
Polymers 2013, 5, 328-343; doi:10.3390/polym5020328
OPEN ACCESS

polymers
ISSN 2073-4360

www.mdpi.com/journal/polymers
Article

Energetic and Entropic Contributions to the Landau–de Gennes
Potential for Gay–Berne Models of Liquid Crystals
Bhaskar Gupta 1 and Patrick Ilg 2,*

1 Mechanical Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302,
India; E-Mail: bhaskargupta.iit@gmail.com

2 Department of Materials, Polymer Physics, ETH Zürich, HCI H541, Zürich CH-8093, Switzerland
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Abstract: The Landau–de Gennes theory provides a successful macroscopic description
of nematics. Cornerstone of this theory is a phenomenological expression for the effective
free energy as a function of the orientational order parameter. Here, we show how such
a macroscopic Landau–de Gennes free energy can systematically be constructed for a
microscopic model of liquid crystals formed by interacting mesogens. For the specific
example of the Gay–Berne model, we obtain an enhanced free energy that reduces to
the familiar Landau–de Gennes expression in the limit of weak ordering. By carefully
separating energetic and entropic contributions to the free energy, our approach reconciles
the two traditional views on the isotropic–nematic transition of Maier–Saupe and Onsager,
attributing the driving mechanism to attractive interactions and entropic effects, respectively.
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1. Introduction

There are two classical views on the isotropic-to-nematic (IN) transition in liquid crystals. One is
based on the Maier–Saupe theory [1,2], where attractive interactions between the mesogens are supposed
to be responsible for the alignment of the molecules. These attractive interactions are energetic in nature
and therefore lead to the IN transition at sufficiently low temperatures, where they dominate over entropic
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effects. Liquid crystals where the transition is temperature-driven are called thermotropic. An alternative
approach to the IN transition goes back to Onsager [3], where excluded volume interactions are identified
as the driving force for orientational ordering. This athermal and purely entropic effect dominates for
sufficiently elongated particles if the concentration is high enough. Since the IN transition is driven by
density instead of temperature, those liquid crystals are termed lyotropic.

The Onsager approach is usually considered to be better founded since it has a well-defined limit of
high-aspect ratio particles in the dilute regime. The corresponding density functional theories have been
applied with good success to lyotropic liquid crystals [4,5]. The Maier–Saupe approach on the other
hand lacks such a clear microsopic foundation. Nevertheless, due to its appealing simplicity it is used
quite often in practice, especially for studying dynamical properties [6].

The Maier–Saupe and Onsager views emphasize different physical mechanisms, which typically are
both present at the same time in real liquid crystals. Since both views are not mutually exclusive, there
have been attempts to combine them [7]. In fact, the most macroscopic description of liquid crystal is
provided by the Landau–de Gennes free energy as a function of the orientational order parameter [8]. As
a macroscopic quantity, the Landau–de Gennes free energy is usually introduced phenomenologically as
a low-order polynomial of the order parameter, in close analogy to the Ginzburg–Landau theory of phase
transitions. Despite considerable advances in molecular simulations [9] and theoretical efforts [10,11],
the long-standing question of how to derive the Landau–de Gennes free energy from a microscopic
model has not been fully resolved yet. Since many length- and time-scales are present in typical
liquid-crystalline systems, there is an urgent need for systematic coarse-graining approaches [12].

The Lebwohl–Lasher model [13,14] is one of the simplest models for liquid-crystals on the level of
an interacting many-particle system including orientations. Excluded volume interactions are absent in
this model since the molecule orientations are placed on a regular lattice. The model is constructed
such that the Maier–Saupe theory is recovered in the mean-field limit. With the help of a systematic
coarse-graining scheme, it is possible to obtain an enhanced Landau–de Gennes potential for
the Lebwohl–Lasher model in non-polynomial form with physically admissible limits for strong
orientational ordering [15].

Here, we study a more realistic model for liquid-crystals that includes translational as well as
rotational degrees of freedom of the molecules. In particular, the interaction is chosen as the Gay–Berne
potential [16], which is basically an appropriately scaled Lennard–Jones potential that allows two
particles to approach each other closer parallel to the short axis compared with approaches along the
long axis. The Gay–Berne potential is considered to be of a generic form and is therefore very widely
used [17] for the simulation of liquid crystals in their isotropic, nematic and smectic phase. The
phase diagram of the Gay–Berne model has been studied via computer simulations [18,19] and also
by perturbation theory [20]. A suitable free energy functional has been proposed in the literature that
allows to study the isotropic–nematic phase transition of the Gay–Berne model [5,21]. Nevertheless,
the corresponding Landau–de Gennes potential still remains unknown. Here, we derive the Landau–de
Gennes free energy for the Gay–Berne model following the general approach proposed in [15]. We use
Monte-Carlo simulations in a generalized canonical ensemble and thermodynamic integration to work
out separately the energetic and entropic contributions to the effective free energy.
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2. From Micro to Macro

The point of departure is a microscopic system of N interacting particles, which is described by
classical mechanics. We here consider a model of liquid crystals, where the individual molecules are
described as rigid, anisotropic particles. The most prominent example for such systems is the Gay–Berne
model [16] that we choose also here, but other models like [22] can be studied in the same manner. We
want to emphasize that the approach followed here can also be applied to atomistic models of liquid
crystalline molecules, for which the instantaneous orientation of the molecule or its rigid subunit is
well-defined.

Let Γ = {r1,u1, . . . , rN ,uN} denote the microstate of the system specified in terms of particle
positions ri and orientations ui. We restrict ourselves to particles that are rotationally symmetric.
Therefore, the three-dimensional unit vectors ui are sufficient to describe the orientation of the particles.
In general, one needs to deal with the corresponding three Euler angles. The specific form of the
Hamiltonian H(Γ) completes the definition of the microscopic model system.

On a macroscopic level, we are interested only in the average orientation rather than those of all
individual molecules. Therefore we specify the macrostate of the system by (ρ, T,Q), where ρ is the
density, T the temperature, and Q the orientational order parameter. Due to head-tail symmetry of the
molecules, Q cannot be a chosen as a vector quantity but as symmetric, traceless second-rank tensor [8].
For a given microscopic configuration Γ, the instantaneous value Π of the orientational order parameter
tensor is given by

Π(Γ) =
1

N

N∑
j=1

(ujuj −
1

3
1), Q = ⟨Π⟩ (1)

where the brackets denote the thermal average with the probability density ρ(Γ). The scalar Maier–Saupe
orientational order parameter is defined as S2 = (3/2)nn :Q, where n is the eigenvector corresponding
to the largest eigenvalue of Q.

Systematic coarse graining from the microscopic to the macroscopic level of description is at the
core of statistical thermodynamics. Significant progress in this field has been achieved in recent
years (see e.g., [23,24]). We here follow the approach suggested in [15,25]. In agreement with the
classical ideas of de Gennes, we make the crucial assumption that the order parameter is the only
additional slow variable needed to describe the system on a macroscopic level [8]. With such a
clear separation of scales, the relevant ensemble is given by the generalized canonical distribution
ρΛ(Γ) ∼ exp [−βH(Γ)−Λ : Π(Γ)], see Appendix A. The generalized canonical ensemble can be
motivated by the maximum entropy principle (also termed “quasi-equilibrium approximation”), which
has been used successfully for different kinetic models [26] including liquid crystals [27,28]. For
Hamiltonian models of liquid crystals in particular, this ensemble has been employed in [15] in order
to derive a generalized Landau–de Gennes potential for the Lebwohl–Lasher model. The Lagrange
multiplier Λ ensures the prescribed average value Q = ⟨Π⟩Λ, where the average is taken with ρΛ. The
normalization of the generalized canonical distribution is given by

βG(Λ) = − ln

∫
dΓ exp [−βH(Γ)−Λ :Π(Γ)] (2)
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The potential G depends also on density and temperature. For ease of notation, however, we suppress
the arguments ρ and T here and in the following. G can be interpreted as the generating function since
the mean potential energy and orientational order parameter are given by

E(Λ) = ⟨H⟩Λ =
∂(βG)

∂β

Q(Λ) = ⟨Π⟩Λ =
∂(βG)

∂Λ
(3)

The generalized free energy F is obtained as the Legendre transform of G with respect to Λ,

F(Q) = G(Λ(Q))− kBTΛ(Q) : Q (4)

The standard thermodynamic free energy is obtained as F0 = F(Q0) = G(0), where Q0 = Q(0) is the
equilibrium value of the order parameter for vanishing Λ. The generalized free energy F also serves
as a thermodynamic potential, where the usual thermodynamic relationship E = ∂(βF)/∂β holds. In
addition, the Lagrange multiplier obeys a similar relation as the dual variable to the orientational order
parameter, Λ = −∂(βF)/∂Q, see Equation (21).

The generalized free energy can always be split as F = F id + F int, where the contribution
of the ideal orientational entropy F id = −TSid in the absence of inter-particle interactions
(H = 0) has been worked out recently [29]. There, a rather accurate interpolation formula was found,
Sid/kB = ln(

√
Q) + 2

3
(
√
Q− 1), with Q = 1+ 9(I3 − I2), with I2 = (1/2)tr(Q2) and I3 = tr(Q3) the

second and third tensorial invariants of Q, respectively. Determining the remaining contributions of the
interaction energy and excess entropy, F int = ∆E − TSexc, is the main objective of this manuscript. In
the following, we determine these contributions numerically from the free energy F . We calculate the
latter via thermodynamic integration, which in the present case—thanks to the duality relation between
Q and Λ—is simply given by

F(Q) = F0 − kBT

∫ Q

Q0

Λ(Q′) : dQ′ (5)

In the following, we will perform the thermodynamic integration in the isotropic state where Q0 = 0.

3. Gay–Berne Model

In order to test the above ideas, we apply the approach to a specific model system of liquid crystals. It
was shown in [15] that the approach outlined in Section 2 when applied to a simple lattice model of liquid
crystals indeed leads to an enhanced Landau–de Gennes potential, which describes the numerical data
rather accurately. Here, we apply this approach to a more realistic, off-lattice model system of ellipsoidal
particles interacting via the Gay–Berne potential [16]. Except for kinetic energies, the Hamiltonian of
the system is given by

H =
1

2

∑
i,j

Uij(rij,ui,uj) (6)

where the pair potential depends not only on the distance vector rij but also on the relative orientation of
the two particles,

U12(r,u1,u2) = 4ε(r̂,u1,u2)[

(
σ0

d(r,u1,u2)

)12

−
(

σ0
d(r,u1,u2

)6

] (7)
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with d(r,u1,u2) = r − σ(r,u1,u2) + σ0, where r is the distance between the centers of molecules 1
and 2. The orientation-dependent size parameter

σ(r,u1,u2) = σ0{1−
χ̃

2
[
(r̂ · u1 + r̂ · u2)

2

1 + χ̃u1 · u2

+
(r̂ · u1 − r̂ · u2)

2

1− χ̃u1 · u2

]}−1/2 (8)

depends on the shape of the particles via the parameter χ̃ = (κ2 − 1)/(κ2 + 1), where κ = σe/σs is the
length-to-breadth ratio of the particles. The energy term is usually written as

ε(r̂,u1,u2) = ε0ε
µ
1(r̂,u1,u2)ε

ν
2(u1,u2) (9)

where

ε2(u1,u2) = [1− χ̃2(ui · uj)
2]−1/2 (10)

ε1(r̂,u1,u2) = 1− χ̃′

2
[
(r̂ · u1 + r̂ · u2)

2

1 + χ̃′u1 · u2

+
(r̂ · u1 − r̂ · u2)

2

1− χ̃′u1 · u2

] (11)

The parameter χ̃′ = (κ′1/µ−1)/(κ′1/µ+1) determines the anisotropy of the attractive forces, κ′ = ϵs/ϵe is
the ratio of the energies for side-by-side over end-to-end configuration. The parameters σ0 and ϵ0 are the
length and energy scale of the underlying Lennard–Jones potential for spherical particles, κ = κ′ = 1.

We have chosen two sets of parameter values for which the Gay–Berne model has already been
studied in the literature: κ = 3, κ′ = 5, µ = 1, ν = 3 in [30] and κ = 3, κ′ = 5, µ = 2, ν = 1 in [18,31].
In [30], the temperature-dependence of the model was investigated. There, the IN transition was found
to occur at a reduced temperature T ∗ = kBT/ϵ0 of T ∗ ≈ 3.6 when the reduced density is fixed to
ρ∗ = ρσ3

0 = 0.30, see Figure 1. The concentration instead of the temperature was varied in [31]. There,
the IN transition was located around ρ∗ ≈ 0.32 for a fixed temperature of T ∗ = 1.25. The isotropic
and nematic densities at coexistence for several temperatures were determined in [18]. Since the density
changes at the isotropic–nematic transition are usually quite small, it is admissible to consider a fixed
density. At even lower temperatures or higher densities, the Gay–Berne model shows a smectic phase,
which, however, is beyond the scope of the present study. For clarity of presentation, in the following
we focus on the results for the model parameters of [30].

We have performed Metropolis Monte-Carlo simulations of the Gay–Berne model (7) in the
generalized canonical ensemble for systems containing N = 1000 ellipsoidal particles. We have verified
the simulation code by comparing various thermodynamic and structural quantities for the equilibrium
case (Λ = 0) to literature data [30,31] (see also Figure 1).

For several sets of chosen Lagrange multipliers Λ, we evaluate the order parameter tensor Q(Λ) and
other thermodynamic quantities of interest. The Lagrange multipliers act as orienting fields that induce
a non-zero mean orientation even in the isotropic phase (3). In Figure 2, we show the orientational
order parameter Q11 for uniaxial Lagrange multipliers Λ = λ(nn − (1/3)1) with n a unit vector. The
orientational order increases with increasing Λ11 = (2/3)λ until it saturates for λ & 10. For weak fields
and in the isotropic regime, a linear response relation holds, Q = χΛ with the susceptibility χ. In the
high-temperature, low-density limit, χ approaches the value for non-interacting rotors χ0 = −2/15.
For the present choice of parameters with a relatively high density, we do not observe this limit within
the temperature range studied. Upon lowering the temperature or increasing the density, |χ| increases
strongly near the isotropic–nematic transition.
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Figure 1. Main frame: The Maier–Saupe orientational order parameter S2 as a function
of reduced temperature T ∗ for the Gay–Berne model [30] from Monte-Carlo simulations
of a system of N = 1000 particles. The isotropic–nematic transition is clearly visible.
The inset shows the mean potential energy per particle, E/N , also as a function of
reduced temperature.
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Figure 2. (Color online) The main frame shows the order parameter Q11 as a function
of Λ11 for uniaxial forms of the Lagrange multiplier. The model parameters of [30] have
been chosen with different temperatures in the isotropic regime. The inset shows the initial
susceptibility χ as a function of reduced temperature, corresponding to the linear relation
shown as broken lines in the main frame.
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We use not only uniaxial but also the general biaxial form for the Lagrange multipliers. In particular,
we use the parametrization Λ = (λ + λ′/2)(nn − (1/3)1) + λ′(mm − (1/3)1), where n and m are
two orthogonal unit vectors. We varied the strength of the biaxiality parameter λ′ with respect to the
unixial one λ within the range λ′/λ = 0 . . . 0.7. Of special interest to us is the mean internal energy
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E = ⟨H⟩Λ. In Figure 3, we plot the mean internal energy per molecule E/NkBT as a function of the
second invariant I2 = (1/2)tr(Q2) for several choices of the Lagrange multipliers. The first result of this
paper is the interesting finding that the mean internal energy can be described as a function of I2 only,
without explicit dependence on the third invariant I3 even in the case of biaxial Lagrange multipliers.
More quantitatively, we find that the mean internal energy is rather well described by the functional form

E(ρ, T ;Q) = E0(ρ, T )− u1(ρ, T )NkBTI2 − u2(ρ, T )NkBTI
2
2 (12)

The mean internal energy in the isotropic state E0 is decreasing with decreasing temperature, showing a
sudden drop at the isotropic–nematic transition (see inset in Figure 1). The second term in Equation (12)
is the classical Maier–Saupe expression [1,2] for the mean interaction energy. The last term is a
correction for stronger orientational ordering. A similar correction term has been proposed already
in [32] in order to improve the comparison of the Maier–Saupe theory with experimental data. In
agreement with the original ideas of Maier and Saupe, we observe that u1 is positive and therefore
favors parallel alignment of the molecules. For the model parameters suggested in [30], at a constant
density ρ∗ = 0.3, the corresponding coefficients are given in Table 1. Since deviation of E(I2) from
a linear form occurs only at rather strong orientational ordering, it is indeed justified to consider the
quadratic term in Equation (12) as a correction, even though the magnitude of u1 and u2 are comparable,
see Table 1. Moreover, we observe that u1 and u2 depend on the chosen model parameters, with u1
increasing with decreasing temperature.

Figure 3. (Color online) Reduced mean internal energy per particle for the Gay–Berne
model of [30] as a function of the second tensorial invariant of Q. From top to bottom,
temperature decreases as T = 5.0, 4.8, 4.6, 4.4, 4.2. Symbols represent the numerical values
from Monte-Carlo simulations in the generalized canonical ensemble, while lines represent
the fit to Equation (12).
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Table 1. Coefficients appearing in the Landau–de Gennes free energy Equation (14) and
the mean internal energy Equation (12) for the model parameters used in [30]. Numbers in
brackets denote the uncertainty in the last digit.

ρ∗ T ∗ s1 u1 u2 E0/Nϵ0

0.3 5.0 1.20(1) 3.18(6) 2.0(3) -0.167(2)
0.3 4.8 1.25(2) 3.24(8) 2.2(3) -0.220(3)
0.3 4.6 1.21(1) 3.43(8) 2.0(3) -0.275(2)
0.3 4.4 1.32(1) 3.44(8) 2.5(3) -0.342(2)
0.3 4.2 1.26(1) 3.72(9) 1.7(4) -0.420(3)
0.3 4.0 1.34(5) 3.73(8) 2.3(3) -0.505(2)

4. Landau–de Gennes Free Energy for Gay–Berne Model

Next, we evaluate the change in the generalized free energy from its isotropic value,
∆F = F − F0, by thermodynamic integration via Equation (5). The result is shown in Figure 4 for
various temperatures. For the temperatures considered in Figure 4, the equilibrium corresponding to
the minimum of ∆F is obtained for I2 = 0, i.e., the isotropic state, in agreement with previous results
(Figure 1). As expected, the minimum becomes shallower upon lowering the temperature towards the
isotropic–nematic transition.

Figure 4. (Color online) Generalized free energy change per particle, ∆F/NkBT , for the
Gay–Berne model of [30] as a function of the second tensorial invariant of Q. From top
to bottom, temperature decreases as T = 5.0, 4.8, 4.6, 4.4, 4.2, 4.0, 3.8. The dashed vertical
line represents the upper bound for the second invariant I2 ≤ 1/3.
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Taking advantage of the known form of the ideal orienational free energy for non-interacting
particles F id from [29], we subtract this term from ∆F and are left with the interaction contribution
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F int = ∆F − F id. Using Equation (12) for the mean interaction energy, we can then determine the
excess entropy Sexc from F int = ∆E − TSexc, ∆E = E − E0, which is the only remaining unknown
in the generalized free energy. Figure 5 shows the dimensionless excess entropy per particle, Sexc/NkB,
as a function of the second tensorial invariant I2. It is interesting and surprising to note that, to a first
approximation, Sexc can be well described by a simple function of I2,

Sexc(ρ, T ;Q) = s1(ρ, T )NkBφ(I2) (13)

The slight deviations from a linear function can be rationalized by a mean-field approximation to
Onsager’s excluded volume functional, φ(x) = 1 −

√
1− 3x (see Appendix B and [33,34] for a

derivation of φ). The values of the coefficient s1 obtained from a linear regression of the simulation
data are shown in Table 1. As apparent from Figure 5, s1 is only weakly increasing with decreasing
temperature for the model parameters of [30]. Figure 5 demonstrates the entropic favoring of parallel
alignment due to steric hindrance, i.e., even though orientational entropy is lost due to the alignment,
translational entropy is increased since the available volume is larger for oriented particles [8]. We note
that the simple form Equation (13) breaks down for very strong ordering. Since this regime is dominated
by the divergence of the ideal orientational entropy Sid, we expect deviations from Equation (13) to have
a minor effect only.

Figure 5. (Color online) Dimensionless excess orientational entropy per particle, Sexc/NkB,
for the Gay–Berne model of [30] as a function of the second tensorial invariant of Q. The
same color coding as in Figure 4 is used.
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Putting the results from the simulations of the Gay–Berne model together, we arrive at the Landau–de
Gennes potential,

F(ρ, T,Q) = F0(ρ, T ) + F id(T,Q) + F int(ρ, T,Q)

F id(T,Q) = −TSid(Q) = −NkBT [ln(
√
Q) +

2

3
(
√
Q− 1)]

F int(ρ, T,Q) = −NkBT [u1(ρ, T )I2 + u2(ρ, T )I
2
2 + s1(ρ, T )φ(I2)] (14)
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where Q was defined above. Equation (14) is the main result of the present study, which provides the
most economical macroscopic description of the Gay–Berne model system.

5. Isotropic–Nematic Transition from Landau–de Gennes Free Energy

The standard Landau–de Gennes form of the effective free energy is obtained by expanding F from
Equations (14) for weak orientational ordering,

F/NkBT ≈ F0/NkBT +
1

2
(
15

2
− c1)tr(Q

2)− 75

14
tr(Q3) +

1

4
(
3825

196
− c2)[tr(Q

2)]2 +O(Q5) (15)

where c1 = u1+(3/2)s1 and c2 = u2+(9/2)s1. From Equation (15) we recognize the familiar scenario
of a first order phase transition within Landau theory [8]. Different from the standard expression, the
coefficient of the fourth order term is slightly density- and temperature-dependent, due to the deviation
of the mean internal energy from the Maier–Saupe expression for strong orientational ordering and
nonlinear entropic effects. In order to describe stable biaxial phases, a sixth order expansion of the free
energy was found to be necessary [35], which clearly is contained within our approach. Figure 6 shows
the full Landau–de Gennes free energy F , Equation (14), as a function of the Maier–Saupe orientational
order parameter S2 for the model parameters of [30]. While the overall behavior is characteristic for a
first order transition, clear deviations from a polynomial behavior are seen due to the singular behavior
of F near the full oriented states at S2 = −1/2 and S2 = 1. Within the isotropic regime, the analytical
formula agrees nicely with the simulation results from thermodynamic integration. Extrapolating the
model parameters given in Table 1 to lower temperatures, we include in Figure 6 also the graphs for F
at the isotropic–nematic transition, which we estimate as TIN ≈ 3.52, and at an even lower temperature
in the nematic phase. For the value of S2 at the transition we find S2(TIN) ≈ 0.59, in good agreement
with previous results (see Figure 1).

Figure 6. (Color online) The dimensionless Landau–de Gennes free energy per particle,
F/NkBT from Equation (14), as a function of the Maier–Saupe orientational order
parameter S2, for the Gay–Berne model of [30]. Temperature decreases from top to bottom
as T ∗ = 5.0, 4.0, 3.52, 3.3. Symbols denote the result of Monte-Carlo simulation in the
generalized canonical ensemble in the isotropic state.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

S
2

0

0.5

1

1.5

∆
F

 /
 N

k
T



Polymers 2013, 5 338

In the present model, the isotropic–nematic transition occurs when the combined energetic and
excess-entropic gain for orientational ordering overwhelms the loss of ideal orientational entropy.
Therefore, Onsager’s excluded volume interaction and Maier–Saupe’s attraction both play a role on the
macroscopic level of this model, their mutual importance depending on the chosen state point. Since we
find that the dominant energetic contribution u1 grows with decreasing temperature in a similar manner as
the entropic contribution, we conclude that even in the case where the IN transition is temperature-driven,
entropic effects can play an important role.

For the case of hard ellipsoids, it was found by extensive simulations that a minimum axis ratio
is needed in order to allow for IN transition [36]. This finding is consistent with the present
approach since there is no energetic contribution to the free energy for hard particles, so that entropic
effects have to compensate for that. The density- and temperature-dependence of the coefficient
a(ρ, T ) = 15/2 − c1(ρ, T ) of the quadratic term in Equation (15) is crucial for the isotropic–nematic
phase transition. The condition a = 0 defines the pseudocritical point where the isotropic state becomes
unstable. From Λ = −∂(βF)/∂Q, Equation (21), we find the simple relation χ = 1/a in the isotropic
regime, with the susceptibility χ of orientational ordering in response to a weak applied field Λ, Q = χΛ.
Therefore, the susceptibility χ diverges not at the IN transition but at a lower temperature, where
the isotropic state loses its stability (see inset to Figure 2). Note that the susceptibility is in general
anisotropic in the nematic regime and therefore has to be represented by a tensorial quantity.

6. Conclusions

We have demonstrated a systematic method in order to derive the macroscopic Landau–de Gennes
free energy of nematics from an underlying microscopic model. The method relies on the generalized
canonical distribution and corresponding thermodynamic integration. From Monte-Carlo simulations
in the generalized canonical ensemble, we find explicit expressions for the energetic and entropic
contributions to the effective free energy. The method extends earlier work along the same lines on the
Lebwohl–Lasher model [15] to off-lattice models including excess entropy due to translational degrees
of freedom. For the special case of ellipsoidal particles interacting via the Gay–Berne potential with the
parameters of [30], we find that the excess entropy is an additional driving force to energetic attraction
for the isotropic–nematic transition, where the latter dominates for this temperature-driven case.

Besides addressing such questions, the method presented here can be useful in large-scale studies of
defect structures in liquid crystals or hybrid systems, such as colloidal particles dispersed in a liquid
crystal [37]. The multi-scale nature of these systems prevents a detailed simulation of liquid-crystalline
mesogens such that a coarse-grained modeling has to be employed. While so far the standard Landau–de
Gennes free energy was used in these studies with little or no connection to the underlying microscopic
model, our approach allows to use a more realistic macroscopic free energy that is determined by the
properties of the microscopic model. Since also surface tension effects in liquid crystals are ruled
by the effective free energy [38], a consistent treatment involving interfaces could benefit from the
present study. For studying phase ordering kinetics, it was found experimentally that thermal diffusivity
changes the scaling laws for domain growth in liquid crystals [39]. Working within a non-equilibrium
thermodynamics framework, our approach should also be useful in addressing this issue. Finally, the
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Landau–de Gennes free energy is routinely used in phenomenological models for nematodynamics [8].
There, especially in strong flow conditions, a quartic form of the free energy is clearly insufficient to keep
the order parameter within the physically admissible range [34] and an enhanced Landau–de Gennes
potential is very desirable.

A. Generalized Canonical Ensemble

In order to make the paper self-contained, we here review briefly basic notions and relations for the
generalized canonical ensemble (also known as “quasi-equilibrium approximation”) that we use in the
present work. More details can be found in [26–28] as well as in textbooks on statistical thermodynamics.

Let Γ denote a point in the phase space of the system (here given in terms of the positions and
orientations of all N particles) and ρ(Γ) the microscopic phase space density. The Gibbs entropy
associated with the state ρ is given by the functional

S[ρ] = −kB
∫
dΓ ρ(Γ) ln ρ(Γ) (16)

Macroscopic quantities of interest are calculated as phase space averages for given density ρ,

mk[ρ] =

∫
dΓ m̂k(Γ)ρ(Γ) (17)

The normalization of the distribution function is described by m0 = N, m̂0 = 1. The mean internal
energy m1 = E is given by the mean value of the Hamiltonian, m̂1 = H . In the present case, further
macroscopic quantities of interest are the components of the alignment tensor Equation (1), m2...7 = Q,
m̂2...7 = Π.

In analogy to the derivation of the canonical distribution function in equilibrium statistical
mechanics, we employ the maximum entropy principle for the extended set of macroscopic variables
mk, k = 0, . . . , 7,

S[ρ] → max, mk[ρ] = const. (18)

Technically, the extremum under given constraints can be obtained by introducing Lagrange multipliers
λk and extremizing the extended functional,

δ

δρ(Γ)

(
S[ρ]−

∑
k

λk(mk[ρ]−mk)

)∣∣∣∣∣
ρ∗

= 0 (19)

Performing the derivative, we derive the generalized canonical distribution

ρ∗(Γ) = exp [− 1

kB

∑
k

λkm̂k(Γ)] (20)

where the Lagrange multipliers have to be chosen to ensure the chosen constraints,
∫
dΓ m̂k(Γ)ρ

∗(Γ) =

mk. With the change of notation, β = λ1/kB, Λk = λk/kB for k = 2, . . . , 7, we recover the form
of the distribution function ρΛ = exp [−βH −Λ :Π− Λ0] given in the main text above. Putting
Λ = 0, i.e., not prescribing the value of the alignment tensor, we recover the usual canonical
distribution function.



Polymers 2013, 5 340

The Lagrange multipliers are determined from the constraints N = ⟨1⟩Λ, E = ⟨H⟩Λ and Q = ⟨Π⟩Λ,
where the averages are performed with ρΛ. From the normalization of ρΛ, we define the generating
function βG = Λ0 + lnN , Equation (2). Derivatives of βG with respect to β and Λ directly give
the values of E and Q, respectively, see Equation (3). Therefore, the Lagrange multipliers are the
natural variables of βG, d(βG) = Edβ + Q : dΛ. In order to arrive at an effective free energy in
terms of the variables Q, we perform the Legendre transformation defined in Equation (4). Then,
d(βF) = d(βG)− d(Q :Λ) = Edβ −Λ : dQ, and we can read off the relations

E =
∂(βF)

∂β
, −Λ =

∂(βF)

∂Q
(21)

Defining the entropy S via the usual relation F = E − TS, we find that S(Λ) = −(∂F/∂T )Λ. Finally,
integrating the relation d(βF)|β=const. = −Λ : dQ at constant temperature, we arrive at the rule for the
thermodynamic integration given by Equation (5) .

B. Virial Route

Consider the high-temperature regime. For sufficiently dilute conditions, the inter-particle
interactions U12 can be taken into account to first order in density by

e−βF = e−βF id

[1 +
N2

2V

∫
d2u1d

2u2 b2(u1,u2)ψ(u1)ψ(u2)] (22)

where F0 is the free energy of the ideal reference state and ψ(u) the one-particle orientational distribution
function. The quantity b2 is a kind of second virial coefficient, b2(u1,u2) =

∫
d3r12[e

−βU12 − 1] with
the symmetry properties b2(u1,u2) = b2((u1 · u2)

2). For hard cylinders, Onsager found the exact result
for the excluded volume b2 = ν

√
1− (u1 · u2)2, where ν = 2bL2, with b and L the diameter and

length of the cylinders, respectively [8]. This result is the starting point for density functional theories
of nematics [5], where the minimum of the free energy functional F [ψ] determines the equilibrium
state. Expanding b2 to leading order, b2 ≈ a0 + a1(u1 · u2)

2, results in an effective free energy
F − F id ∼ a1I2 that is proportional to the second tensorial invariant I2 = (1/2)tr(Q2) as in the
Maier–Saupe theory. In general, however, the nonlinearity of b2 prevents a direct identification of a
Landau–de Gennes free energy in terms of the orientational order parameter Q. Alternatively, one might
use a mean-field argument to the Onsager functional to arrive at an effective free energy of the form
F − F id ∼

√
1− 3I2 [33]. Figure A1 shows the function b2((u1 · u2)

2) for the model parameters
of [30] from numerical integration. Small variations of b2 with temperature are seen. It is apparent
from Figure A1 that b2 is neither described by a quadratic form nor by a simple square-root behavior.
Therefore, we expect corrections to either the Maier–Saupe or Onsager approach for this model system.

We note in passing that the potential G(Λ), Equation (2), can also by treated in virial approximation,
resulting in Equation (22) with the replacements F → G(Λ), F id → Gid(Λ) and ψ(u) → ψΛ(u) with
ψΛ(u) = exp [uu : Λ]/

∫
d2u′ exp [u′u′ : Λ], where we assume Λ to be traceless.
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Figure A1. The quantity b2 defined in the text as a function of the relative orientation of two
particles, u1 · u2, for the Gay–Berne model of [30]. The temperature decreases on the right
from top to bottom as T = 5.0, 4.8, 4.6, 4.4, 4.2, 4.0.
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