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Abstract: The rate constants kd of the homolysis of the C–ON bond in styryl dyads 

TEMPO-based alkoxyamines have recently been published (Li et al. Macromolecules 

2006, 39, 9201). The diastereoisomers exhibited different values which were higher than for 

the unimer TEMPO-styryl alkoxyamine 1. At a first glance, the localization of the steric 

strain was not obvious. To decipher this problem, diastereoisomer models 2 (RR/SS) and 3 

(RS/SR), as well as the released alkyl radicals, were calculated at the \B3LYP/6-31G(d) 

level. It was revealed that the increase in kd from 1 to 3 was due to the compression 

(buttressing effect) of the reactive center by the second styryl moiety. The difference in kd 

for the diastereoisomer was clearly an activation entropy effect S
≠
 because the alkyl 

fragment of the RS/SR diastereoismer exhibited the same conformation as the released 

radical whereas the conformation for the RR/SS diastereoisomer was quite different and 

thus required the rotation of several bonds to reach the correct TS, which cost S
≠
, and 

thus lowers kd. 
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1. Introduction 

Since the pioneering work of Rizzardo in 1985 [1], research progress in Nitroxide Mediated 

Polymerization (NMP) has undergone exponential growth in the areas of materials preparation [2], 

kinetic investigations [3–5], and in the design of new initiators/controllers [6,7]. It has been shown that 

each stage—initiation, propagation, and termination—of the polymerization is important for the fate of 

NMP [8,9]. Over the last two decades, a tremendous amount of work has focused on analyzing the 

effects ruling the homolysis of the C–ON bond of the initiator/controller. The accumulation of data has 

shown that understanding the effects occurring during the C–ON bond homolysis is crucial for the 

design of new initiators. During the last decade, the effect of the penultimate unit on the C–ON bond 

was poorly investigated, and seemingly contradictory results were published concerning polystyryl-

TEMPO alkoxyamines. Until recently, it has been shown [10] that the penultimate unit may exert a 

dramatic effect on the C–ON bond homolysis and, consequently, on the fate of NMP [11,12]. Georges 

and colleagues [13] measured the C–ON bond homolysis in the diastereoisomers of styryl dyads of 

TEMPO-based alkoxyamines 7 (Figure 1). They reported that the (S,S) diastereoisomer [14] was 

cleaving two-folds as slowly as the (R,S) diasteroisomers. However, no ambiguous discussions were 

provided on the origin of this effect. At a first glance, although this led to apparently contradictory 

measurements [10,15,16], such small differences in kd may look unimportant, but nevertheless, we 

have recently shown that the fate of NMP [11,12,17] and the occurrence of side-reactions [18] depends 

on such small differences. 

A few years ago, we showed that the two-fold difference between the two diastereoisomers  

of 1-alkoxycarbonylethyl based-SG1 6 was due to the hyperconjugative effect (nOCO→*C–ON 

interaction) between the carbonyloxyl group and the C–ON bond (Figure 1) [19]. Then, for the 

homolysis 1–5 (Figure 1), we show hereafter that hyperconjugative interactions play a minor role, in 

sharp contrast with the remote steric effect. 

Figure 1. Molecules investigated.  
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2. Computational Method 

In recent articles [19,20], we investigated the hyperconjugation effect as well as the steric  

strain [21] using Density Functional Theory (DFT) calculations at the B3LYP/6-31G(d) level of 
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theory. All calculations were performed using the Gaussian 03 molecular orbital package [22]. 

Geometry optimizations were carried out without constraints (Figure 2) [23,24]. Vibrational 

frequencies were calculated at the B3LYP/6-31G(d) level to determine the nature of the located 

stationary points. Frequency calculations were performed to confirm that the geometry was a minimum 

(zero imaginary frequency). The single point energies were then calculated at the B3P86/6-311++G(d,p) 

level of theory for molecules 1–5 [25]. Radical Stabilization Energies (RSE) of 4 and 5 were calculated 

at G3B3MP2 (compound method). For 1–3, Natural Bond Orbital (NBO) analysis [19,26] was 

performed with the NBO 3.1 program in the Gaussian 03 package. For NBO analysis on 4 and 5, more 

details are provided as Supplementary information. 

Figure 2. DFT calculated structures for molecules 1–5. 

   

1    2     3 

   

4      5 

3. Results and Discussion 

Georges and colleagues [13] reported different homolysis rate constants kd at 120 °C for the RR/SS  

(kd = 9.7 × 10
−4

 s
−1

) and RS/SR (kd = 19.6 × 10
−4

 s
−1

) diastereoisomers of 7 (Figure 1) as well as for the 

unimeric species 1 (kd = 5.5 × 10
−4

 s
−1

). It is known [19,27,28] that the steric effect ruling the C–ON 

bond homolysis is related to the geometrical parameters—bond length l, interatomic distance d, 

valence angle , and torsion angle —of the alkoxyamines. However, as the diastereoisomers of 7 are 

large molecules (71 atoms) implying time consuming calculations, it was assumed that the benzyloxy 

group exhibited neither significant polar effect nor important steric effect and that the second styryl 

group did not exhibit significant polar effect [10]. Hence, DFT calculations were performed on smaller 

(58 atoms) molecule models 1–4 (Figure 2 and Table 1) to investigate the effect of the penultimate 

units of 2–4 as well as the effect of their configurations and conformations. Interestingly, the bond 

lengths O5–C4, N6–O5, C4–C13, C3–C4, the distance C4···N6, the valence angles <N6O5C4>, <C3C4O5>, 

<C13C4O5>, and the torsion angles <C4O5N6N6>, <N6O5C4H12>, <O5N6C7C11> did not differ 
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markedly among 1, 2, and 3. This means that no peculiar steric strains were observed except that the 

phenyl ring was tilted (<O5C4C13C14>) from 4° to 6° closer from 90° from unimolecular alkoxyamine 1 

to dimeric alkoxyamines 2 and 3, involving possible →*O5–C4 interaction (Figure 3d). Thus, all the 

molecules exhibited the same conformation around the reactive center, that is, the alkyl group and H12 

almost eclipsed the nitrogen lone pair, and the C4–C13 bond was almost perpendicular to the N–O bond 

(Figure 3a–c). 

Figure 3. Newman projections given by the torsion angles  gathered in Table 1. 
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Table 1. Geometrical parameters (bond length l, interatomic distance d, valence angle  

and torsion angle ), interaction energy, and formation enthalpy Hf calculated by DFT at 

the B3LYP/6-31G(d) level of theory.
a
 

l (Å) 1 (X-ray) 1(R) 2(R4R2) 3(R4S2) 4(S2) 5 

O5–C4 1.452 1.447 1.450 1.449 – – 

N6–O5 1.458 1.453 1.453 1.453 – – 

C4–C13 1.505 1.521 1.521 1.520 1.416 1.416 

C3–C4 1.521 1.533 1.539 1.541 1.498 1.497 

C2–C3 – – 1.546 1.547 1.566 – 

d (Å)       

C4···N6 2.420 2.427 2.432 2.430 – – 

H12···C10' 2.707 2.708 2.637 2.686 – – 

C13···C3 2.509 2.508 2.540 2.536 2.594 2.582 

H12···C18/1 – – 2.862 2.886
 

3.184
 

– 

C13···H17 – – 2.706 2.699 3.200 – 

H12···H17 – – 3.183 3.197 3.508 – 

C13···C2 – – 3.100 3.097 3.461 – 

C2···C4 – – 2.611 2.618 2.573 – 

 (°)       

<N6O5C4> 112.5 113.7 113.9 113.7 – – 

<C3C4O5> 105.0 106.1 104.7 104.9 – – 

<C13C4O5> 112.3 113.5 113.7 113.1 – – 

 (°)       

<O5C4C13C14> 61.6 54.6 60.3 58.5 – – 

<C4O5N6N6>
b 

−12.0
 

−13.7 −15.4
 

−14.0
 

– – 

<N6O5C4H12> −29.6 −23.5 −28.2 −25.2 – – 

<O5N6C7C11> 50.3 49.8 50.0 50.4 – – 

<C19C18C2C3> – – −61.0 67.5 67.0 – 

<C1C2C3C4> – – 172.7 −62.8 60.6 – 

<C2C3C4C13> – – −58.2 −58.2 86.5 – 
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Table 1. Cont. 

l (Å) 1 (X-ray) 1(R) 2(R4R2) 3(R4S2) 4(S2) 5 

Interaction energies (kJ/mol)       

,C18→C3–C4 – – – – 6.0 – 

C3–C4→-LUMO – – – – 11.0 14.0
c 

-SOMO→
*
,C3–C4 – – – – 22.0

 
15.0

d 

C3–C4→*,C18 – – – – 5.0 – 

-SOMO→
*
,C13 – – – – 165.0 162.0 

n,O→
*

C3–C4 – 0.0
e 

2.0 2.0 – – 

C3–C4→*C18 – – 7.0 9.0 – – 

C13→*C–O  – 19.0 22.0 21.0 – – 

Hf (kJ/mol) – – – −3.0
f 

– – 
a Dash is for "not determined"; b <C4O5N6N6> = <C4O5N6C10/10'> –120°; c The donation was from 

the bonding spin-orbital  C–H to the -LUMO. The conformation implied the donation from a 

second H atom of the methyl group; d The donation was from the -SOMO to the antibonding  

spin-orbital  C–H of the methyl group. The conformation implied the donation from a second H 

atom; e No n,O→*
C3–C4 interaction was observed for 5. fHf = Hf(3) – Hf(2). 

Importantly, the homolysis of diastereoisomers 2 and 3 afforded either the same alkyl radical or its 

enantiomeric pair 4 (Scheme 1).  

Scheme 1. Homolysis of diasteroisomers of alkoxyamines 2 and 3. 
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As no differences in the geometrical parameters were observed at the reaction center N–O–C, the 

RSE of the released 4 and 5 radicals were calculated using the isodesmic reaction (1). 


  34 CHRHCHR

RSEH r      (1) 

Thus, RSE were estimated to be 56.0 kJ/mol and 61.0 kJ/mol for 4 and 5, respectively, implying that 5 

was 5.0 kJ/mol more stabilized than 4, despite the ,C18→*,C2–C3/,C2–C3→-LUMO and 

-SOMO→*,C2–C3/,C2–C3→*,C18 interactions (Table 1). Indeed, 4 and 5 exhibited strong  

-SOMO→*,C13 interactions, as highlighted by the ca. 0.1 Å shortening of the C4–C13 bonds, and 

weak -SOMO→*,C3–C4 and -SOMO→*,C–H interactions for 4 and 5, respectively, as 

highlighted by the ca. 0.05 Å shortening of the corresponding bonds as well as the shortening of the 

C2···C4 distance. Interestingly, weak but significant ,C18→*,C2–C3 and ,C2–C3→*,C18 interactions 
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favored the anti conformation around the C1–C3 bond (<C1C2C3C4> = 60°, Figure 4d) and the 

perpendicular arrangement between the C13—aromatic ring and the C2–C3 bond (<C2C3C4C13> = 86.5°, 

Figure 4d). The weakness of these interactions was partly due to the tilted position (<C19C18C2C3> = 23°, 

Figure 4a) of the aromatic ring relative to the C2–C3 bond (Table 1, Figure 4). It is noteworthy that the 

relief of the steric strain is more important from 2/3 to 4 (dC13···C2 = 0.36 Å) than from 1 to 5  

(dC13···H = 0.23 Å). However, 4 was still more constrained than 5, as highlighted by the smaller 

variation of dC13···C3 for 5 than for 4 (0.05 Å and 0.08 Å, respectively) which means that 4 was less 

stabilized than 5. The stabilization and the interactions discussed above cannot account for the 

reported reactivity, i.e., kd for 3 and 4 larger than kd for 1. As the homolysis is an endothermic reaction, 

the structure of TS was expected to resemble the structure of the products, that is, radicals 4 and 5, and 

TEMPO. As TEMPO was always released, any changes observed were due to the 

structure/configuration/conformation of the alkyl fragments and radicals. As mentioned above, some 

d values pointed to a relief of steric strain in 3 and 4, leading to an increase in the freedom of motion 

at TS, and thus in S
≠
, and also in kd of 3 and 4. This was highlighted by the 0.3 Å–0.5 Å increase in 

the distances H12···C18/1, C13···C2, C13···H17, and H12···H17 from alkoxyamines 2/3 to radicals 4.  

Figure 4. Newman's projections for various conformations for the alkyl radical: (a) along 

the C3–C4 bond; (b) *C–CSOMO interaction; (c) along the C4···C2 axis; (d) along the 

C3–C2 bond.  
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As mentioned above, the homolysis of 1–3 was an endothermic reaction, which means that their TS 

resembled the products (TEMPO and the alkyl radicals) [29]. For the alkyl radicals, it is noteworthy to 

mention that the odd electron was delocalized on the aromatic ring by conjugation of the SOMO and 

the  cloud, which implied a 90° angle between the aromatic ring and the SOMO (-SOMO→
*
,C13), 

and consequently, at TS, aiming to favor this interaction, it is expected that the cleaving O–C bond, 

i.e., the nascent SOMO, exhibited an angle <O5C4C13C14> as close as possible from 90°. Hence, this 

remote internal strain implied a 4°–6° opening of the torsion angle <O5C4C13C14> for 2 and 3 in 

comparison to 1, forcing the aromatic ring to stand in a better position and reducing entropic cost at 

TS, as well as slightly improving (3 kJ/mol more) the hyperconjugative →*C–O interactions  

(Table 1). Thus, the difference between 1 and 2–3 was due to the remote steric strain in the starting 

materials, which implied both the destabilization of the starting materials (enthalpic effect, i.e., 
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decrease in Ea) and a better conformation of the aromatic ring at the reactive center (reduction in 

activation entropic cost), and the relief of this remote steric strain at TS which involved more freedom 

for the motions at TS (activation entropic effect, i.e., S
≠
 > 0) for 2 and 3 than for 1. This takes into 

account the two-fold increase in kd from 1 to 2 but not the two-fold increase from 2 to 3. 

As the homolysis of 2 and 3 afforded either the same radicals or its enantiomer, the difference in kd 

was not due to the stabilization of the products. Amazingly, calculations showed that the faster  

isomer 3 was more stable than 2 by 3.0 kJ/mol, as highlighted by the dH12···C10'. Consequently, the 

difference was due to the destabilization of TS. As highlighted by the 0.02 Å shorter C18···H12 distance 

in 2 than the C1···H12 distance in 3, the phenyl ring induced larger steric strain than the methyl  

group [30], which in turn indirectly constrained the reaction center, as mentioned above (smaller 

dH12···C10' for 2 and 3 than for 1). Thus, the anti conformation for the aromatic rings in 3 was more 

stable than the gauche conformation for the aromatic rings in 2 (Figure 5).  

Figure 5. Conformations for the alkyl fragment 2–4. 
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As mentioned above, diastereoisomers 2 and 3 afforded a pair of enantiomeric radicals, and as their 

TS were product-like, the same interactions as those observed in the radicals and consequently their 

conformations should be observed in their respective TS [29]. As molecules were large and afford 

many conformations, and as energy changes were small, only the conformation [31] and the 

subsequent hyperconjugative interactions in starting materials were investigated by calculations. The 

weak 2 electron—2 orbital interactions mentioned above for 4 combined to the steric strain led to a 

preferred conformation exhibiting a W arrangement for the C18C2C3C4SOMO bond/orbital sequence 

(<C1C2C3C4> ≈ 61° in Table 1 and Figure 4b) and, thus, such conformation was expected to occur at 

TS. Interestingly, the faster diastereoisomer 3 exhibited this W arrangement (<C1C2C3C4> ≈ 63°, 

Figures 3g and h) whereas diasteroisomer 2 (<C1C2C3C4> ≈ 173°, Figures 2e and f) did not. It should 

be mentioned that the weak n,O→
*

C3–C4/C3–C4→*C18 interactions (Table 1) supported that the W 

conformation for 3 was mainly due to the steric strain of the phenyl and methyl groups although the 

less tilted phenyl group (<C19C18C2C3> = 67°) afforded a slightly better interaction for 3 than for 2. 

Consequently, as the alkyl fragment of 3 and the alkyl radical exhibited the same conformation—

except at the C4 center whose hybridization changed from sp3 to sp2—no entropic cost was associated 
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Gf ≈ Hf = 3.0 kJ/mol 

G≠ ≈ 6.0 kJ/mol G≠ ≈ 29 

kJ/mol 

G≠ ≈ 117.0 kJ/mol 

G≠ ≈ 120.0 kJ/mol 

with reaching TS from 3. On the other hand, the alkyl fragment of 2 exhibited a conformation quite 

different from that of 5, and consequently, reaching the expected conformation or a close one at TS 

required at least one C2–C3 bond rotation, leading to a highly sterically strained conformer, and more 

likely several bond rotations, leading to high entropic cost. Thus, although 3 was more stabilized  

than 2, the lower entropic cost associated with reaching TS from 3 than from 2 afforded a faster 

cleavage for 3 than for 2 (G
≠
(3) < G

≠
(2)), as depicted in Figure 6.  

Figure 6. Pathways and expected TS [32] for the homolysis of 2 and 3 [33]. 
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The Arrhenius parameters reported for the diastereoisomers of 7 (A = 3.1 × 10
15

 s
−1

 and  

Ea = 139.2 kJ/mol for the RR/SS isomer, and A = 5.5 × 10
14

 s
−1

 and Ea = 131.2 kJ/mol for the RS/SR 

isomer) deserve some comments assuming that the size, the conformation, and the polarity of the 

PhCOO group have very minor effects on the latter [34]. Internal strains in 2/3 (and, hence, in 7) are 

larger than in 1, implying the destabilization of 2/3 (and 7). However, as the alkyl radical released  

by 2/3 (and 7) is less stabilized than the one from 1, TS for 2/3 (and 7) is slightly higher in energy, 

which balances the energetic gain due to the destabilization of the starting material. Consequently, Ea 

for the isomers of 7 should be very close to Ea of 1 as observed for the RS/SR isomer. Thus, the change 

of kd should be mainly observed by a change of A values. TS for 2 is more hindered that TS for 3, thus, 

it costs activation entropy to be reached. Consequently, a higher A value is expected for the RS/SR 

isomer of 7 than for its SS/RR isomer, in sharp contrast to the reported values, although the A value for 

the RS/SR isomer is in the expected range. In fact, this clear difference observed between expectations 

from calculations and the experimental values is only due the compensation entropy-activation  

energy [7]. 
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4. Conclusion 

As a conclusion, the increase in kd in the series 1 < 2 < 3 was due to a remote steric effect which 

induced enthalpic (destabilization of the starting materials and relief of steric strain at TS) and entropic 

(increase in freedom of motion and reduction in entropic costs both at TS) effects. Interestingly, this 

remote polar effect did not change the typical geometric parameters at the C–ON bond moiety. 

Importantly, the conclusions drawn here cannot be straightforwardly extended to alkoxyamines 

carrying a chiral nitroxide fragment such as TIPNO and SG1 because chirality close to the C–O–N 

moiety is expected to modify more or less strikingly the conformation, leading to an unexpected effect 

on kd, as already reported [35].  

X-ray of 1 and structures of 1–5 are provided as Cif, pdb, and mol2 files in supplementary materials. 
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