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Abstract: Polylactic acid (PLA) stands out as a biomaterial with immense potential, primarily owing
to its innate biodegradability. Conventional methods for manufacturing PLA encompass injection
molding or additive manufacturing (AM). Yet, the fabrication of sizable medical devices often neces-
sitates fragmenting them into multiple components for printing, subsequently requiring reassembly
to accommodate the constraints posed by the dimensions of the AM platform. Typically, laboratories
resort to employing nuts and bolts for the assembly of printed components into expansive medical
devices. Nonetheless, this conventional approach of jointing is susceptible to the inherent risk of
bolts and nuts loosening or dislodging amid the reciprocating movements inherent to sizable medical
apparatus. Hence, investigation into the joining techniques for integrating printed components into
expansive medical devices has emerged as a critical focal point within the realm of research. The main
objective is to enhance the joint strength of PLA polymer rods using rotary friction welding (RFW).
The mean bending strength of welded components, fabricated under seven distinct rotational speeds,
surpasses that of the underlying PLA substrate material. The average bending strength improvement
rate of welding parts fabricated by RFW with three-stage transformation to 4000 rpm is about 41.94%
compared with the average bending strength of PLA base material. The average surface hardness
of the weld interface is about 1.25 to 3.80% higher than the average surface hardness of the PLA
base material. The average surface hardness of the weld interface performed by RFW with variable
rotational speed is higher than the average surface hardness of the weld interface performed at a
fixed rotating friction speed. The temperature rise rate and maximum temperature recorded during
RFW in the X-axis of the CNC turning machine at the outer edge of the welding part surpassed those
observed in the internal temperature of the welding part. Remarkably, the proposed method in this
study complies with the Sustainable Development Goals due to its high energy efficiency and low
environmental pollution.

Keywords: polylactic acid; biomaterial; rotary friction welding; joint strength; high energy efficiency;
low environmental pollution

1. Introduction

Rotary friction welding (RFW) is a welding process that joins two pieces of metal
by using friction and heat generated by rotating one of the components against the other.
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This process is known as friction stir welding or inertia friction welding. The features
of RFW [1] encompass several advantages, including the absence of electric arcs, low en-
ergy consumption [2], and minimal environmental impact [3]. Consequently, RFW finds
extensive applications in joining various components [4], such as producing automotive
parts, piston rods, shafts, and tubes [5]. RFW is frequently employed to join two cylindrical
components, offering numerous benefits such as reduced cycle times, minimized material
wastage, superior joint strength, and the capability to bond materials, whether similar or
dissimilar. Skowronska et al. [6] examined the structural characteristics of welded joints
using high-speed friction welding. The results revealed that the welded joint attained a
surface hardness exceeding HV 340. Eliseev et al. [7] explored the microstructural changes
occurring in the transfer layer of aluminum (Al) alloy welding parts, uncovering a decrease
in grain size and volume fraction toward the center of the layer. Anwar et al. [8] investi-
gated the microstructure of alloy 800H of welding part using RFW after heat treatment,
successfully achieving the minimum grain size. Khalaf et al. [9] investigated the heat gener-
ation of different tool components. The results showed that the pins with increased edges
and a triangular shape demonstrated more pronounced heat generation, influencing the
heat flux on polyethylene surfaces. Vidakis et al. [10] examined the welding tool geometry,
rotational speed, and travel speed for acrylonitrile butadiene styrene (ABS) fabricated with
a material extrusion process [11]. Ma et al. [12] investigated the impact of temperature on
the mechanical characteristics of aluminum alloy joints via friction stir welding. The results
unveiled a reduced gradient across the thickness, heightened heat input, and amplified
material flow at the base. Notably, the welded components showcased superior mechanical
prowess when juxtaposed with three-dimensional printed counterparts of congruent geom-
etry. Yang et al. [13] delved into temperature characterization and contact dynamics during
welding, employing the harmonic balance method. Both simulation and experimental
results underscored the significant impact wielded by welding duration and amplitude on
the interface temperature. Maggiore et al. [14] conducted an extensive review focusing on
structural adhesive joints within hybrid joining methodologies. Their findings advocate
the potential of hybrid joining technologies as a versatile solution applicable across various
industries, aiming at mitigating manufacturing burdens and expenses. Pereira et al. [15]
examined the impact of various welding parameters on the mechanical strength of welding
parts using friction stir welding with polymers. The results suggested that an elevated
rotational speed/welding speed ratio improved joint efficiency.

Polylactic acid (PLA) [16], a biodegradable thermoplastic, originates from renewable
sources, predominantly extracted from corn starch. Classified as a polyester, PLA serves
as a prominent bioplastic in a myriad of applications [17]. It has gained popularity in
recent years as a more environmentally friendly alternative to traditional petroleum-based
plastics [18–20]. PLA has various applications across various industries due to its biodegrad-
ability, renewability, and versatility. Some common applications of PLA include medical
devices [21], dental implants [22,23], and food service products [24,25]. When constrained
by the dimensions of the additive manufacturing platform [26], it is common practice
to divide a substantial medical device into multiple segments for printing, necessitating
subsequent assembly.

Commonly, laboratories extensively utilize nuts [27] or bolts [28] for amalgamating
three-dimensional (3D)-printed components into sizable physical models. Nonetheless, this
conventional joining method is prone to bolts and nuts loosening or detachment during
the reciprocating motion inherent to large physical models. Furthermore, the junctions
formed by bolts and nuts may induce micro-cracks in the structure of large physical models,
potentially leading to consequential damage. Consequently, the exploration of joining
technologies for integrating 3D-printed parts into expansive physical models has emerged
as a crucial research avenue. The main objective is to improve the weld quality of PLA
polymer rods using RFW [29,30]. Following the RFW process, bending tests [31] and Shore
A surface hardness tests [32] were conducted to analyze the mechanical properties of the
welded components. The temperature histories of the three temperature measurement
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locations in both the X-axis and Z-axis of the CNC turning machine were also investigated
during RFW with seven rotational speeds using both thermocouples and an infrared
camera. Finally, a comprehensive technical database was established for RFW using PLA
biomedical material.

2. Experimental Details

Figure 1 depicts the research process of this study. In this study, a PLA filament
stock (Thunder 3D Inc., New Taipei City, Taiwan) was used to print welding workpieces
using a fused filament fabrication machine (Teklink solution Inc., New Taipei City, Taiwan).
Subsequent to the RFW process, the bending strength of the welding components was
evaluated utilizing a three-point bending test machine (RH-30, Shimadzu Inc., Kyoto, Japan)
set at a movement speed of around 1 mm/s. Additionally, the assessment of weldment
quality involved the application of the Shore A surface hardness test (MET-HG-A, SEAT
Inc., New Taipei City, Taiwan) and RH-30 equipment (Shimadzu Inc., Kyoto, Japan). The
fracture surfaces were further analyzed using optical microscopy (OM) (Quick Vision 404,
Mitutoyo Inc., Tokyo, Japan). Finally, a comprehensive technical database was established
for the characterization of PLA weldments fabricated by RFW. Figure 2 shows the slicing
results of the PLA biomedical polymer rod in slicing software (UltiMaker Cura, Utrecht, The
Netherlands). The welding specimen features a cylindrical cross-section with dimensions of
approximately 20 mm in diameter and 40 mm in length. Figure 3 depicts the experimental
configuration devised for gauging the welding temperature of PLA biomedical polymer
rods during RFW. A computerized turning machine (K-45L, Kae Jiuh, Inc., New Taipei City,
Taiwan) was employed to join the PLA biomedical polymer rods. The process commenced
by securing one workpiece using a chuck and subjecting it to a continuous rotational
motion, while the other workpiece remained firmly stationary. In the process of RFW,
friction heat was generated at the interface of the two welding specimens. The welding
specimens were subjected to pressure until the weld joint was successfully formed. To
further improve the mechanical properties of welded parts, an autotransformer was set
to 50 V for ultrasonic transduction (WB 2835-45HB, Whirl Best International, Inc., New
Taipei City, Taiwan). The frequency and amplitude of the ultrasonic transducer were
28 KHz and 0.013 mm, respectively. A load cell (ARI742, Zhiheng Industrial Co., Inc.,
New Taipei City, Taiwan) was employed to measure the welding force during RFW. During
the RFW process, the temperature profiles at both the weld interface and within the welding
specimens were recorded with k-type thermocouples (C071009-079, Cheng Tay Inc., New
Taipei City, Taiwan) and an infrared camera (BI-TM-F01P, Panrico Trading Inc., New Taipei
City, Taiwan). Additionally, a data acquisition system (MRD-8002L, IDEA System Inc., New
Taipei City, Taiwan) was utilized for collecting temperature change data.

Figure 4 shows the seven rotational speeds used in this study. The process parameters
of RFW include an axial load of 24.1 N, welding pressure of 0.077 MPa, burn-off length of
2 mm, and feed rate of 6 mm/min. It is noteworthy that the rotational speeds denoted as 1,
2, 3, 4, and 5 maintained a consistent value. Specifically, these rotational speeds correspond
to 1000 rpm, 2000 rpm, 2500 rpm, 3000 rpm, and 4000 rpm, respectively. The RFW cycle
duration with the constant rotational speed spans 90 s, comprising 30 s of friction time, 30 s
of welding time, and 30 s of cooling time. Number 6 underwent a two-stage transformation
to reach 4000 rpm. In the first stage, it accelerated from a standstill to 1000 rpm. In the
second stage, it accelerated from 1000 rpm to 4000 rpm. The cycle time for the RFW with
the two-stage transformation to 4000 rpm was 80 s, comprising a friction time of 30 s, a
welding time of 20 s, and a cooling time under pressure of 30 s. Number 7 underwent a
three-stage transformation to reach 4000 rpm. The first stage involved accelerating from a
standstill to 1000 rpm. The second stage accelerated from 1000 rpm to 2000 rpm, and the
third stage accelerated from 2000 rpm to 4000 rpm. The cycle duration for RFW featuring a
three-stage transformation up to 4000 rpm totaled 85 s. This encompasses 30 s of friction
time, followed by 25 s of welding time, and concludes with 30 s of cooling time under
pressure. Figure 5 shows the schematic diagram of the three temperature measurement
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locations in the Z-axis and X-axis directions of the CNC turning machine. In the Z-axis,
the distances between points A, B, and C and the weld interface measure 1 mm, 2 mm,
and 3 mm, respectively. Along the X-axis, point A was positioned at the center of the
welding specimen. The distances between points A, B, and C, and the center of the welding
specimen amounted to approximately 0 mm, 5 mm, and 10 mm, respectively.
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3. Results and Discussion

In this study, five specimens were examined. Figure 6 shows the bending strength
of the base material and welding parts fabricated by RFW with seven rotational speeds.
Figure 7 shows the fracture surfaces of the specimens fabricated by 3D printing and welding
parts fabricated by RFW with three-stage transformation after the bending test. Three-
dimensional printing employs layer-by-layer processing. After conducting bending tests, it
was evident that the 3D-printed texture of the welding specimen appeared on the fractured
surface. These 3D-printed parts underwent a three-stage transformation RFW. Interestingly,
the 3D-printed texture was no longer visible on the fractured surface after the bending
test, indicating a complete fusion of weld interface materials. Consequently, the bending
strength of welded parts significantly surpassed that of the base materials. The results
showed two phenomena. One is that the average bending strength of the welding parts
using seven rotational speeds was higher than that of the PLA base material [33]. The
average bending strengths of welding parts using seven rotational friction welding speeds
were about 134 MPa, 142 MPa, 150 MPa, 158 MPa, 172 MPa, and 176 MPa, respectively.
The other is that the average bending strength improvement rates of welding parts using
seven rotational friction welding speeds were approximately 1.61%, 8.06%, 14.52%, 20.97%,
27.42%, 38.71%, and 41.94% compared with the average bending strength of PLA base
material. Figure 8 shows the maximum interface temperature of welding parts fabricated
by RFW with seven rotational speeds. The results showed that the maximum temperature
of the weld joint increased accordingly. The maximum temperatures of the weld joint
were approximately 148 ◦C, 150 ◦C, 151 ◦C, 166 ◦C, 184 ◦C, 196 ◦C, and 199 ◦C for seven
rotational speeds.
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tional speeds.

The evaluation of Shore A surface hardness involves the assessment of material
hardness through a universally adopted scale. This evaluation process facilitates the identi-
fication of appropriate materials tailored to distinct uses, thereby guaranteeing that welding
specimens adhere to criteria for endurance and operational efficacy. In this experiment, five
specimens were examined. There were ten measurement points in the weld interface of the
welded part, while the surface hardness distributions of the welded part were measured at
twenty points. Figure 9 shows the average Shore A surface hardness in the weld interface of
welding parts fabricated by RFW with seven rotational speeds. In this study, two specimens
were analyzed. Figure 10 shows the shore A surface hardness distributions of the welding
parts fabricated by RFW with seven rotational speeds. The results showed that the average
surface hardnesses of the seven RFW methods were approximately HS 78.7, HS 79.2, HS
79.3, HS 79.9, HS 80.1, HS 80.7, and HS 81.4, respectively. Based on these results, this study
found three phenomena. One is that the average surface hardness of the weld interface is
higher than the average surface hardness of the PLA base material. The average surface
hardness increases by about 1.27%, 2.53%, 1.25%, 1.25%, 1.25%, 3.80%, and 2.5%, respec-
tively. Secondly, the average surface hardness of the weld interface performed by RFW with
variable rotational speed is higher than the average surface hardness of the weld interface
performed at a fixed rotating friction speed. The other is that the average surface hardness
of the weld interface performed by RFW with three-stage transformation to 4000 rpm is the
highest, followed by the average surface hardness of the welding interface performed by
RFW with two-stage transformation to 4000 rpm.
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This study involved the examination of five specimens. Figure 11 shows the temper-
ature histories of the three temperature measurement locations in the Z-axis of the CNC
turning machine for seven rotational speeds. Figure 12 shows the temperature rise rate dur-
ing RFW in the Z-axis of the CNC turning machine using seven rotational speeds. Figure 13
shows the maximum temperatures measured during RFW in the Z-axis of the CNC turning
machine using seven rotational speeds. Based on the above results, this study found three
phenomena. First, the temperature histories of the three measurement points A, B, and C
are not similar. Second, the temperature rise rate of the weld interface does not change
significantly when the rotational speed is constant. However, the temperature rise rate of
the weld interface shows some changes for a two-stage transformation to 4000 rpm and a
three-stage transformation to 4000 rpm. The temperature rise rate of the weld interface is
higher than that of the weld interface using fixed rotational speed. Third, the maximum
temperatures measured during RFW gradually increase as the rotational speed increases.
However, the maximum temperatures measured during RFW do not change significantly
for two-stage transformation to 4000 rpm and three-stage transformation to 4000 rpm.
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Figure 11. Temperature histories of the three temperature measurement locations in the Z-axis of the
CNC turning machine: (a) 1000 rpm, (b)2000 rpm, (c) 2500 rpm, (d) 3000 rpm, (e) 4000, (f) two-stage
transformation to 4000 rpm, and (g) three-stage transformation of the rotational speed to 4000 rpm.

This study involved the examination of five specimens. Figure 14 shows the temper-
ature histories of the three temperature measurement locations in the X-axis of the CNC
turning machine. Figure 15 shows the temperature rise rate during RFW in the X-axis of
the CNC turning machine using seven rotational speeds. Figure 16 shows the maximum
temperatures measured during RFW in the X-axis of the CNC turning machine using
seven rotational speeds. Differential temperature profiles were observed among the three
measurement points, A, B, and C, attributable to the variation in linear velocity across the
welding part. Specifically, the linear velocity at the outer edge of the welding part exceeded
that of the internal regions, contributing to distinct temperature histories at these points.
Consequently, both the temperature rise rate and the maximum temperature recorded
during RFW at the outer edge surpassed those observed internally within the welding
part. According to the existing literature, the thermal conductivity of PLA material at room
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temperature ranges between 0.13 and 0.183 W/m-K [34–36]. In this study, the heat source
generated by the rotating friction welding interface facilitated temperature measurements
at three points: A, B, and C. Notably, the determined thermal conductivity of PLA materials
in this study approximated 0.179 W/m-K. This result is generally consistent with the data
in the literature. This result also proves that the temperature data measured in this work
are correct.
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Figure 12. Temperature rise rate during RFW in the Z-axis of the CNC turning machine using
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Figure 14. Temperature histories of the three temperature measurement locations in the X-axis of the
CNC turning machine: (a) 1000 rpm, (b) 2000 rpm, (c) 2500 rpm, (d) 3000 rpm, (e) 4000, (f) two-stage
transformation to 4000 rpm, and (g) three-stage transformation of the rotational speed to 4000 rpm.
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Figure 16. Maximum temperatures measured during RFW in the X-axis of the CNC turning machine
using seven rotational speeds.

PLA presents an environmentally friendly substitute for conventional plastics, sourced
from renewable reservoirs such as corn starch or sugarcane. Its notable characteristics
encompass eco-degradation, renewable derivation, adaptability, lucidity, and minimal toxi-
city. PLA can decompose under specific circumstances, aiding in curbing plastic waste and
reducing reliance on fossil fuels. In general, the FRW exhibits lower energy consumption
than conventional gas arc welding [37]. Consequently, the outcomes of this study bear prac-
tical significance for industrial applications and align with Sustainable Development Goals
7, 9, 10, and 12 [38]. Previous research has delved into evaluating the fatigue life of welded
components through fatigue experiments [39] and conducting numerical investigations [40]
to explore the optimal process parameters for RFW. Developing numerical models to sim-
ulate the RFW process [41–43] can aid in predicting and optimizing welding outcomes
and understanding the thermal and mechanical aspects of the process. Optimizing the
critical process parameters of RFW to enhance efficiency, quality, and cost-effectiveness
is an important research topic. In this study, bending tests and Shore A surface hardness
tests were performed to investigate the mechanical properties of the welded components.
However, the thermal properties of the welded materials were not investigated. Thus,
the thermal transitions of the welding parts can be examined by differential scanning
calorimetry in future work [44,45]. Furthermore, conducting an in-depth microstructural
analysis of the welded joints to understand the effects of the welding process on the mate-
rial properties [46] using scanning electron microscopy [47] is also an important research
topic. These intriguing research topics are currently under exploration.

4. Conclusions

The main objective of this work is to enhance the joint strength of PLA polymer rods
built with additive manufacturing using RFW. This proposes an approach for the RFW of
PLA polymeric rods by varying the rotational speed. After FRW, the mechanical properties
of the welding parts were examined by the Shore A surface hardness test, thermal analysis,
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and three-point bending test. The main conclusions from the experimental work in this
study are as follows:

• The average bending strength of the welded components utilizing seven distinct
rotational speeds surpasses that of the PLA base material.

• The average bending strength enhancement rate for welded components produced
through RFW with a three-stage transformation at 4000 rpm is approximately 41.94%
when compared to the average bending strength of the PLA base material.

• The average surface hardness at the weld interface achieved through RFW with
variable rotational speed exceeds that of the weld interface produced by a fixed rotating
friction speed. The average surface hardness at the weld interface is approximately
1.25% to 3.80% higher than the average surface hardness of the PLA base material.

• The temperature rise rate in the Z-axis of the CNC turning machine does not change
significantly when the rotational speed is constant. The maximum temperatures
measured during RFW gradually increase as the rotational speed increases. Both the
temperature rise rate and maximum temperature measured during RFW in the X-axis
of the CNC turning machine at the outer edge of the welding part are higher than that
of the internal temperature of the welding part.

• The thermal conductivity of PLA materials is about 0.179 W/m-K, which is generally
consistent with the data in the literature.
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