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Abstract: In this work, the potential of biomass-derived date palm bio-oil as a partial substitute for
phenol in the phenolic resin was evaluated. Date palm bio-oils derived from date palm were used
for the partial substitution of phenol in the preparation of phenolic foam (PF) insulation materials.
Date palm waste material was processed using pyrolysis at 525 ◦C to produce bio-oil rich in phenolic
compounds. The bio-oil was used to partially replace phenol in the synthesis of phenolic resin, which
was subsequently used to prepare foams. The resulting changes in the physical, mechanical, and
thermal properties of the foams were studied. The substituted foams exhibited 93%, 181%, and 40%
improvement in compressive strength with 10%, 15%, and 20% bio-oil substitution, respectively. Due
to the incorporation of biomass waste material, the partial reduction in phenol uses, and the favorable
properties, the date palm bio-oil substituted phenolic foams are considered more environmentally
benign alternatives to traditional phenolic foams.

Keywords: date palm bio-oil; phenolic foam; mechanical properties; thermal conductivity; toughened
phenolic foam

1. Introduction

Thermal insulation materials are used extensively in buildings and vehicles due to
their ability to retain thermal energy and, thus, minimize energy consumption. In general,
all thermal insulation materials used in construction must have low thermal conductivity,
be lightweight but with high mechanical strength, have low corrosion impact and low
moisture uptake, and good fire behavior properties. Over the years, a wide range of
natural and synthetic materials have been used, including straw, wool, cork, mineral wool,
expanded polystyrene beads, polyurethane foams, and phenolic foams. The latter has
attracted much attention due to its excellent properties, including low thermal conductivity,
flame retardancy, low flammability, and low smoke emission during combustion [1,2].
Phenolic foam installed in interior and exterior building walls and roofs, air crafts, and
marine vessels can significantly reduce the heat transmission and also provides some
protection from fire accidents [3,4]. Moreover, its low price and high chemical resistance
compared to other insulation foams or materials help to diversify its application areas [5].

Despite the many advantages of phenolic foams, their relatively low mechanical
strength limits their application in many areas. To address this shortcoming, the mechanical
properties of the foam have been improved either by chemical modification or by the
incorporation of various additives [1]. Chemical modification is achieved by introducing
long flexible chains into the structure of the phenolic resin via chemical reaction. In the
physical toughening method, organic or inorganic materials, fibers, and glass are blended
into the phenolic resin prior to curing. Our recent paper compares the toughening effect
of various additives such as urea, nano clay, sodium silicate, and lignin on phenolic
foam [6]. The chemical modification method is preferred to physical toughening as it tends
to provide better improvements in mechanical properties. Synthetic polymers such as
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polyurethane [7], polyethylene glycol [8], and polyether [9] have been used to toughen
phenolic foams via the chemical modification method. Biomass-derived raw materials
such as lignin, tannin, and cardanol have also been employed to physically and chemically
toughen phenolic foam [10]. Most of the biomass-derived materials contain phenolic groups
in their structure which can react with the functional groups present in phenolic resin. The
incorporation of such materials into the synthesis enables the reduction in the amount
of phenol used. Hence, toughening with biomass-derived materials not only improves
the mechanical properties, but also eases the dependence on petroleum-derived feed
stock. Phenolic foams are industrially produced from fossil-feedstock-derived phenol and
formaldehyde [11]. Current concerns regarding the environment, oil price hike, and fossil
fuel scarcity have driven researchers and manufacturers to shift their focus towards more
sustainable alternative feedstocks. Biomass represents a sustainable option for producing
chemicals and fuels due to its ease of availability, abundance, and low cost [12]. During
the past decade, tremendous research has been published on technologies and methods for
converting biomass into chemicals and biofuels [13,14]. Several more sustainable phenolic
foams have been produced recently by replacing phenol and formaldehyde with biomass-
derived materials such as tannin [15,16], cardanol [17], lignin [18], bio-oil [19], glyoxal,
furfural, and hydroxymethyl furfural.

Bio-oils produced from various biomass sources have already been used in the synthesis
of phenolic resin and foam [19–21]. Bio-oils produced during the pyrolysis of biomass contain
phenol, cresols, guaiacol, desaspidinol, catechol, resorcinol, ketones, aldehydes, and many
other phenolic compounds with long unsaturated alkane chains [22,23]. They are well suited
for chemical production and, due to their high phenol content, are also appropriate for
replacing phenol in phenolic resin production, either partially or completely. The long flexible
chains present in the bio-oil-derived phenols could impart toughness to the phenolic foam.
Bio-oil extracted from whole tree feedstock has been utilized to prepare phenolic resin. Hence,
it could help ease the dependence on nonrenewable petroleum resources.

Various types of bio-oils derived from different biomass feed stocks have been em-
ployed to prepare phenolic resin and foam. Yu et al. demonstrated a 10.5–47.4% increase in
compressive strength of phenolic foams with 10–20% bio-oil substitution [22]. Thus, bio-oils
are also able to enhance the mechanical properties of the foam without the need for addi-
tional toughening agents. Chaouch et al. demonstrated that 50% bio-oil substituted resin
showed better properties than conventional phenolic foam and the particle board prepared
using this resin displayed better internal bond (IB) strength [21]. Foams prepared from 50%
white birch bark-derived bio-oil substituted phenolic resin showed higher compressive
strength and elastic modulus than traditional phenolic foam [24]. Tung oil substituted foam
exhibited a 69–87% increase in mechanical strength with only a 6% substitution rate. The
long and flexible chains in the tung oil were responsible for toughening the phenolic foam
and, as a result, increasing its mechanical strength [25].

In this work, we utilized bio-oil extracted from date palm waste for partial substitution
of phenol in phenolic resin synthesis and corresponding foam production. The impact of
date palm bio-oil on the mechanical and thermal properties of the foam was also evaluated.
Date palm trees are usually grown in tropical and dry regions, especially in the Middle East
and the North African (MENA) countries. Around 62% of the date palm trees are located
in those countries and the remainder is spread between India, Pakistan, the United States,
and the Canary Islands [26]. Date palm trees are cultivated as crops as their fruit, known
as dates, have a wide range of applications in the food processing industry [27]. They are
rich in nutrients and are usually consumed as fruit and also used in making cookies, cakes,
and syrups [28]. Every year, after fruit harvesting, a huge amount of waste is produced
and only a small percentage of it is utilized for making rope, baskets, fish traps, furniture,
and boats. A major portion of the waste is used for generating steam in boilers, burnt, or
sent to landfill. Several studies have been reported recently on utilizing date palm waste
for the production of biofuels [29], biochar [30], and activated carbon adsorbents. As the
date palm tree contains lignin, hemicellulose, and cellulose in its structure, it could be a
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potential precursor for bio-oil production. Depletion of fossil fuels and the oil price hike
have driven researchers to develop more sustainable alternate energy sources. Recently,
there has been an exponential increase in research focusing on methods to convert biomass
to energy.

Date palm waste can be converted to bio-oil via the fast pyrolysis method, which could
be used for energy production [29,31–33]. In this study, the potential of biomass-derived
date palm bio-oil as partial substitute for phenol in the synthesis of phenolic resin and
foam was examined. In addition, the effects of the date palm bio-oil on key phenolic
foam properties, especially thermal stability and compressive strength, were evaluated.
Makkawi et al. [34] detailed the characterization of feedstock and the products obtained
from the pyrolysis of date palm waste. The major components in the date palm bio-oil
are various kinds of phenols, D-Allose, catechol, and apocynin [23], with the phenols
reaching nearly 50% of the total bio-oil [34]. In this study, date palm (DP) bio-oil substituted
resin was synthesized by replacing 10%, 15%, and 20% of phenol with date palm bio-oil
and the properties of the resin were analyzed. Foams from all the substituted resin were
produced by a standard foaming method. The density, thermal conductivity, mechanical
properties, and thermal stability of all the foams were analyzed and compared with those
of the traditional phenolic foam.

2. Experimental
2.1. Materials

Date palm waste was collected from trees within the vicinity of the American Univer-
sity of Sharjah, UAE. The waste consisted of equal fraction of leaves, leaf stems, and empty
fruit bunches. Phenol (detached crystal of 99% purity) was obtained from Fisher Scientific,
Loughborough, UK. Formaldehyde (37%), sodium hydroxide, and n-hexane were supplied
by Merck, Damstadt, Germany. The catalyst methane sulfonic acid (Lutropur MSA) and
the ethoxylate castor oil surfactant (Agnique CSO-30) used in the foaming process were
supplied by BASF, Ludwigshafen, Germany.

2.2. Preparation of the Date Palm Bio-Oil

The date palm bio-oil was produced from date palm waste via pyrolysis method using
an auger reactor at 525 ◦C. The date palm waste feedstock preparation methods, reactor
description and operation conditions, pyrolysis procedures, and product analysis results
are detailed in a recent publication [34]. The chemical composition of the DP bio-oil used
in this study was analyzed via GC–MS using undecane as an internal standard. The major
components present in the DP bio-oil include monosaccharides, hydrocarbons, phenols,
alcohols, and ketones. Makkawi et al. reported a detailed characterization of the date palm
bio-oil obtained from the date palm waste in recent publications [23,34].

2.3. Synthesis of Phenolic Resin (PR)

Resol-type phenolic resin was synthesized by the standard condensation process
between phenol (P) and formaldehyde (F) in the presence of sodium hydroxide with an F/P
molar ratio of 1.5. Initially, crystalline phenol (1 mol) was charged into a three-neck round-
bottomed (RB) flask maintained in an oil bath equipped with a magnetic stirrer. Sodium
hydroxide aqueous solution (15 mL, 50%, w/v) was added to the reaction mixture to adjust
the pH to 9 and the reaction was maintained for 30 min at 40–45 ◦C. Then, 60% of the
required formaldehyde was added dropwise into the reaction mixture while maintaining
the temperature at 60 ◦C and this was reacted for 1 h. NaOH solution (50%, 5 mL) was
added prior to the addition of formaldehyde and the temperature was increased to 85 ◦C.
The remaining 40% of the formaldehyde was added to the reaction when the temperature
reached 70 ◦C. The reaction was continued for another 2.5 h at 85 ◦C, after which the resin
was cooled and distilled to obtain the required viscosity.
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2.4. Synthesis of Date Palm Bio-Oil Substituted Phenolic Resin (DPR)

The synthesis of date palm bio-oil substituted resin was similar to the synthesis of
standard phenolic resin. Date palm-bio-oil substituted phenolic resin was prepared by
replacing 10, 15, and 20 wt.% phenol with DP bio-oil. The phenol percentage in date
palm bio-oil is less than the phenol obtained from petroleum resource. Hence, the F/P
ratio in the bio-oil substituted resin will be lower than the pure PR resin. The ratio will
increase with percentage of substitution. Major phenols present in the DP bio-oil (Figure 1)
were reported in recent publication [23,34]. Date palm bio-oil obtained via pyrolysis was
used directly in the substituted resin synthesis. In the date palm bio-oil substituted resin,
various percentages (10, 15, and 20 wt.%) of bio-oil dissolved in ethanol were added along
with the phenol. The remaining reaction steps were similar to those explained in the
synthesis of pure phenolic resin. The resultant resins are denoted as 10DPR, 15DPR, and
20DPR, respectively. The physical properties such as viscosity, solid content, pH, and free
formaldehyde content (ISO 9397 [35]) of all the resins were analyzed.
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2.5. Resin Characterization

The resin viscosity was measured using NDJ-8S Rotational Viscometer (Shanghai,
China) at room temperature (25 ◦C). The solid content of the resin was analyzed by the
method described in ASTM D4426-01 [36]. pH of both traditional and substituted resins
was measured by digital pH meter (Bluelab Combo Meter, Sacramento CA, USA). Free
formaldehyde content in all the synthesized resins was measured via the hydroxylamine
hydrochloride method in accordance with ISO 9397 [35].

2.6. Synthesis of Date Palm Bio-Oil Substituted Phenolic Foam (DPF)

Phenolic foam and date palm bio-oil substituted foams were prepared via a similar
procedure. Initially, resin and surfactant (Agnique CSO 30) were mixed with a hand blender.
Hexane, the blowing agent, was added to this mixture and mixed for one minute. The
catalyst, methane sulfonic acid, was added immediately and mixed again using the hand
blender. The reaction mixture was immediately poured into a closed-type mold and cured
at 80 ◦C for an hour. Post-curing was performed at 60 ◦C for 2 h. Compositions of the
prepared formulations are shown in PF, 10DPF, 15DPF, and 20DPF, which denote traditional
phenolic foam, foam from 10% date palm bio-oil substituted resin, 15% date palm bio-oil
substituted resin, and 20% date palm bio-oil substituted resin, respectively.

2.7. Foam Characterization

The apparent densities of all foam samples were measured as per the ASTM D1622
standard [37]. The thermal conductivity of both PF and DPF foams was analyzed using a
Tci thermal conductivity analyzer (C-Therm, Fredericton, New Brunswick, Canada) at room
temperature (25 ◦C). Morphology of the foams was examined using a scanning electron
microscope (TESCAN, Brno—Kohoutovice, Czech Republic) with an accelerating voltage
of 20 kV. Foam samples were first sputter coated with a gold conductive layer and then
visualized under SEM. The mean cell size, cell size distributions, and cell wall thickness
of each foam were calculated from at least 150 cells on the SEM images using ImageJ
software (https://imagej.net/ij/download.html, accessed on 21 June 2023). The thermal
stability of the foam samples was determined via thermogravimetric analysis (Perkin Elmer,
Hopkinton, MA, USA) at a scan rate of 10 ◦C min−1 under nitrogen (20 mL/min) from
30 to 850 ◦C. The compressive strength of the pure and toughened foams was measured
using a universal testing machine (Instron, Norwood, MA, USA) at room temperature
according to ASTM D1621 [38]. All results were reported as an average of three samples
each with a size of 30 × 30 × 30 mm3.

3. Results and Discussion
3.1. Characterization of Date Palm Bio-Oil, PR and DPR

In this work, date palm bio-oil derived from date palm waste was used for substituting
phenol in phenolic resin production. Phenols obtained from petroleum resources are highly
pure and simple chemical processes and purification methods are required for their pro-
duction. On the other hand, bio-oil chemical combinations are highly complex; as a result,
careful structural analysis is required for their application as a raw material for chemical
synthesis. GC–MS analysis is usually used to quantify the chemical compounds present in
bio-oils. The GC–MS analysis confirmed the presence of a major 30 compounds, represent-
ing 75% of the DP bio-oil including various phenols such as phenol (7.69%), 2-methoxy-
phenol (3.50%), 2-methyl-phenol (2.43%), 4-ethyl-phenol (1.93%), 2,6-dimethoxy-phenol
(2.46%), (E)-2,6-dimethoxy-4-(prop-1-en-1-yl)phenol (2.43%), and 3-methyl-phenol (2.69%).
Other significant compounds are various alcohols, aldehydes, esters, alkanes, and ketones,
including 1,2-benzenedicarboxylic acid dibutyl ester (7.01%), 2,6,10-trimethyl dodecane
(5.07%), 4-methyl-2,5-dimethoxybenzaldehyde (2.06%), 1,2,3-trimethoxy-5-methyl-benzene
(1.93%), and catechol (1.69%). Chemical structures of the major compounds in the DP oil
are shown in Figure 1.

https://imagej.net/ij/download.html
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Date palm bio-oil substituted phenolic resins were prepared by substituting phenol
with various percentages of bio-oil. The phenolic compounds present in the DP bio-oil
could react with the formaldehyde molecule, and the long chains of the DP bio-oil were
introduced into the resin network. A schematic representation of the reaction mechanism is
shown in Figure 2.
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Table 1 presents the properties of the standard phenolic resin and the date palm bio-oil
substituted resins. It has been shown previously that long alkyl chains in the phenols
present in the bio-oil and also the other hydrocarbons, ketones, and aldehydes could
provide a toughening effect to the resin by introducing chain flexibility [39].

Table 1. Properties of traditional phenolic resin (PR) and date palm bio-oil substituted phenolic
resin (DPR).

Resin Viscosity @ 25 ◦C
(mPa·s) Solid Content (%) pH Free Formaldehyde

Content (%)

PR 2800 75.9 ± 0.4 10 0.178

10DPR 1110 69.8 ± 0.3 9.7 0.470

15DPR 1390 67.9 ± 0.4 9.6 0.715

20DPR 5210 75.8 ± 0.2 9.6 1.18

As shown in Table 1, the viscosities of 10DPR and 15DPR are both lower than that of
the standard phenolic resin (PR), while the viscosity was found to increase with increas-
ing percentage of bio-oil substitution. In PF, the F/P ratio was 1.5 and the reactivity of
phenols obtained from the petroleum sources were higher than those from the biomass.
In addition, the free formaldehyde content in PR resin is very low compared to all other
substituted foams, which also confirms the high reactivity of phenols in the PR resin. In
DPRs, the percentage of phenols available for cross-linking was lower and in the order of
10DPR < 15DPR < 20DPR, hence the F/P ratios in substituted resins were lower than
that in PR, which also results in the lower viscosities of 10DPR and 15DPR. Also, the
steric hindrance due to the complexity of the DP bio-oil and the presence of several other
molecules or functional groups reduces their reactivity with formaldehyde. Bio-oil contains
a significant percentage of water content, which is also a reason for the low viscosity of
the substituted resin. The viscosity of the substituted resin increased with an increase in
date palm bio-oil percentage. This is due to the greater availability of functional groups
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(phenols) for condensation reaction and also the steric hindrance from the long alkyl chains
of hydrocarbons in the bio-oil. The increase in F/P ratio with respect to the percentage of
bio-oil substitution also helps to enhance their viscosity. The solid contents of 10DPR and
15DPR are lower than that of pure phenolic resin due to their low viscosity and the high
water content of the DP bio-oil, whereas the resin 20DPR shows a similar solid content to
PR resin and is higher than the other DP bio-oil substituted resins. The lowest solid content
in 15% DP bio-oil substituted resin might have been caused by the excessive percentage of
phenol in the oil which was not consumed with formaldehyde in the reaction due to the
steric hindrance. During the solid content analysis, the unreacted phenol evaporated and
this led to a lower solid content. Furthermore, the free formaldehyde content in 15DPR is
significantly higher than that in PR and DPR, which also confirms the presence of unreacted
phenol in the resin. The high solid content in 20DPR is due to the high viscosity of the
resin and increased percentage of DP bio-oil in the resin. The high F/P ratio due to 20%
substitution and the presence of long alkyl chains enhances the resin viscosity. The PR and
20DPR have almost similar solid content even though the viscosity of 20DPR is significantly
high. This is due to the water content present in DP bio-oil and also the lower reactivity
of the phenols present in the DP bio-oil. The high viscosity of 20DPR is mainly due to the
highest percentage of high-molecular-weight complex phenols present in the resin. Due
to the steric hindrance from the complex molecules in bio-oil, there is a high amount of
free phenols (petroleum based) present in the 20DPR resin. These phenols will evaporate
during the solid content analysis, causing a lower solid content than the expected high
value with respect to its viscosity. Free formaldehyde in the pure phenolic resin is very
low (0.17%). However, the substituted resin shows relatively high formaldehyde content
and it increases in proportion to the date palm oil percentage. This also suggests that the
lower reactivity of date palm bio-oil resin is due to the steric hindrance from its structure.
Substituted resin has lower pH than traditional phenolic resin due to the acidity of the
phenols in the bio-oil.

3.2. Characterization of PF and DPF

Foams were formulated from both phenolic and date palm bio-oil substituted resin.
Several foams were formulated by changing the concentrations of Agnique CSO-30, hexane,
and MSA. It was found that the properties of the foams could easily be modified by
changing the concentration of surfactants, blowing agents, and catalysts. Table 2 presents
selected formulations of PF and DPF foams and Figure 3 shows images of the date palm
bio-oil, PF, and various DPF samples.

Table 2. Formulations of phenolic (PF) and date palm bio-oil substituted foams (DPF).

PF 10DPF 15DPF 20DPF

Resin viscosity (mPa·s) 2800 1110 1390 5210
Resin (g) 25 25 25 25
Agnique CSO30 (g) 1 1 1 1
Hexane (mL) 4 4 4 4
L-MSA (mL) 2 2 2 2

3.2.1. FT-IR Characterization of PF and DPF

The FT-IR spectra of PF and various DPF samples are shown in Figure 4. The broad
peak at 3340 cm−1 in the PF spectra corresponds to the -OH hydroxyl group. Peaks at
1605 cm−1 and 1498 cm−1 represents the -C-C aromatic ring stretch and aliphatic -CH2
bend, respectively. The phenolic -C-O stretching peaks are seen at 1199 cm−1. The broad
hydroxyl peaks of the PF foams are split into two peaks in all the bio-oil substituted
foams. The number of phenolic groups in date palm oil is less and it is sterically hindered
as compared to the pure phenolic foam. However, the -CH stretching vibrations in the
range of 1604 cm−1 of the aromatic rings are retained in all bio-oil substituted foams.
All the substituted phenolic foam samples show similar peaks in the region between
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1650–1000 cm−1. Bio-oils also contain the strong stretching vibrations of -C-O groups of
the aromatic rings, as observed in the PF foams.
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3.2.2. Apparent Density of PF and DPF

Physical properties of traditional PF foam and the bio-oil substituted foams with
various percentage of date palm bio-oil are listed in Table 3.

Table 3. Properties of traditional phenolic foam (PF) and date palm bio-oil substituted phenolic
foam (DPF).

Density (kg/m3)
Thermal Conductivity

(W/m·K)
Compressive

Strength (kPa)

PF 49 ± 1 0.035 ± 0.001 105 ± 7

10DPF 73 ± 1 0.040 ± 0.001 202 ± 5

15DPF 90 ± 2 0.038 ± 0.002 294 ± 2

20DPF 61 ± 1 0.036 ± 0.002 146 ± 10

Apparent density of phenolic foams is highly dependent on the viscosity of the resin
from which it was formulated [40], the cross-linking efficiency of the reactive functional
groups present in the resin, and the amount of blowing agents in the resin foaming mix.
The traditional phenolic foam has a density of 48 kg/m3, whereas the DPF samples have
higher densities. PF foam density increased with 10% and 15% bio-oil substitution, whereas
it showed a reduction with 20% substituted resin, but still higher than pure PF. In PF,
phenols are highly reactive; hence, the cross-linking reaction during the foaming process is
facile. In low-viscosity resin, the mixing of foaming agents is easy and the expansion rate
during the foaming process is also high, which will result in a foam with a low density.
In 10DPF, the low viscosity of the resin facilitates the uniform distribution of surfactants,
blowing agents, and catalyst in the resin and also helps the cross-linking reaction between
the larger number of reactive sites present in the bio-oil and the resin. Low-viscosity resin
usually results in a low-density foam. But here, though the viscosity of 10DPR is less than
PF, the foam formulated from it shows a higher density. This is due to the steric hindrance
offered by the long alkyl chains in the DP bio-oil. The long chains trap the blowing agents
inside the chains and prevent them from expansion. In 15PDF, density is increased to
90 kg/m3, which is even higher than that of 10DPF due to the slightly higher viscosity
and more steric hindrance of the alkyl chains of the bio-oil. Since the viscosity of 20DPR is
higher than all substituted resin and also the PR, it is expected to have the highest density.
However, the foam exhibits a density of 61 kg/m3, which is lower than DPF and higher
than pure PF. This unusual behavior of the 20DPF is explained by the presence of high
water content in the resin originating from the high content of DP bio-oil and elevated level
of free formaldehyde in the resin due to the low reactivity of the bio-oil phenols. This water
acts as a nucleating agent along with the blowing agent, which resulted in expansion of
the resin mixture and, hence, a low-density foam. The densities of PF and DPFs and their
corresponding resin viscosity are shown in Figure 5.

3.2.3. Thermal Conductivity PF and DPF

Thermal conductivity is an important physical property that is the primary factor
in determining the thermal insulation efficiency of a foam. Foams with low thermal
conductivity are preferred for insulation due to their improved ability to reduce energy
loss while minimizing the insulation thickness required. The thermal conductivity of
phenolic foam was found to increase after date palm bio-oil substitution. Pure PF has a
thermal conductivity of 0.035 W/m·K, which increased to 0.036–0.040 W/m·K after DP
bio-oil substitution. Analysis of variance (ANOVA) was conducted to test the statistical
significance of the thermal conductivity results by comparing between groups for foams
with different DP bio-oil content. The results indicate a significant difference at the p < 0.05
level for the four groups, F(3,8) = 10.3, p = 4.08 × 10−3.
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Figure 5. The densities and viscosities of the PF and DPF samples.

The high density contributes to an increase in the thermal conductivity of the 10DPF
and 15DPF. Li et al. also observed a similar increase in thermal conductivity with density
of the bark-derived bio-oil substituted foam [24]. In foams, thermal conductivity through
gas is the most predominant component in the total heat transferred as the foams contain a
huge volume of gas trapped inside their structure. The conduction through solid is more
prevalent in highly dense foams [41]. Though dense foams show high thermal conductivity,
it is not directly proportional to the density. Other factors such mean cell size, closed cell
content, and voids on the cell walls also contribute towards the thermal conductivity [42].
Though the density of 10DPF is lower than 15DPF, it shows a higher conductivity, of
0.040 W/m·K, than the conductivity value of 0.038 W/m·K in 15DPF. The large number
of voids present on the cell walls of the 10DPF (Figure 6B) explains the high conductivity
of 10DPF. The gas entrapped inside the cells might escape through the voids, leading to
an increase in the conductivity of 10DPF. Among all the three substituted foams, 20DPF
shows similar thermal conductivity to that of PF due to a similarity in the cell structure,
cell size distribution, and low density.
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3.2.4. Morphology of PF and DPF

The microstructure of the PF and bio-oil substituted foams was analyzed using a
scanning electron microscope (SEM). The cell structure plays a crucial role in determining
the properties of insulation foam, especially the thermal conductivity and mechanical
strength. In order to have a low thermal conductivity and high mechanical strength,
uniform, small, and closed cells are required. The SEM images of PF and all DPF samples
are shown in Figure 6 and their cell properties are listed in Table 4.

Table 4. Cell structure properties of traditional phenolic foam (PF) and date palm bio-oil substituted
foam (DPF).

Density
(kg/m3)

Minimum Cell
Size (µm)

Maximum Cell
Size (µm)

Mean Cell
Size (µm)

Minimum Cell
Thickness (µm)

Maximum Cell
Thickness (µm)

Mean Cell Wall
Thickness (µm)

PF 49 ± 1 25 188 85.9 ± 34 4.5 39.5 12.6 ± 7

10DPF 73 ± 1 9 210 57.09 ± 45 9.4 44.2 21.7 ± 7

15DPF 90 ± 2 9 188 54.4 ± 36 5 45.6 28.6 ± 11

20DPF 61 ± 1 18 150 64.5 ± 32 9.8 31.6 22.3 ± 6

All the foams have closed cells, with some perforations on cell walls due to the
evaporation of water present in the corresponding resin. Traditional PF foams have oval-
shaped closed cells with a mean diameter of 85.9 ± 34 µm and a cell wall thickness of
12.63 ± 7 µm, as shown in Table 4. The cell sizes in PF foams range from 25 to 188 µm,
as shown in Figure 7. Perforations are seen in all the DPF foams as the water content in
the date palm resin is higher than in standard phenolic resin. Prior to curing, DPF and PF
are aqueous compatible, but during the foaming and curing process, they are converted
to a cross-linked water incompatible foam. The transition from water compatibility to
noncompatible state during the curing results in the expulsion of water [43]. This expelled
water causes perforations in the cell walls [44,45]. Since the DPR contains more water
content, the expelled water during the cross-linking process will be higher, which leads
to larger number of perforations on the foam. Since the viscosity of the 10DPR is lower
than the PR, it is expected to have a lower density with large cells. Due to the steric
hindrance from the long alkyl chains present in the bio-oil, bubble formation and expansion
become restricted, which leads to a high density with small cells. The mean cell size was
decreased to 57.09 ± 45 µm, with thick cell walls having thicknesses ranging from 9.4 to
21.68 ± 7 µm. The high solid density of the 10DPF was concentrated in between the cell
walls and strut region. Among all the substituted foams, 15DPF shows the most uniform
cell structure, with long and elongated cells having a mean cell diameter of 54.4 ± 36 µm.
The high viscosity of 15DPR compared to PR and 10DPR imposes a restriction on the foam
expansion, which results in a dense foam with small and elongated cells. The long alkyl
chains in the resin also inflict restriction on the foam expansion. In 20DPF, due to the high
viscosity of the corresponding resin, the cross-linking reaction was poor, which leads to a
nonuniform foam expansion and a reduction in density of the resulting foam. As a result,
the cell structure becomes irregular, with cell size ranging from 18 to 150 µm and a mean
cell size of 64.5 ± 32 µm. The 10DPF and 20DPF have cells with almost similar size and
cell wall thickness due to their almost close density. All the bio-oil substituted foams have
thicker cell walls than the traditional phenolic foam due to their high density and small
mean cell size. The steric hindrance offered by the long alkyl chains in the bio-oil also
contributes to the increase in the cell wall thickness in substituted foams.

3.2.5. Mechanical Properties of PF and DPF

The mechanical performance of the bio-oil substituted foams was analyzed by mea-
suring the compressive strength on a universal testing machine. The standard PF exhibited
a compressive strength of 108 kPa. Apparent density and the cell structure of the foam play
a decisive role in determining the compressive strength [46]. Foams with high density and
thick cell walls tend to have high compressive strength which increases proportionally with
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density. Li et al. found that the outer-bark-derived bio-oil substituted phenolic foams with
high density exhibit higher compressive strength than inner-bark-derived oil substituted
foams [24]. The differences observed in the compressive strength of the bark-derived
oil substituted phenolic foams were due to differences in density. PF shows a density
of 49 kg/m3 and a cell wall thickness of 12.6 ± 7 µm. Analysis of variance (ANOVA)
was conducted to test the statistical significance of the compressive strength results by
comparing between groups for foams with different DP bio-oil content. The results indicate
a significant difference at the p < 0.05 level for the four groups, F(3,8) = 478, p = 2.34 × 10−9.
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The compressive strength of the traditional PF was lower due to its low apparent
density and thin cell walls. Compressive strength of DP bio-oil substituted foams was found
to be higher than that of standard PF. As the percentage of substitution was increased, the
compressive strength also increased until an optimum percentage, after which the strength
started to deteriorate (Figure 8B). Yu et al. also observed similar trend in the compressive
strength of the phenolic foam modified with bio-oil [22]. They found that the compressive
strength of the phenolic foam increased with up to 20% bio-oil substitution, while further
incremental increases weakened the compressive strength due to cell collapse. In this study,
the 10DPF and 15DPF show compressive strengths of 202 kPa and 294 kPa, respectively.
The enhancement in compressive strength is caused not only by the increased density of
the foam but also by the presence of long alkyl chains of various moieties in the date palm
bio-oil. The long chains offer greater resistance to rupture/fracture under applied stress by
absorbing the destruction energy, controlling the rate and propagation of induced cracks,
and, thereby, slowing the cell damage during compression. Hu et al. observed that the
long alkyl chains present in the lignosulfate contribute to the toughness to a greater extent
than the pure benzene ring in the PF [47]. Hence, the lignosulfonate-added phenolic foam
exhibits higher compressive strength than pure phenolic foam. In addition to alkyl chains,
all the substituted foams have thick cell walls as compared to standard PF. Thick cell walls
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absorb compression stress, effectively distribute the structure throughout the foam, and
increase the compression resistance [15,41]. The 20DPF exhibited the lowest compressive
strength of 146 kPa among all the substituted foams due to its low density of 61 kg/m3.
The stress–strain curves of all the foams are shown in Figure 8A.
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3.2.6. Thermal Properties of PF and DPF

Thermal stability of the foams can be analyzed via TGA studies. The TGA and DTG
(derivative thermogram) plots of standard PF and the substituted foams are shown in
Figure 9. Sometimes, thermal stability of the foams is adversely affected by addition of
toughening agents [20]. On the other hand, some toughened foams have enhanced the
thermal stability compared with the standard PF [48]. Hence, it is important to study the
effect of date palm bio-oil on the thermal resistance of phenolic foam. All the DP bio-oil
substituted foams show better thermal stability and residual weight percentage than the
standard PF foams over all the studied temperatures. Thermal stability of other bio-oil
substituted foams has been reported to decrease considerably [20] but the date palm bio-oil
substitution does not appear to affect the thermal stability of the foam. The thermograms of
PF and DPF were divided into four regions: (a) below 100 ◦C, (b) between 100 and 200 ◦C,
(c) between 200 and 600 ◦C, and (d) above 600 ◦C. Thermal degradation curves of phenolic
foam have three main regions. The first region corresponds to the evaporation of water and
small molecules such as unreacted phenol, formaldehyde, and blowing agent. In the second
region, dehydration due to further curing of the resin may occur [49]. Also, decomposition
of surfactant and curing agents happens in this region. Major weight loss occurs in the third
stage as it denotes the ether bond cleavage, or the methylol group dehydrogenation on the
aromatic ring [50], hydroxyl radical formation from the phenolic hydroxyl group [51], and
its reactions with methylene and hydroxymethyl groups. The region above 600 ◦C denotes
the degradation of long alkyl chains and methylene bridges [52].

The decomposition data of pure PF and DPF are listed in Table 5. The initial decom-
position temperature, T−5% (the temperature at which 5% mass loss occurs), for each of
the toughened foams is higher than that of pure PF. The values shown in Table 5 clearly
demonstrate the thermal stability of date palm bio-oil toughened phenolic foam. In PF, the
initial weight loss occurs at around 125 ◦C (T−5%), whereas in DPFs it occurs in the range
between 150 and 200 ◦C. In 10DPF and 15DPF, the degradation temperature is increasing
with the percentage of DP bio-oil, while in 20DPF, T−5% occurs at a lower temperature,
which is even higher than pure PF. The high thermal stability of DPFs at low temperature
is due to the thick cell walls as compared to the PF. The thick walls prevent the loss of low
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volatiles at low temperature [19]. In 20DPF, the T−5% occurs at a lower temperature due to
its low density and the presence of higher number of alkyl chains. The thermal stability of
alkyl chains is less than benzene rings [20]. Observation of the residual weight percentage
at 200 ◦C also supports the high stability of DPF, as these show higher residual weight than
pure PF. Density also plays a role in the thermal stability of DPF foam. At T−5%, the thermal
stability of DPF follows the order of 15DPF > 10DPF > 20DPF > PF, a density-dependent
degradation pattern. Phenolic foams with high density show better thermal stability [46].
Like in PF, the maximum weight loss occurs in the region between 500 and 600 ◦C and
the Tmax of all the foams are listed in Table 5. The weight loss in this region is mainly
due to the ether linkages and the alkane chains [53]. The Tmax of 10DPF and 15DPF
are closer and the 20DPF shows maximum degradation at 568 ◦C, which is higher than
pure PF. The residual weight percentage at 400 ◦C, 600 ◦C, and 800 ◦C is in the order of
10DPF > 15DPF > 20DPF > PF. At higher temperatures, 10DPF shows higher thermal
stability than 15DPF and 20DPF due to the presence of fewer alkyl chains in them than
other substituted foams. The alkyl chains introduced into the phenolic matrix smoothen
the resin chain motion, which facilitates quick removal of volatile compounds [20]. The
15DPF and 20DPF contain more alkyl chains than 10DPF, which degrades faster; hence, it
shows less stability than 10DPF. Apart from the alkyl chains, the high density of 15DPF
also facilitates higher thermal stability than 20DPF.
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Table 5. TGA and DTG data of traditional phenolic foam (PF) and date palm bio-oil substituted
phenolic foams (DPFs).

T-5% (◦C) Tmax (◦C)
Residual Weight (%)

200 ◦C 400 ◦C 600 ◦C 800 ◦C

PF 124.7 564.2 91.6 81.9 52.2 29.1

10DPF 180.9 587.4 93. 84.6 56.5 32.4

15DPF 192.1 588.9 94.4 84.1 55.7 30.6

20DPF 147.3 567. 92.5 83.4 54.1 30.1

4. Conclusions

In this work, the potential of bio-oil derived from date palm waste as a substitute for
phenol in phenolic resin production and its toughening impact on the foam properties
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were studied. Resins of up to 20% DP bio-oil substitution were prepared and used for
foam production. The long flexible chains as well as various functional groups on the
date palm bio-oil provide faster cross-linking than pure phenolic resin. SEM images of the
foam cell structure prove the impact of date palm bio-oil on the cell size, distribution, and
cell wall thickness. All the substituted foams exhibited a uniform structure with closed
cells and thick cell walls compared to the pure phenolic foam. Positive improvements in
the cell structure also explain the enhancement in compressive strength. Though thermal
conductivity of 10% and 15% substituted foams increased, we could produce a foam with
similar thermal conductivity and high compressive strength with 20% bio-oil substitution.
Specifically, the compressive strength increased to 93%, 181%, and 40% with 10%, 15%,
and 20% DP bio-oil substitution. Hence, the mechanical properties of the resulting foams
were improved without the need for any additional toughening agents. Several bio-based
toughening agents decrease the thermal stability of the foam while increasing its mechanical
strength. However, the date palm bio-oil was found to increase the mechanical strength
while also maintaining thermal stability. Furthermore, the use of material from date palm
waste can help to reduce the amount of waste going to landfills. Therefore, the date palm
bio-oil substituted phenolic foams have improved environmental profile and superior
mechanical properties compared to traditional phenolic foams.
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