between zero and one, leading
to a widening of the glass transition and suppression of tan δ, as shown in Figure 25a. The width
of the glass transition is also found to be proportional to 1/α. The larger the value of α, the more
uniform is the polymer’s relaxation spectrum, as shown in Figure 25b. Lion and Kardelky [333]
applied a similar fractional diffusion equation to study the Payne effect in the finite viscoelasticity of
carbon-black-filled elastomers.

Figure 25. Effect of the Mittag-Leffler exponent, α, on (a) tan δ and (b) the relaxation
modulus, G(t).

(a) (b)

Free-chain network polydispersity and interactions with the crosslinked network are the main causes
of fractional diffusive behavior (α effect). To demonstrate this effect, the above multiscale computational
framework with the enhancement of α has been applied to study the relaxation moduli G(t) of linear PE
melts, as shown in Figure 26. If α = 1, as suggested by the classical Doi-Edwards limit, the predicted
G(t) can only capture the relaxation behavior of these polymers up to the disentanglement time, τd.
However, when t > τd, the predicted G(t) is significantly smaller than the experimental one. Since
the polydispersity index (PDI) of these PE samples is about 1.1 to 2.9 [92], the polymer chains should
exhibit fractional diffusive behavior. Recall that α = 1 is for monodisperse polymer chains, which
reduce Equation (40) to the standard Doi-Edwards model [6]. Thus, without the enhancement of α,
the above multiscale computational framework cannot capture the correct relaxation behavior of these
polydisperse chains. Since the PDI values of HPBTM polymersare rather small (' 1.1) [334], while they
are as large as 1.8 to 2.9 for PEs [335], a large α = 0.7 value has been chosen for HPBs and a small
one, α = 0.3, for PEs when t > τd. With the enhancement of α, the predicted G(t) is in agreement with
experimental results, which further confirms the fractional diffusive behavior of polydisperse chains. A
similar behavior has also been observed by Baig et al. [74]. They have calculated the tube survivability,
Ψ(t), of binary mixtures of entangled cis-1,4-PB melts. The decay of Ψ(t) for monodisperse C600

cis-1,4-PB was very slow. However, the decay of Ψ(t) was sped up with increasing concentration of
C320 cis-1,4-PB inside the C600 cis-1,4-PB matrix [74]. The observed decay of Ψ(t) is found to be in
accordance with our previous speculations and discussions.
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Figure 26. Normalized viscoelastic relaxation of various PE polymers at 463 K: (a) HPBTM

and (b) PE. In (a), the dots are experimental results [334]. The solid and dash lines are
given by the hierarchical method with α = 0.7 and 1.0 when t > τd, respectively. In (b),
the dots are experimental results [335]. The solid and dashed lines are from the hierarchical
method with α = 0.3 and 1.0 when t > τd, respectively. Figure reproduced with permission
from [92].

(a) (b)

5.4.2. Finite Viscoelasticity Modeling

The developed multiscale computational framework can also be applied to the finite viscoelasticity
of polymers. For example, consider the polymer bulk under one-dimensional tension with a stretch
factor, λ = L/L0, with L and L0 denoting the current and initial length of the material in the tension
direction, respectively. The true strain is calculated as lnλ. Assuming the polymer is incompressible,
the deformation gradient tensor, F, is:

F =

 1/
√
λ 0 0

0 1/
√
λ 0

0 0 λ

 (41)

and the unit vector, ν, tangent to the PP of a free chain is:

ν =


√

1− z2 cosφ√
1− z2 sinφ

z

 (42)

where φ ∈ [0, 2π] and z ∈ [−1, 1]. Thus, according to the affine deformation assumption, we can
calculate the deformed contour length of PPs as [6,336]:

Lpp(λ) = L0
pp

∫
|F · ν|d2ν =

L0
pp

2

(
λ+

sinh−1
√
λ3 − 1√

λ4 − λ

)
(43)

Assuming random walk statistics, the distribution of the end-to-end vector, Ree, in equilibrium is [6]:

f0(Ree) =

(
3

2πNb2

)3/2

exp

(
− 3R2

ee

2Nb2

)
(44)
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where 〈R2
ee〉0 = Nb2 and b is the Kuhn length. The mean squared end-to-end distance, 〈R2

ee〉, in the
deformed state is thus:〈

R2
ee

〉
(λ) =

∫
(F ·Ree)

2f0 (Ree) d
3Ree =

2 + λ3

3λ

〈
R2

ee

〉
0

(45)

and the change of tube diameter, app, is:

app (λ)

a0
pp

=
〈R2

ee〉 (λ)

Lpp (λ)

L0
pp

〈R2
ee〉0

=
2 (2 + λ3)

3λ
(
λ+ sinh−1

√
λ3−1√

λ4−λ

) (46)

The above derived Equations (43) and (46) are compared with molecular simulation results in
Figure 27. A system of 200 FENE chains with N = 500 at number density ρ = 0.85 was extended
under the canonical ensemble, at different strain rates and temperatures. The obtained trajectories
were then analyzed with the Z1 code [281]. Obviously, the theoretical relationships between Lpp or
app and stretch ratio, λ, agree reasonably well with our molecular simulations, although the predicted
Lpp is larger than the simulation results at high temperature (T = 1). Such differences imply the
existence of non-affine deformation [26,337–339]. However, for chemically crosslinked polymers, i.e.,
vulcanized natural rubber, experimental results indicate that the deformation is affine [337]. Therefore,
the proposed method should work well for finite deformation of chemically crosslinked polymers. The
change of contour length, Lpp, tube diameter, app, as well as the chain orientation have been considered
in successful studies of the finite viscoelastic properties of polymeric materials [32,92]. As such, the
proposed hierarchical multiscale computational framework captures both the linear and finite viscoelastic
properties of polymeric materials well [32,92].

Figure 27. Uniaxial tension effect on (a) PP length, Lpp, and (b) tube diameter, app, of
FENE chains with length N = 500. The dashed lines are given by Equations (43) and (46).

(a) (b)

6. Perspectives and Challenges for Multiscale Modeling

6.1. From Atomistic to Macroscopic Scales and Back

The simulations reviewed in this paper were mostly performed independently at different spatial and
temporal scales. The systematic coarse-graining methods, such as the IBI method, pass information
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from the all atomistic scale to the coarse-grained scale. Conversely, the well-equilibrated coarse-grained
models can be mapped back onto an atomistic model, as reviewed by Müller-Plathe [38] and Peter
and Kremer [340]. As the equilibration of a coarse-grained polymer is much faster and easier than the
all-atomistic one, the back-mapping procedure can be used to quickly generate equilibrated all-atomistic
models of highly entangled polymers, including polycarbonates [177,235,341], polystyrene [198,201]
and polyamide [197,342]. Recently, Chen et al. [343] have extended this method to obtain polymer
chains under non-equilibrium situations. In this back-mapping protocol, through applying position
restraints on the deformed conformations of atactic polystyrene under steady-state shear flow, the
atomistic details were reinserted. Such a back-mapping method presents an opportunity to study
the atomistic details of highly entangled polymer chains under flow and their effect on measurable
rheological quantities.

The multiple-scale-bridging methods enable the transfer of information from one scale to the next
above, and so on. Most of these methods are hierarchical and transfer information in one direction.
However, the concurrent modeling method reviewed in Section 5.3, borrowing ideas from the bridging
scale method [344] and the bridging domain method [345], can exchange information and capture
interaction between the fine scale and coarse scale in both directions. There is a tremendous amount of
concurrent multiscale modeling methods developed in the recent ten years with rigorous mathematical
foundations, but mostly for metals [344,346–350] and carbon nanomaterials [345,351–354]. These
concurrent methods enable the information exchange between different length scales, capture their
interactions and couple MD simulations with continuum simulations. Thus, both the atomistic details
and the macroscopic properties of materials can be obtained at the same time from these simulations. In
the future, if some of these methods can be extended to study polymeric materials, i.e., like the concurrent
modeling method for polymers under shear flow [91], it will greatly enhance our understanding of their
mechanical and physical properties, as well as our capability to design new materials.

6.2. Polymer Dynamics under Flow

Polymer melts under flow have distinct features, compared with Newtonian liquids, i.e., shear thinning
and normal stress differences in shear flow [315,355], strain hardening in elongation [356] and shear
banding [357]. All of these peculiar phenomena are related to the multiplicity of the temporal and
spatial scales characterizing the structure and dynamics of polymer melts. Understanding the stress
relaxation and the structural evolution over these multiple scales is a prerequisite for deriving a reliable
constitutive model for polymer melts under shear flow. The only way to build the relationship between
molecular structure, conformation, architecture and macroscopic rheology of polymer melts is through a
comprehensive understanding across scales. Although recent MD simulation of FENE chains reproduces
shear banding [358], it is a simple, brute-force approach. There is a demand today to move from such
simple, brute-force computational experiments to complete, redundancy-free and consistent multiscale
methods in studying the flow dynamics of polymeric materials. With help from recent advances in the
field of non-equilibrium statistical mechanics and thermodynamics, the molecularly-derived constitutive
equation, shown in Section 5.2, has demonstrated some capabilities in the comprehensive modeling of
polymer flow behavior. However, the current results are limited to either generic polymer models (FENE
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chains [299]) or specific models of very simple polymers (PE chains [318]) with short chain length
(smaller than or comparable to the entanglement length). Since the entanglements between different
chains have significant effects on the dynamics and shear rheology of polymer melts, it is necessary to
extend these methods to study the complex flow behavior of highly entangled polymer chains.

Applying the coarse-grained models developed under equilibrium conditions (i.e., IBI method) to
flowing polymeric systems usually comes with some difficulties: the distinct time scales between
the all-atomistic and coarse-grained models and the variation of the effective coarse-grained potential
(e.g., the pair potential derived from the pair distribution under equilibrium conditions) with respect
to the non-equilibrium flow field. Baig and Harmandaris [359] performed a quantitative analysis of a
coarse-grained model for PS polymer melts under shear flow and compared the results with atomistic
simulations. Both translational and orientational dynamics rescaling were applied to tackle the time scale
issue. The dynamic properties of PS melts were reasonably captured by the coarse-grained model at
low-to-intermediate strain rates, and the chain conformation was well reproduced by the coarse-grained
model up to an intermediate flow strength (Weissenberg numbers Wi < 10) [359]. However, the chain
length in these studies was below the entanglement length. It is expected that such a method can be
further extended to study entangled polymer chains subjected to flow.

Polymer flow in dilute solution is also an interesting and challenging problem [360]. Compared
with polymer melts, particular attention must be paid to the solvent-mediation effect between polymeric
beads, also called hydrodynamic interaction [361]. In order to avoid modeling the solvent explicitly,
some techniques have been developed recently, such as dissipative particle dynamics [362], stochastic
rotation dynamics [363,364] and the lattice Boltzmann method [365,366]. These methods not only
provide an efficient and suitable coupling of the bead dynamics, but also the non-uniformities and
fluctuations in the flow fields. Very recently, both the immersed finite element method [367] and the
immersed boundary element method [368] have been extended to account for hydrodynamic interaction
and thermal fluctuation in molecular or mesoscale simulations. However, most of the simulations for
polymer flow in dilute or semi-dilute solutions incorporate simple mechanical models of polymers,
i.e., dumbbell, FENE, bead-spring chain and bead-rod chain. Although these models can capture some
important aspects of polymer dynamics and provide understanding of the key mechanisms, the obtained
results still cannot be applied to specific polymers, as discussed when reviewing generic coarse-graining
methods (Section 3). We further note that most of the concurrent methods reviewed in this paper
are not capable of dealing with liquid solvents. The extension of the systematic coarse-graining and
concurrent methods to study polymer flow in dilute solutions, taking into account full hydrodynamic
interactions, thermal fluctuations and the properties of water and other solvents, is another area with
its own challenges. While the relaxation time of polymer chains in dilute solutions is often small
compared to that in concentrated or dense polymeric systems, and, thus, less obviously demanding
for multiscale methods, the unapproximated calculation of long-ranged hydrodynamic interactions and
detailed properties, such as hydrogen-bond structure of the solvent and its effect on polymer dynamics,
has triggered its own area of research. For reviews see, e.g., [170,369].
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6.3. Polymer Dynamics at Interfaces and in Interphases

The dynamic behavior of polymer chains close to a free surface or interface play a large role in
predicting and designing the shear elasticity and viscosity of polymer nanocomposites (PNCs). For this
reason, many computational and experimental works have been performed in recent years to understand
the polymer dynamics at the interface and in the interphase [127,128,328,329,370–382]. While extensive
works have been done to explore the chain dynamics inside PNCs, widely different and often conflicting
results are reported. On the one hand, both experimental and computational results have suggested
that a mobility gradient exists near the surface of nanoparticles (NPs) on a small, sub-chain-length
scale [370,376,377]. On the other hand, silica NPs have been found to have no influence on the
local segmental dynamics of poly(vinyl acetate) chains adjacent to them, when compared with the
chains in the bulk [383]. Very recently, Richter and his co-workers carried out extensive neutron
spin echo experiments on the dynamics of entangled polymer chains in PNCs [374,375,384]. For
the polymer melts interacting with a confining surface, they found an anchored surface layer with
internal high mobility, which was considered to be glassy in past works [370,376]. In addition, for
poly(ethylene-alt-propylene) (PEP) matrices filled with hydrophobic (non-attractive) silica NPs, they
reported several key findings [374,375]: (i) the Gaussian behavior of polymer chains was still preserved
at a high volume fraction of NPs; (ii) NPs were found to have negligible influence on the basic Rouse
relaxation rate of PEP chains; (iii) the effective lateral confining length of PEP chains increased with
the NP volume fraction; (iv) a crossover from polymer chain entanglements to “NP entanglements” was
observed with a critical NP volume fraction of about 35%; and (v) both the CLF and CR effects were
suppressed by the appearance of NPs. All of these key findings, except (ii) and (v), were later observed
by Li et al. [329] in large-scale isobaric MD simulations with generic NPs.

As discussed in this review, although many simulations have been applied to the polymer dynamics
at interfaces, there is no conclusive answer to the question on how the dynamics of a polymer
chain and its PP are affected by free surfaces or NPs. Most of the related works have utilized the
generic coarse-grained polymer models, i.e., FENE chains. Thus, some of the key mechanisms in
specific polymers may not be reproduced by these simulations. To address this issue, Bayramoglu
and Faller [240] and Müller-Plathe and his co-workers [239,385] adopted a systematic coarse-graining
method, the IBI method, to study confined polystyrene and Polyamide-6,6, respectively. Thus, in
the future, we also expect to see that systematic coarse-graining methods, as discussed in Section 4,
can be extended to study confined polymer dynamics in PNCs, which presents a great opportunity to
understand the real situation of polymer dynamics at an interface or within an interphase. Such important
understanding will enhance our capability to process and design PNCs with targeted mechanical and
physical properties, as discussed extensively in [328,329,377,379–382,386–391].

6.4. Nonlinear Viscoelasticity, Viscoplasticity and Damage

Microstructured elastomeric solids have a broad range of applications, from blast-resistant shielding
to vehicle tires. During deformation, these materials exhibit not only hyperelasticity, but also
viscoelasticity, viscoplasticity and damage. These inelastic properties of elastomeric solids have a
large impact on functionality. For example, when the rubber compounds filled with carbon black are
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under cyclic loading conditions with small strain amplitudes, the storage modulus is found to rapidly
decrease as the strain amplitude increases. Such a behavior is the so-called “Payne effect” [392,393],
which is attributed to the deformation-induced change of the internal microstructure of elastomeric
solids, i.e., the breakage and recovery of weak physical bonds between carbon black clusters. This
effect is also essential for the frequency and amplitude-dependent dynamic mechanical properties and
damping behavior of tire compounds. Several constitutive models [333,394] have been developed to
characterize this important feature, incorporating the concept of occlusion to account for the breakage
of weak physical bonds. However, the underlying assumptions have not been rigorously tested against
the existing experiments or simulations; the models remain purely phenomenological. This situation can
be improved by applying multiscale computational techniques to study microstructural evolution during
deformation. The corresponding insights will help to develop a predictive constitutive model with solid
physical mechanisms for designing microstructured elastomeric solids [32,395].

In the viscoplastic deformation of polymer glasses, strain hardening plays an important role in
stabilizing polymers against strain localization and fracture. The entropic network models [396,397],
based on the rubber elasticity theory, produce good fitting to experimental data. However, the
underlying assumptions in these theoretical models are found to be inconsistent with the molecular
simulations [121–123]. For example, when the segments between entanglements are pulled taut, the
corresponding energy contribution to the stress grows rapidly [122]. Moreover, when the stresses
are plotted against the microscopic strain-induced chain orientation (g(λeff) ≡ λeff

2 − 1/λeff , where
λeff denotes the average stretch ratio of the end-to-end distance of polymer chains), instead of the
macroscopic strain (stretch ratio, λ), both entangled and unentangled chains show the same strain
hardening behavior, which cannot be explained by the entropic network models. Hoy and Robbins [121]
studied the effects of entanglement density, temperature and deformation rate on the strain hardening
behavior of polymer glasses. They found that the dependence of strain hardening on strain and
entanglement density was consistent with these entropic network models, while the temperature
dependence showed the opposite trend. They also studied the change of PP length, Lpp, and tube
diameter, app, of polymer glasses with deformation, which can be fitted using the mean-field tube
model. Similar to the case of viscoelasticity, these studies are still limited to the generic coarse-grained
polymer model. However, they are also expected to be extendable to the systematic coarse-graining
models or the multiple-scale-bridging methods to investigate the viscoplastic deformation mechanisms
of polymer glasses.

When a pre-cracked particle-reinforced elastomer specimen with a 4 × 5 mm2 cross-section was
loaded in tension, Akutagawa et al. [398] found a highly localized strain region near the crack tip in a
roughly circular area with diameter 0.5 mm. They utilized 3D transmission electron microtomography to
extract a digital data set and reconstructed the microstructure of filler networks, as shown in Figure 28a.
When the applied global strain was about 15%, they found a strikingly high strain concentration, about
200%, between the fillers. Thus, strain localization can be thirteen-times greater than the applied overall
strain, which can induce fracture and damage of particle-reinforced elastomers. It seems therefore crucial
to properly capture the post-localization phenomena in the continuum modeling of microstructured
viscoelastic materials in order to predict the initiation and propagation of the fracture path [395]. Very
recently, Tang et al. [32] developed a two-scale multiresolution continuum theory to study strain
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localization in filled elastomers. With damaged elements introduced into the continuum simulation,
they demonstrated that the proposed two-scale theory can qualitatively capture strain localization and
corresponding stress softening phenomena, as illustrated in Figure 28b. When the applied global strain
was 0.2, the maximum local strain was found to be about 0.7, which is more than three-times the applied
strain. This agrees with the three- to 13-fold strain localization observed in the experiments [398,399].
However, the current studies on damage and strain softening phenomena are mostly limited to continuum
modeling [32,333,395,400,401]. Greater predictive power can be achieved if multiscale computational
techniques are applied to study the molecular and mesoscopic mechanisms related to damage and strain
softening phenomena.

Figure 28. Strain amplification in filled elastomers under tension: (a) experimental and
(b) computational results. The green/yellow and red colors in (a) and (b), respectively,
correspond to high strain localization regions. Parts (a) and (b) reproduced with permission
from [32,398], respectively.

(a) (b)

7. Summary and Conclusions

The structure and dynamics of polymeric materials involve multiple length and time scales. It is
unfeasible to use a single computer simulation method to capture all of their relevant aspects. Rather,
it is necessary to adopt a multiscale computational technique to study polymeric materials at spatial
and temporal scales that span several orders of magnitude. In this review, we have divided the
different multiscale modeling methods into three categories: (i) coarse-graining methods for generic
polymers; (ii) systematic coarse-graining methods; and (iii) multiple-scale-bridging methods. In the
coarse-graining methods (i) for generic polymers, the simulations are performed on the length scale
of the Kuhn or entanglement length, without considering detailed chemical structures. These methods
can provide us with an understanding of the key mechanisms of polymeric materials and their interplay
within relatively large time and length scales (Section 3). However, due to the lack of detailed chemical
information, the obtained results do not provide quantitative predictions for the relaxation dynamics of
specific polymers, unless the involved simulation units can be calibrated to match a particular chemistry.
To overcome this issue, systematic coarse-graining methods (ii) were developed from all-atomistic
models. In these methods, a few atoms are lumped into a single super atom. According to the degree
of coarse-graining, the systematic coarse-graining methods can be further divided into the IBI method,
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the blob model and the super coarse-graining method (Section 4). Within the IBI method, one or two
monomers are coarse-grained into one super atom. Therefore, the underlying entanglement network of
polymers can be well captured with a computational speedup of two orders of magnitude, compared
with all-atomistic methods (Section 4.1). In the blob model, about twenty monomers are coarse-grained
into one super atom. To preserve the important aspect of chain uncrossability in the blob model, extra
bond interactions are introduced (Section 4.2). Similar to the coarse-graining methods in Category (i),
the acceleration of this method is about three or four orders of magnitude compared with all-atomistic
simulations. To reach an even higher degree of coarse-graining, the entire polymer chain can be
coarse-grained into a soft colloidal particle with the super coarse-graining method (Section 4.3). The
friction and stochastic interactions play important roles in the dynamics of these colloids. The super
coarse-grained model can provide accurate predictions of some dynamic and rheological properties
of polymer melts with a computational speedup of roughly six orders of magnitude, compared with
all-atomistic methods.

On the basis of these coarse-grained simulations, different computational techniques for different
scales can be coupled together in the multiscale modeling of polymeric materials, with the help of
different bridging laws, as in the multiple-scale-bridging methods (iii). In the dynamical mapping
method (Section 5.1), the trajectories of polymer chains are mapped onto the tube model upon invoking
a primitive path analyzer. This way, the tube survivability can be directly quantified from the MD
simulations. It is further used to calculate the storage and loss moduli, relaxation modulus and shear
viscosity of polymers. The calculated tube survivability was used to test the double reptation and
dual constraint models. The dual constraint model is found to overestimate the degree of polymer
chain relaxation (lower survivability and modulus), while the double reptation model underestimates
it (higher survivability and modulus). The dynamical mapping method can help to verify or reject the
assumptions of different theoretical models and to provide insight into the physical mechanisms that
should be incorporated into future theoretical models. Following the concept of non-equilibrium steady
states, a molecularly-derived constitutive equation was developed to study the macroscopic properties
of polymer melts subject to homogeneous flows (Section 5.2). This constitutive model is informed by
detailed MD simulations, within rigorous non-equilibrium statistical mechanics and thermodynamics
frameworks and captures both the linear and nonlinear rheology of unentangled polymer melts.

Using the macroscopic Cauchy stress calculated from the virial stress in MD simulations, the
macroscopic velocity profile can be updated through a continuum approach without a constitutive model
(Section 5.3). This velocity profile can then be used for the next set of MD simulations. Such a
concurrent modeling method has been applied to study one-dimensional polymer flow in shear. The
obtained velocity profile is in agreement with the full MD simulations. In contrast to the concurrent
method, Li et al. developed a hierarchical multiscale modeling method to study the viscoelastic
properties of polymeric materials (Section 5.4). In this method, the information from the all-atomistic
scale is passed to the macroscopic constitutive model to directly predict viscoelastic properties. The
different scales are coupled by bridging rules. For example, the IBI method is applied to bridge the
scale from all-atomistic to the coarse-grained scale, and primitive path analysis (Z1 code) is then used
to take the information from the coarse-grained scale to the microscale (tube model) (Figure 23). The



Polymers 2013, 5 809

proposed hierarchical multiscale modeling method can be applied to study both the linear and nonlinear
viscoelasticity of polymers.

Perspectives and remaining challenges in the multiscale modeling of polymeric materials are
discussed extensively in Section 6. Is it possible to pass the information from the atomic to macroscopic
scale and back? Can a back-mapping scheme be applied to study polymer melts under strong shear
flow? Can we extend the existing concurrent modeling methods for metals and carbon nanomaterials to
polymeric and composite systems? Why do shear thinning and normal stress differences occur in shear
flow, but strain hardening in elongation? Why and how does shear banding develop in unentangled and
entangled polymers? Can we use the multiscale modeling methods to describe polymer flow in dilute
and concentrated solutions? How does the free surface and interface affect the dynamical behavior of
polymer chains and their underlying PP networks? Is there a glassy polymer layer near the surface of
NPs in PNCs? What are the molecular origins for the viscoelasticity, viscoplasticity and damage in filled
elastomers? How can we use the multiscale modeling techniques to characterize these phenomena?
Can the concept of non-equilibrium steady states also be used to develop constitutive equations for
entangled polymer melts? Can the super coarse-grained methods be extended to describe phenomena,
such as flow birefringence? These questions are just a few among a vast number of topics for the future
research of polymeric materials that have not, or have only to some extent, been addressed, so far. With
continuous progress in simulation and experimental techniques, answering these questions will lead to
a comprehensive understanding and description of the mechanical and physical properties of polymeric
materials across different spatial and temporal scales. It will also guide us to design new polymeric
materials with desired or yet unexplored properties in the future.
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16. Kröger, M. Simple models for complex nonequilibrium fluids. Phys. Rep. 2004, 390, 453–551.
17. Larson, R.G.; Zhou, Q.; Shanbhag, S.; Park, S.J. Advances in modeling of polymer melt rheology.

AIChE J. 2007, 53, 542–548.
18. Likhtman, A.E. Viscoelasticity and Molecular Rheology. In Comprehensive Polymer Science;

Elsevier: Amsterdam, The Netherlands, 2011.
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58. Peleg, O.; Tagliazucchi, M.; Kröger, M.; Rabin, Y.; Szleifer, I. Morphology control of hairy
nanopores. ACS Nano 2011, 5, 4737–4747.
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Vlassopoulos, D. Crossover from the Rouse to the entangled polymer melt regime: Signals from
long, detailed atomistic molecular dynamics simulations, supported by rheological experiments.
Macromolecules 2003, 36, 1376–1387.

77. Carmesin, I.; Kremer, K. The bond fluctuation method: A new effective algorithm for the
dynamics of polymers in all spatial dimensions. Macromolecules 1988, 21, 2819–2823.



Polymers 2013, 5 814

78. Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat
bath. Phys. Rev. A 1986, 33, 3628–3631.

79. Kremer, K.; Grest, G.S. Dynamics of entangled linear polymer melts: A molecular-dynamics
simulation. J. Chem. Phys. 1990, 92, 5057–5086.

80. Hua, C.C.; Schieber, J.D. Segment connectivity, chain-length breathing, segmental stretch, and
constraint release in reptation models. I. Theory and single-step strain predictions. J. Chem. Phys.
1998, 109, 10018–10027.

81. Hua, C.C.; Schieber, J.D.; Venerus, D.C. Segment connectivity, chain-length breathing, segmental
stretch, and constraint release in reptation models. II. Double-step strain predictions. J. Chem.
Phys. 1998, 109, 10028–10032.
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301. Ilg, P.; Mavrantzas, V.G.; Öttinger, H.C. Multiscale Modeling and Coarse Graining of Polymer
Dynamics: Simulations Guided by Statistical Beyond-equilibrium Thermodynamics. In Modeling
and Simulations in Polymers; Wiley-VCH: Weinheim, Germany, 2010.
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