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Abstract: In this work, the retarding influence of a gel on the rotational motion of a 

macromolecule is investigated within the framework of the Effective Medium (EM) model. 

This is an extension of an earlier study that considered the effect of a gel on the 

translational motion of a macromolecule [Allison, S. et al. J. Phys. Chem. B 2008, 112, 

5858-5866]. The macromolecule is modeled as an array of non-overlapping spherical 

beads with no restriction placed on their size or configuration. Specific applications include 

the rotational motion of right circular cylinders and wormlike chains modeled as strings of 

identical touching beads. The procedure is then used to examine the electric birefringence 

decay of a 622 base pair DNA fragment in an agarose gel. At low gel concentration  

(M  0.010 gm/mL), good agreement between theory and experiment is achieved if the 

persistence length of DNA is taken to be 65 nm and the gel fiber radius of agarose is taken 

to be 2.5 nm. At higher gel concentrations, the EM model substantially underestimates the 

rotational relaxation time of DNA and this can be attributed to the onset of direct 

interactions that become significant when the effective particle size becomes comparable to 

the mean gel fiber spacing.  
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1. Introduction 

The subject of biomolecular transport in congested media is of vital interest in such diverse subjects 

as drug delivery across membranes and the sieving action of a gel in electrophoresis. In particular, 

diffusion (translational and rotational) has been studied in a wide range of environments including the 

cytoplasm of cells [1], concentrated suspensions [2], gels or hydrogels [3-13], and mucus [14]. The 

diffusion of a host particle through a rigid gel matrix is reduced, relative to diffusion in “free solution”, 

by long range hydrodynamic interaction and short range steric effects. For translational diffusion, these 

two effects can be considered separately [3,15-17]. A simple way of dealing with the contribution of 

long range hydrodynamic interaction makes use of the Effective Medium (EM) model originally 

developed by Brinkman [18], and Debye and Bueche [19]. 

In the EM model, the “fluid” surrounding the particle is treated as a hydrodynamic continuum, and 

includes both solvent and the “gel” support medium. A special screening term is added to the external 

force/volume on the fluid in the low Reynolds number Navier-Stokes equation that accounts for the 

presence of a gel. The resulting equation is what we call the Brinkman equation. Starting from a 

microscopic model, Felderhof and Deutch were able to derive the Brinkman equation as a mean field 

approximation [20]. The EM model has been applied to translational diffusion [3,4,16,21], rotational 

diffusion [20], electrophoresis [15,22], and the electrophoretic stretch of duplex DNA in gels [23,24]. 

The principle objective of the present work is to extend our earlier study of the translational 

diffusion of a macromolecule modeled as an array of non overlapping beads in an EM to the case of 

rotational diffusion. In Section 2.1, the Brinkman equation is introduced and the rotation of a single 

sphere in an EM is discussed. This is then extended to the more complex problem of an array of  

non-overlapping beads. In Section 2.2, we focus first on the parameterization of a linear string of 

touching beads and later extend that to a wormlike chain model. The wormlike chain model is relevant 

to modeling the electric birefringence or dichroism decay of duplex DNA [12] which is also discussed 

in Section 2 and again in Section 4. In Section 3.1, the rotational diffusion of some simple bead arrays 

in the presence and absence of a gel to illustrate the accuracy of the methodology employed as well the 

influence long range hydrodynamic interaction has rotational diffusion. In Section 3.2, this is applied 

to the rotational diffusion of a 622 bp DNA fragment in a gel [12]. Here, we are able to compare EM 

modeling with rotational diffusion in agarose gel measured by electric birefringence. For dilute gels 

(0.01 gm dry gel/mL solvent), we obtain good agreement between modeling and experiment for 

reasonable values of model parameters. For more concentrated gels, model rotational relaxation times 

substantially underestimate experimental relaxation times. This, however, is believed to be due to the 

neglect of steric interactions in modeling that become important at high gel concentration. In Section 4, 

the principle conclusions of the present work are summarized. 



Polymers 2011, 3                            

 
848 

2. Results and Discussion 

2.1. Transport Theory of Bead Arrays in an Effective Medium 

In the Effective Medium, EM, model, the fluid is assumed to obey the Brinkman [18] and solvent 

incompressibility equations defined by 

)1()()()( 22 rvrprv    (1)  

)2(0)(  rv  (2)  

Where  is the solvent viscosity, )(rv  is the local fluid velocity at point r , p is the local pressure, and 

 (units of 1/length) is the gel screening parameter. This parameter can be related to the gel 

concentration, M, (in gm dry gel material per gm of solvent) and gel fiber radius, rf, by the  

relation [16,25] 
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In Equation (3), g denotes the mass density of dry gel (which equals 1.64 gm/mL for agarose [26]), 

and s denotes the ratio of dry gel volume to hydrated gel volume (which equals 0.625 for  

agarose [27]). The term on the right hand side of Equation (1) represents an external force/unit volume 

due to the viscous drag on the fluid produced by the presence of the gel. In general, other external 

forces on the fluid may be present as well. This is particularly true in modeling the transport of 

macroions in external electric fields (electrophoresis) [28]. However, the cases of interest in the 

present work involve rotational relaxation in the absence of an external electric field. Under these 

conditions, the additional external force terms can be ignored for a good approximation. 

For later reference, it will be useful to consider the local fluid velocity and pressure of a spherical 

particle of radius “a” rotating about its center with angular velocity   in an EM that is at rest far from 

the particle. In this case it is straightforward to solve Equations (1) and (2) and obtain p( r ) = constant 

and  
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In Equation (4), “x” denotes the vector cross product. Note that the fluid velocity falls off rapidly 

moving away from the rotating sphere. The local stress tensor, )(r , is related to the velocity and 

pressure by [29,30] 

)5()()()( TvvIrpr  
 

(5)  

Where I is the 3 by 3 identity tensor (( I )jk = jk (jk is the Kronecker delta)), ( v )jk = jvk( r ) , and 

(
Tv )jk = kvj( r ). For a point r = a n ( r ) on the surface of the sphere ( n ( r ) is a local outward (into 

the fluid) normal to the sphere), the local force/area exerted by the sphere of the fluid, f ( r ), is related 

to the local stress by 

  )6()()()()()( rnxarnrrf    (6)  
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If the sphere were rotating as a rigid body about some point different from its center, then f ( r ) would 

be different. Let *r  denote the position of the center of the sphere relative to the center of rotation. 

For a good approximation, we can write 

  )8()()()( rnxa
S

F
rf   (8)  

In Equation (8), F denotes the net instantaneous force exerted by the bead on the fluid and S = 4a
2
 is 

the surface area of the bead. The net force, in turn, equals 6a( x *r ).  

In a recent analysis employing the Boundary Element method, a general expression was derived for 

the local fluid velocity of an array of non overlapping beads translating with uniform velocity through 

an Effective Medium that obeys Equations (1,2) [16]. It is straightforward to extend that analysis to the 

rotation of a bead array. As illustrated in Figure 1, the macromolecule is modeled as an array of  

N non overlapping beads in which their radii, {aj}, and relative positions are arbitrary. Let *r  denote 

the center of rotation of the rigid body bead array,  the angular velocity of the bead array, and Jx and 

aJ the centroid position vector and radius of bead J. The fluid is assumed to be at rest far from the 

array. It shall also be assumed that for a point, r , on the surface of bead J, we can write 

  )9()()()( rnxa
S

F
rf J

J

J   (9)  

Where JF is the net force exerted by bead J on the fluid and SJ is the corresponding surface area. The 

second term on the right hand side of Equation (9) is similar to the “Volume Correction” approach of 

Garcia de la Torre and Rodes [31].  

Figure 1. Array of N Non Overlapping Beads. The bead radii, {aj}, and the position of the 

bead centers is arbitrary. 

.  .  
a1

a2

a4

a3

aN

 

It is worthwhile to briefly discuss the physical basis of Equation (9). Hydrodynamic interaction, HI, 

between two beads arises as a consequence of their relative motion through a viscous fluid. In the 

absence of a gel, the disturbance of the fluid velocity produced by one bead, J, centered at Jr , at the 

site of a second bead, K, centered at Kr  separated by distance |||| KJJKJK rrrr  , falls off as 

1/ JKr if their centers are in relative motion [29,30]. On the other hand, if their centers are not in relative 
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motion, but if one or both beads are rotating about their centers, then the disturbance falls off as 1/
3

JKr , 

which is clear from Equation (4). The presence of a gel modifies these distance dependent interactions, 

but the important point is that long range HI is determined primarily by the relative translational 

motion of the bead centers. The dominant long range HI between the beads is contained implicitly in 

the first term on the right hand side of Equation (9). The second term reflects the fluid stress arising 

from the rotation of bead J itself relative to the fluid. It should be emphasized that Equation (9) is 

approximate and ignores shorter range HI interactions.  

Following our earlier analysis [16] of a translating bead array, the corresponding results for a 

rotating bead array can be written 
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Where J=6aJ  
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In Equations (11,12), in and kn are modified spherical Bessell functions. Specifically,  

i0(z) = sinh(z)/z, i2(z) = sinh(z)/z – 3cosh(z)/z
2
 + 3sinh(z)/z

3
, k0(z) = e

-z
/z, k2(z) = e

-z
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2 
+

 
3/z

3
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Also, kJKjJKjkKJKJ rrrrrr )()()(  .  

The typical procedure followed in a resistance problem [29,30,32-34], as applied to the more 

general problem in an EM, is to compute the elements of 
KJ

C  and 
KJ

H once the geometry of a bead 
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array and conditions of the EM are defined. The bead array is then rotated about three orthogonal axes 

with unit angular velocity, 

)16(
)(

p

p
e  

(16)  

Where pe is a unit vector along axis p (p = 1, 2, or 3) in some convenient frame of reference. Let 
)( p

JF denote the net force exerted by bead J on the fluid when the array is rotated about axis p. Then 

Equation (10) can be written 
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It is helpful to view 
)( p

JF and 
)( p

KA as 3 by 1 column vectors. From these, we can define 3N by 3 super 

matrices, F and A , by 
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The super matrix, A , has a very similar form to Equation (19) above. Also, the 
KJ

H terms defined by 

Equation (12) are known 3 by 3 matrices. We can define a 3N by 3N super matrix,G , by 
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In compact notation, Equation (16) can be written 

)21(AFG   (21)  

The matrix, G , is invertible and let 
1

G denote the inverse. Then 
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1
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 (22)  

A very similar relation was derived previously for a bead array translating with uniform velocity, u . 

Before it is possible to compute various resistance tensors from modeling, it is necessary to 

compute the total force, totF , and total torque, *)(rT tot , exerted by the bead array on the fluid if it is 

translated with velocity ,u , and rotated with angular velocity,  , about some point, *r , in the fluid 

which is at rest far from the array. In the present work, *r  is chosen as the center of mass of the bead 

array. The total force and torque can be written [35] 

)23(*)(  ruF
T
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Where
T

 , *)(r
R

 , and *)(r
C


 

denote translation, rotation, and coupling resistance tensors, 

respectively. Quantities with argument “ *r ” depend on the choice of *r . Also, the “T” superscript on 

the coupling tensor in Equation (23) denotes transpose. totF  and *)(rT tot  can be obtained from 

modeling by the relations 
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For a bead array that is not translating ( 0u ), but is rotating with angular velocity pe about *r , 
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From Equations (23,24), the net force and net torque give the p-th row of *)(r
C

 , and p-th column of 

*)(r
R

 , respectively. The components of 
T

 are obtained by translating the array along three 

orthogonal axes, computing the net forces, and then using Equation (23).  

The connection between the resistance tensors and corresponding mobility or diffusion tensors is 

well known [29,30,35,36]. The origin dependent translational diffusion tensor, *)(rD
T

, and origin 

independent rotational diffusion tensor, 
R

D , are given by 

  )28(*)(*)(*)(*)(
11 

 rrrTkrD
CR

T

CTBT
 (28)  

)29(
1


RBR

TkD  (29)  

  )30(*)(*)(*)(
1

rrr
T

CTCRR



 (30)  

In modeling, the origin independent rotational friction tensor, 
R

 , can be diagonalized and let n
’
  

(n = 1, 2, or 3) denote the n-th eigenvalue. We shall define the eigenvalues such that 1
’
  2

’
  3

’
. 

Also define the reduced dimensionless eigenvalue for an array of N identical beads of radius a, 
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The denominator in Equation (31) represents the rotational friction factor of a sphere of volume equal 

to that of our bead array.  

The modeling results of the present work shall be given in terms of these dimensionless eigenvalues. 

These, in turn, can be related to the eigenvalues of 
R

  and 
R

D  through Equations (29,31). We also 

want to relate these to the longest lifetime, l, of the “off-field” electric birefringence decay of a dilute 

solution of macromolecules. We can write [12,37] 
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2.2. Modeling the Rotation of Linear Macromolecules as Strings of Identical Touching, but  

Non-Overlapping Beads 

A key element in the parameterization of the bead radii of our “coarse grained” models is to find 

arrays of identical beads that are able to reproduce the rotational friction, 
R

 , or diffusion, 
R

D , tensor 

of the actual structure to considerable accuracy. From Section 2.1, this is equivalent to matching the 

reduced eigenvalues, {n}. Furthermore, since experiments such as electric birefringence [12,37] or 

dichroism [38,39] are sensitive to particular eigenvalues (1 for example), then we can focus on 

matching that particular eigenvalue.  

This shall be illustrated for the special case of a right circular cylinder of length L and axial radius, 

R. For the right circular cylinder in an EM with  = 0 [40]  

)33(
)]()[ln(18

),(
2

2

1
ppR

L
RLrod





 (33)  

)34(
2 R

L
p   (34)  

)35(/050.0/917.0662.0)( 2ppp   (35)  

For the corresponding array made up of a linear string of N touching beads of radius a, we shall set 

)36()(2 cNaL   (36)  

In Equation (36), a and c are left as adjustable parameters but it is assumed that a is proportional to 

R. For an array made up of N beads, 1 from Equation (31) is independent of  and a, and is computed 

by the procedure described in Section 2.1. The quantity 1
rod

 from Equation (33) is independent of  

 and only depends on the ratio, L/R, or equivalently L/a. For assumed values of a and c, Equation (36) 

then gives us a direct correspondence between L, N, a, and c. It is straightforward to construct an Excel 

spreadsheet in which a and c are defined as input parameters. 1
rod

 and 1 are compared for a range of 

N values. (In the present work, we are interested in long rods and N is varied from 20 to 100). In the 

fitting procedure, we start by setting c equal to 0 and then vary a until the sum of the square of the 

differences, SR, between 1
rod

 and 1 is minimized. Then, c is incremented by a small amount and the 

procedure is repeated. This process is continued until that combination of a and c is found that 

minimizes SR overall. For a good approximation, this is given by c = 0.20 and a/R = 1.20.  

We can apply this duplex DNA made up of nbp base pairs and L (in nm) = 0.34nbp. Also, R  

is 1.0  0.1 [41] and this parameter shall be set equal to 1.0 nm in the present work. This model is very 

similar to that of Hagerman and Zimm [42] and involves minor corrections in the choice of the a and  

c parameters. Unless the duplex DNA is very short, however, it is better to model the DNA as a 

wormlike chain of persistence length P (contour length equal to L and axial radius equal to R) rather 

than a right circular cylinder. For DNA, P is typically in the 50 nm size range, but this varies with 

ionic strength [43,44]. As an illustrative example, L = 211.5 nm for 622 bp DNA which is more than  

4 persistence lengths long. Also, for a = 1.206 and c = 0.20, Equation (36) requires N be set to 88. For 

DNA fragments of this size, a rigid rod model is inadequate. Fortunately, it is straightforward to 

generalize the “linear string” model of the previous paragraph to a “discrete wormlike chain” model 

that has been widely used in the past [42,45]. Let <cos > =  1JJ ee  where Je denotes the unit 
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vector along the J-th virtual bond of our discrete wormlike chain model and brackets denote an 

ensemble or long time average. If the distance between adjacent beads is 2a, then [42,43,45] 

)37(
cos1

2






a
P  (37)  

Using random number generators, it is straightforward to generate chains that satisfy this condition [42,45]. 

Since overall conformational features, such as end to end distances, vary greatly from one randomly 

generated chain to another (when L is significantly larger than P), it is necessary to average transport 

results over many different chains in order to obtain good statistics.  

At this point, we can ask whether or not it is reasonable to equate average transport properties, such 

as <1>, derived from model studies of ensembles of chains “frozen” in their starting configuration, to 

the actual transport properties of flexible particles. The answer to this question depends, in part, on 

what is actually measured in a particular experiment. Considerable attention to this point has been 

given to the “off field” electric birefringence or dichroism decay of duplex DNA [12,37,38,42]. In 

general, the decay is multi-exponential and consists of end over end tumbling as well as more complex 

“internal” decay processes [46]. However, provided we are interested in the slowest decay process, 

which is also the decay process of greatest amplitude for comparatively short DNA fragments, 

equating 1 in Equation (32) to the average, <1>, obtained from an ensemble of “frozen” chains, is 

expected to be an accurate approximation [46].  

2.3. End-Over-End Rotation of Rods 

Figure 2 illustrates the equivalence between the “end-over-end” reduced rotational friction 

coefficient, 1, of a right circular cylinder and a linear string of touching beads in the absence of a gel 

( = 0). The solid line represents the right circular cylinder of length L and axial radius R and is 

computed from Equation (33) [40]. The filled squares, computed using the procedure described in 

Section 2.1, are for a linear string of N touching beads of radius a with a/R = 1.207. The length, L is 

related to a and N by Equation (36) with c = 0.20.  

Figure 2. 1 for a Right Circular Cylinder and Linear String of Touching Beads versus 

Length. The solid line is for a right circular cylinder of axial radius R and comes from 

Equation (33) [40]. The filled squares are for a linear string of touching beads of radius a 

and a/R = 1.207. The length of the right circular cylinder, L, is related to N and a by 

Equation (36) with c = 0.20. The gel screening parameter, , is set to zero (no gel). 

 



Polymers 2011, 3                            

 
855 

We would next like to consider the effect of the gel on 1. For a sphere of radius a in an EM, it is 

straightforward to show (using Equations (6,7,24,26)), that 

)38(
)1(3

1
22

1

1

a

a
gn 









 (38)  

where 1
ng

 is the reduced friction factor for a rotating sphere in the absence of a gel (which equals 

8a
3
). For a linear string of touching beads (radius = a), we computed 1 for N ranging from 20  

to 100 and a ranging from 0 to 0.604 using the procedure described in Section 2.1. To within an 

accuracy of 2% over the entire range of N and a, the data can be fit with the following simple  

semi-empirical form: 
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)43(001.02 d  (43)  

Above, 1
ng

 represents the reduced eigenvalue of the bead array in the absence of a gel ( = 0), and Re 

is the radius of a sphere that has the same reduced rotational friction coefficient as the bead array in the 

absence of a gel.  

 

3. Experimental Section: Rotational Relaxation of DNA in a Dilute Agarose Gel 

 

Stellwagen [12] has reported longest lifetime, l, “off field” electric birefringence decays  

of 622 base pair DNA in dilute agarose gels with M varying from 0 to 0.015 gm “dry” gel/mL. The 

experiments were carried out at 20 C in 0.2 mM aqueous Tris buffer at a pH of around 8.0. A discrete 

wormlike chain model consisting of 88 touching beads was used to model 622 bp DNA following the 

procedure discussed in Section 2.2. Figure 3 shows a representative discrete wormlike chain comprised 

of 88 beads with P = 65 nm. For structures such as these, reduced rotational eigenvalues, 1
exp

, 

corresponding to reported lifetimes, l, can be determined using Equation (32). The relative uncertainty 

in these experimental numbers is estimated to be approximately 3%. For each simulation,  

300 wormlike chain configurations were generated at random and an average 1 was computed. We 

chose 300 configurations in order to obtain relative model uncertainties in <1> that are accurate to 

about 3%.  
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Figure 3. A 88 Subunit Discrete Wormlike Chain. The persistence length, P, is 65 nm and 

the bead radius, a, is 1.207 nm. Different configurations are generated at random as 

discussed in the text. 

 

There are two model parameters that need to be determined and they are the persistence length of 

the DNA, P, and the average gel fiber radius, rf (see Equation (3)). P can be determined by varying this 

quantity in modeling until 1
exp

 and <1> match (317). In the absence of a gel, 1
exp

 is best fit by 

setting P = 65 nm in modeling. This value is in good agreement with experiment when the 

comparatively low salt conditions of the experiment are factored in [44]. Under physiological salt 

conditions, a value of P of around 50 nm is expected. Figure 4 summarizes our comparison of 1
exp

 

and model 1. Filled squares denote experimental values and the solid, dotted, and dashed lines 

represent rg = 1.52, 2.0, and 2.5 nm, respectively. X-ray diffraction studies of agarose indicate a 

significant population of fibers with rg of about 1.52 nm, but a fraction of significantly thicker  

fibers [47]. This motivated the choice of 1.52 nm. The choice of the higher values comes from fitting 

the electrophoretic mobility of Au nanoparticles in agarose gels [15]. From Figure 4, a gel fiber radius 

of about 2.5 nm appears to be most consistent with experiment. Although this rg value along with  

P = 65 nm for DNA appears to describe well the rotational relaxation behavior of DNA in dilute gels 

(M  0.10 gm “dry” gel/mL), it substantially underestimates the rotational lifetimes in more 

concentrated gels.  

Figure 4. Model and Experimental 1 Values for 622 bp DNA as a Function of Gel 

Concentration. Experimental values are denoted by the filled squares. Solid, dotted, and 

dashed lines denote model studies with P = 65 nm and rg = 1.52, 2.0, and 2.5 nm, 

respectively. The temperature is 20 C.  
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The EM model that we have used accounts for long range hydrodynamic interactions, HI, but 

ignores direct interactions. If a characteristic length of our macromolecule is much smaller than the 

average spacing between gel fibers, A, then direct interactions would not be expected to significantly 

retard the random rotational motion of our macromolecule. For flexible duplex DNA modeled as a 

wormlike chain, we can set this “characteristic length” equal to the persistence length, P. If a dilute gel 

is modeled as a simple cubic lattice of gel fibers, then [48] 

)44(
3

M
rA

sg

g


  (44)  

See the discussion following Equation (3) for the definitions of g and s and their values for 

agarose. If we set rg equal to 2.5 nm, then A = 142, 110, 78, and 63 nm for M = 0.003, 0.005, 0.010, 

and 0.015 gm/mL, respectively. It is important to note that A decreases with increasing M and 

becomes comparable to P for M in the 0.010 to 0.015 range. For M  0.010 gm/mL, the gel fiber 

spacing is comparatively large and long range hydrodynamic interaction is the dominant interaction. 

For M > 0.010 gm/mL, however, direct interactions become important.  

4. Conclusions 

The objective of the present study is to apply the Effective Medium (EM) model to the rotational 

motion of a macromolecule modeled as an array of non-overlapping beads and then apply it to several 

cases including duplex DNA in agarose gels. This is an extension of earlier work which focused on the 

translational motion of similar model macromolecules in an EM [16]. The presence of a gel retards the 

rotational motion of a particle in a gel and this retardation is due to both long range hydrodynamic 

interaction, HI, and (short range) direct interactions. EM modeling accounts for long range HI, but not 

direct interactions. The EM modeling procedure is used to examine the electric birenfringence decay of  

a 622 base pair DNA fragments in an agarose gel [12]. At low gel concentration (M  0.010 gm/mL) 

where long range interactions dominate, good agreement between theory and experiment is achieved if 

the persistence length, P, of DNA is taken to be 65 nm and the gel fiber radius, rg, of agarose is taken 

to be 2.5 nm. A persistence length of this magnitude is consistent with independent studies [44]. Also, 

a gel fiber radius of 2.5 nm is consistent with earlier modeling studies of DNA diffusion [16] as well as 

the electrophoresis of Au nanoparticles [15] in agarose gels. At higher gel concentrations, the EM 

model substantially underestimates the rotational relaxation time of DNA. By means of simple 

modeling, we have shown that short range interactions become important when the average gel fiber 

spacing, A, becomes comparable to P.  

It has been recognized for some time that the behavior of macromolecules in gel electrophoresis fall 

into well defined “regimes” [49], and the findings of the present study are consistent with this view. At 

low gel concentration where long range HI dominates, the EM model is adequate, but this breaks down 

at high gel concentration where reptation theories are undoubtedly more appropriate [50]. In the case 

of rotational motion, it appears as though the transition between “long range” and “short range” 

regimes occurs over a narrow interval of gel concentration and that the nature of this rotational motion 

could be very different in the two regimes. More experimental and modeling studies are required to 

address this issue. It would also be possible to extend these studies to circular duplex DNA in gels as a 



Polymers 2011, 3                            

 
858 

function of linking number [51]. Conformations could be generated using established Brownian 

dynamics procedures [28,45,51] followed by application of the methodology of the present work to 

account for the long range hydrodynamic effect of the gel. 
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