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Abstract: Diacylhydrazine is thermally and chemically stable, and it remains inert to oxygen even at
high temperatures. However, it is rapidly oxidized by sodium hypochlorite, leading to its decom-
position into carboxylic acid and nitrogen gas. In the synthesis of a novel poly(diacylhydrazine)
as an oxidatively degradable polymer, L-leucine methyl ester is acylated by terephthaloyl chloride.
Subsequent hydrazination yields a bishydrazide monomer. The oxidative coupling polymerization
of this monomer produces poly(diacylhydrazine). The molecular structures of the products are
confirmed by an 1H NMR analysis. A polymodal molecular weight distribution and a large polydis-
persity index are observed by GPC in all cases. A 10% weight loss temperature is noted at 286 ◦C
in air by TGA. The obtained polymer is not oxidized by oxygen. No glass transition is observed
below the decomposition temperature. Upon the treatment of the poly(diacylhydrazine) with sodium
hypochlorite solution, decomposition occurs rapidly, resulting in monomeric carboxylic acid and
nitrogen gas. The L-leucine-based poly(diacylhydrazine) serves as a novel on-demand degradable
polymer with high levels of thermal and chemical stability during usage.

Keywords: oxidatively degradable polymers; poly(diacylhydrazine); sodium hypochlorite; on-demand
degradation; leucin-based polymer

1. Introduction

Degradable polymers have attracted much attention for reducing polymer waste and
facilitating polymer and/or material recycling [1–4]. However, their high level of stability
during use generally conflicts with their high level of degradability after use [5]. An on-
demand degradable polymer with high levels of thermal and chemical stability is strongly
desired [6,7]. Poly(diacylhydrazine) represents a specific class of polyamide, bearing a
doubly acylated hydrazine (-CO-NH-NH-CO-) group [8]. Although poly(diacylhydrazine)
exhibits high levels of chemical and thermal stability similar to those of polyamides [9], it is
rapidly degraded by specific oxidants such as sodium hypochlorite, while remaining inert
to natural oxidants like oxygen, even at high temperatures (Scheme 1) [10–14]. Based on the
oxidative degradability of diacylhydrazine, several applications including an oxidatively
degradable superabsorbent polymer [15] were developed.
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Poly(diacylhydrazine) can be effectively synthesized from hydrazide, not only through
the acylation of acid halides (Scheme 2a) but also via partial oxidative coupling reactions
(Scheme 2b) [16–20]. While the use of various dicarboxylic acids as reagents to react with
hydrazine for synthesizing dihydrazide as the monomer is common [21–23], numerous
efforts have been made to innovatively modify dicarboxylic acids with amino acids. This
leads to the derivation of alternative dicarboxylic acids that enhance applications based on
their aqueous solubility and biocompatibility [24]. This modification not only broadens
the application spectrum of these novel materials but also aligns with our commitment to
environmental sustainability [25]. Our work underscores the potential of amino-acid-based
polymers in advancing both the functional versatility and eco-friendliness of degradable
polymer applications.
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In this study, L-leucine, a naturally occurring amino acid, was used to modify tereph-
thalic acid, one of the most common dicarboxylic acids. The existence of a peptide bond
in the skeleton and an isobutyl side chain in leucine is expected to enhance the flexibility
of poly(diacylhydrazine) [26,27]. By using an optically active natural amino acid, future
applications for it as a chiral polymer are also anticipated.

2. Materials and Methods
2.1. Chemicals and Instruments

All chemicals were reagent grade and were used without further purification ex-
cept for dichloromethane and triethylamine, which were used after distillation over
calcium hydride.

NMR spectra were recorded on a JEOL (Tokyo, Japan) JNM-ECA400 or JNM-ECZ600
FT-NMR spectrometer using residual solvent peak (2.50 ppm for DMSO-d6 and 7.26 ppm
for CDCl3) as a reference. Thermogravimetric analysis (TGA) and differential thermal anal-
ysis (DTA) were performed on a Rigaku (Tokyo, Japan) TG8120 instrument. Differential
scanning calorimetry (DSC) was performed on a Rigaku (Tokyo, Japan) DSC8230 instru-
ment. Gel permeation chromatography (GPC) was performed using a Shimadzu (Kyoto,
Japan) LC-10AT system with a Polymer Laboratories (Long Beach, CA, USA) PolyPore
column placed in a Shimadzu (Kyoto, Japan) CTO-10A oven equipped with Shimadzu
(Kyoto, Japan) RID-10A and Shimadzu (Kyoto, Japan) SPD-10A detectors.

2.2. Synthesis of Terephthaloyl Bis(L-Leucine Methyl Ester) 2

To a mixture of L-leucine methyl ester hydrochloride 3 (8.0853 g, 44.5 mmol) and
terephthaloyl chloride 4 (4.1370 g, 20.4 mmol) in dichloromethane (100 mL), triethylamine
(12.50 mL, 89.7 mmol) was added at 0 ◦C in the period of 30 min, and the mixture was
stirred at 25 ◦C for 24 h. The reaction mixture was washed by 1 M hydrochloric acid
followed by brine and dried over anhydrous magnesium sulfate, and the solvent was
evaporated in vacuo. The crude white solid was recrystallized from toluene to obtain
terephthaloyl bis(L-leucine methyl ester) 2 (4.6843 g, 55%) as a white crystal.
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1H NMR (DMSO-d6, 400 MHz): d 8.87 (d, J = 7.6 Hz, 2H, NH), 7.97 (s, 4H, Ar), 4.56–4.47
(m, 2H, CH), 3.65 (s, 6H, CH3), 1.85–1.54 (m, 6H, CH2 and CH), 0.93 (d, J = 6.5 Hz, 6H,
CH3), and 0.89 (d, J = 6.5 Hz, 6H, CH3) ppm.

2.3. Synthesis of Dihydrazide Monomer 1

A solution of terephthaloyl bis(L-leucine methyl ester) 2 (4.5899 g, 10.9 mmol) and
hydrazine monohydrate (2.4459 g, 48.9 mmol) in 30 mL ethanol was refluxed for 24 h. The
precipitate was collected by suction filtration, washed with ethanol, and dried in vacuo.
Crude product was recrystallized from ethanol to obtain monomer 1 (3.1781 g, 69%) as a
white crystal.
1H-NMR (DMSO-d6, 600 MHz): d 9.25 (s, 2H, NH), 8.55 (d, J = 8.1 Hz, 2H, NH), 7.95 (s,
4H, Ar), 4.54–4.47 (m, 2H, CH), 4.24 (br, 4H, NH2), 1.74–1.47 (m, 6H, CH2 and CH), 0.91 (d,
J = 6.5 Hz, 6H, CH3), and 0.87 (d, J = 6.5 Hz, 6H, CH3) ppm.

2.4. Synthesis of Poly(diacylhydrazine) 5: Oxidative Coupling Polymerization of Dihydrazide
Monomer 1

To a solution of dihydrazide monomer 1, the oxidant powder was added portion
by portion (see dosage and conditions in Table 1). After the mixture was stirred for the
mentioned period at ambient temperature, the reaction mixture was poured into 700 mL of
methanol. The precipitate was collected by filtration, washed with methanol followed by
water, and dried in vacuo to afford poly(diacylhydrazine) 5.

Table 1. The reaction conditions and the results of oxidative coupling polymerization of 1.

Run 1 (g) Oxidant
(g, eq)

Solvent
(mL)

Time
(h)

Yield a

(%)
Mn

b

(Mw/Mn
b)

1 1.0111 Oxone®

(2.9724, 2.0)
NMP/CH3CN/H2O

(10/10/7) 48 74 4600
(98)

2 0.5062 Oxone®

(1.4831, 2.0)
NMP/DMAc/H2O

(10/10/8) 48 57 6700
(12,000)

3 0.4935 PhI(OAc)2
(0.6656, 0.88)

NMP
(5) 24 74 5500

(7300)
a Methanol-insoluble part. b Estimated by GPC (DMF, based on polystyrene standards).

1H NMR (DMSO-d6, 600 MHz): d 10.05 (br, 2H, NH), 8.62 (br, 2H, NH), 7.95 (br, 4H, Ar),
4.60 (br, 2H, CH), 1.79 (br, 4H, CH2), 1.59 (br, 2H, CH), 0.92 (d, J = 4.6 Hz, 6H, CH3), and
0.88 (d, J = 4.0 Hz, 6H, CH3) ppm.

2.5. Oxidative Degradation of Poly(diacylhydrazine) 5

A 5% sodium hypochlorite solution (10 mL) was poured on a powder of
poly(diacylhydrazine) 5 (172.7 mg). Evolution of nitrogen gas promptly occurred and
continued for 30 min to obtain clear solution. The reaction mixture was acidified with
3 M hydrochloric acid. After gas evolution ceased, precipitate was collected by suction
filtration, washed with water, and dried in vacuo to obtain terephthaloyl bis(L-leucine) 6
(38.4 mg, 10%) as a black powder.
1H NMR (DMSO-d6, 600 MHz): d 12.7 (br, 2H, OH), 8.74 (d, J = 7.1 Hz, 2H, NH), 7.97 (s,
4H, Ar), 4.49–4.41 (m, 2H, CH), 1.83–1.52 (m, 6H, CH2 and CH), 0.93 (d, J = 6.4 Hz, 6H,
CH3), and 0.88 (d, J = 6.3 Hz, 6H, CH3) ppm.

3. Results
3.1. Synthesis of Monomer 1

Dihydrazide monomer 1 was synthesized according to the literature [28] with some
modifications, as shown in Scheme 3. Terephthaloyl bis(L-leucine methyl ester) 2 was
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prepared by the acylation of L-leucine methyl ester hydrochloride 3 with terephthaloyl chlo-
ride 4. The hydrazination of 2 afforded hydrazide monomer 1. Both reactions proceeded
smoothly, and monomer 1 could be obtained at gram scale without using a chromatograph-
ical purification procedure. The 1H NMR spectra of the products are shown in Figure 1.
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(b) dihydrazide monomer 1 (DMSO-d6, 600 MHz), (c) poly(diacylhydrazine) 5 (DMSO-d6, 600 MHz),
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Figure 1a clearly shows the structure of 2. Two doublets at 0.93 and 0.89 ppm are
characteristic of the non-equivalent methyl groups in leucine. Amide protons were ob-
served at 8.87 ppm as a doublet. After hydrazination, the methyl ester in 2 observed at
3.65 ppm disappeared while signals for the hydrazide group in 1 appeared at 9.25 (NH)
and 4.24 (NH2) ppm (Figure 1b).
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3.2. Synthesis of Polymer

The oxidative coupling polymerization procedure was employed for the synthesis
of poly(diacylhydrazine) because of its simple operation [28]. Thus, the partial oxidation
of dihydrazide 1 was carried out using Oxone® [18] (2KHSO5·K2SO4·KHSO4) and diace-
toxyiodobenzene [17] (PhI(OAc)2), respectively. The reaction conditions and the results
of the polymerization are summarized in Table 1. The 1H NMR spectrum of the poly-
mer obtained (run 1) is shown in Figure 1c. The NH2 protons in 1 observed at 4.24 ppm
disappeared, and the hydrazide NH proton observed at 9.25 ppm shifted down-field
(10.02 ppm), while the signals of L-leucine, including two characteristic non-equivalent
methyl groups (0.92 and 0.88 ppm) and an amide-NH group (8.62 ppm), remained. These
observations indicate that poly(diacylhydrazine) 5 was obtained via the selective oxidation
of the hydrazide group without the oxidation of the L-leucine amide moiety.

In each experiment, the yield of the polymer was moderate to high. When the oxidative
coupling polymerization was carried out using Oxone® as the oxidant, a white polymer
was obtained, while a pink polymer was obtained when oxidized with PhI(OAc)2. This
variation in color suggests the occurrence of a side reaction when PhI(OAc)2 was used as
the oxidant, although no significant difference was observed in the 1H NMR spectra.

Poly(diacylhydrazine) 5 was soluble in aprotic polar solvents, such as DMF, DMAc,
and DMSO, and was insoluble in water and common organic solvents, such as THF
and chloroform.

The gel permeation chromatography (GPC) profiles are shown in Figure 2. Polymer 5
showed a polymodal molecular weight distribution, and the Mw/Mn value estimated from
GPC was far larger than that expected for polycondensation (2.0) in every case. Similar
results were observed in the previous work [28]. At the present time, the reason for the
large Mw/Mn values is not clear, although there are two possibilities. One is the presence
of a crosslinked structure in the polymer structure. However, there is no spectroscopic
evidence or sign of the crosslinked structure. The other is the aggregation of the polymer
chain because of the strong hydrogen bonding ability of the diacylhydrazine moiety. In
this case, the Mw value was reflected by the highly aggregated part, and the Mn value was
reflected by the less aggregated part. Therefore, the large Mw/Mn values were observed.
Since poly(diacylhydrazine) 5 is soluble in DMF even though a very large Mw/Mn value
was observed, we had no difficulty in its application.
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Figure 2. GPC profiles of poly(diacylhydrazine) 5 obtained by the oxidative coupling polymer-
ization of hydrazide monomer 1. (a) Run 1, (b) run 2, and (c) run 3 in Table 1 and (d) oxidative
degradation product.
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3.3. Thermal Properties of Poly(diacylhydrazine) 5

A thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were
performed in air to examine the thermal properties of 5 as shown in Figure 3. Upon
heating, ca. a 5% weight loss was observed below 100 ◦C due to the loss of absorbed
water. It was assumed that 0.5 molecule of water per repeating unit was absorbed in 5, as
the calculated weight loss is 4.43%. A 10% weight loss was observed at 286 ◦C. Thus, 5
is thermally stable and does not suffer oxidative degradation by oxygen in air even at a
high temperature [14,28]. In our careful differential scanning calorimetry (DSC) analyses, 5
does not exhibit a glass transition temperature (Tg) below 250 ◦C. It is very likely that the
hypothetical Tg of 5 is higher than its thermal decomposition temperature, supporting the
high thermal stability of 5.
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Figure 3. TGA-DTA profile of poly(diacylhydrazine) 5 (10 K/min, in air). In the DTA analysis,
positive heat flow is exothermic.

3.4. Oxidative Degradation of Poly(diacylhydrazine) 5

When an aqueous solution of sodium hypochlorite was poured on the powder of
poly(diacylhydrazine) 5, a nitrogen gas bubble occurred vigorously, and a clear solution was
obtained within a few minutes. Since 5 is insoluble in water, the oxidative degradation of 5
was evident. The GPC profile of the resulting solution is shown in Figure 2d, indicating that
the polymeric fraction completely disappeared, and a low-molecular-weight compound
was formed.

When the solution was acidified by 3 M hydrochloric acid, a dark-brown precipitate
was obtained. The 1H NMR spectrum of this product is shown in Figure 1d. The signal
of the diacylhydrazine group observed at 10.02 ppm for 5 disappeared, while the signals
for the L-leucine terephthalamide skeleton remained intact, including its characteristic
two non-equivalent methyl groups (0.93 and 0.88 ppm). Further, a broad signal for the
carboxylic acid group was observed around 12.7 ppm. Thus, the diacylhydrazine group
was selectively oxidized in the presence of the amide by the sodium hypochlorite to form
carboxylic acid 6 and nitrogen gas, as depicted in Scheme 4.
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4. Conclusions

This study demonstrated the successful synthesis of a novel poly(diacylhydrazine),
poly(diacylhydrazine) 5, from terephthaloyl chloride, L-leucine methyl ester, and hydrazine
monohydrate using the oxidative coupling polymerization process. Although polymer 5
was thermally and chemically stable, its oxidative degradation proceeded rapidly using a
sodium hypochlorite solution. It should be noted that the degradation products, carboxylic
acid and nitrogen gas, are safe compounds, and carboxylic acid 6 can be used as a starting
material for the synthesis of 5. Further, the sodium hypochlorite solution is easily available
as a common household bleaching agent. Since various amino acids are expected to
be used instead of L-leucine for the synthesis of corresponding poly(diacylhydrazine)s,
various on-demand degradable polymers are expected. Further applications of this novel
poly(diacylhydrazine) are in progress.
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