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Abstract: Gaskets and seals are essential components in the operation of proton exchange membrane
(PEM) fuel cells and are required for keeping hydrogen and air/oxygen within their individual com-
partments. The durability of these gaskets and seals is necessary, as it influences not only the lifespan
but also the electrochemical efficiency of the PEM fuel cell. In this study, the cause of silicon leaching
from silicone gaskets under simulated fuel cell conditions was investigated. Additionally, to reduce
silicon leaching, the silica surface was treated with methyltrimethoxysilane, vinyltriethoxysilane, and
(3,3,3-trifluoropropyl)trimethoxysilane. Changes in the silica surface chemistry were investigated
by scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis,
elemental analysis, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy.
Inductively coupled plasma-optical emission spectroscopy analysis revealed that surface-treated
silica was highly effective in reducing silicon leaching.

Keywords: silicone rubber gasket; silica surface modification; silicone elution

1. Introduction

Fuel cells are devices that generate electricity through electrochemical processes using
fuels, i.e., hydrogen and oxygen, and produce clean energy. Proton exchange membrane
(PEM) fuel cells are the most representative fuel cells that have high efficiency and diverse
applications. PEM fuel cells consist of membrane electrode assembly (MEA), end plates,
bipolar plates, gas diffusion layers, current collectors, and elastomeric gaskets [1,2]. All
these components must be assembled correctly, and their edges must be sealed with sealing
materials like gaskets.

Gaskets are an important component that determines the durability of a PEM fuel
cell. The gasket of each cell protects the reactant gases, i.e., hydrogen and air/oxygen,
within their individual compartments. Elastomeric materials, especially rubber, are mainly
used as the sealing material (e.g., gaskets) because they are easy to fabricate, are relatively
less expensive, and have excellent sealing properties. These sealing materials are not only
in contact with acidic solutions, coolants, and moist gases but also undergo mechanical
stress when used as gaskets in PEM fuel cells. Therefore, it is essential to maintain the
durability and stability of gasket materials to ensure the adequate sealing performance and
electrochemical performance of PEM fuel cells [3,4].

Currently, synthetic rubbers, such as ethylene propylene diene monomer (EPDM)
rubber and fluorine-based rubber (FKM), are used as elastomeric materials for fuel cell
gaskets [5,6]. Silicone rubber, which has excellent durability and productivity, is considered
an alternative to synthetic rubber for fabricating gasket materials [7]. However, silicon-
based materials are prone to degradation in a fuel cell environment (80 ◦C and acidic
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conditions), raising stability concerns. Many studies on the chemical decomposition and
mechanical degradation of silicone rubber exposed to accelerated durability test solutions,
i.e., high-concentration PEM fuel cell solutions, suggest that the siloxane bonds of silicon-
based materials decompose in the fuel cell environment, causing chemical instability [8–15].
However, no studies have been conducted to investigate whether fillers added to silicon
gaskets cause silicon leaching in the fuel cell environment.

Silica is mainly used as a filler for reinforcing silicone rubber materials [16–18]. Silica
nanoparticles are used for reinforcing fillers owing to their economic feasibility, easy avail-
ability, and structural similarity with silicone elastomers [19–22]. Numerous studies have
been conducted to produce silicone rubber composites with excellent mechanical proper-
ties. Nanoparticle properties of pure silica nanoparticles that have not been surface-treated
cannot be effectively improved because particles with hydrophilic surfaces agglomerate,
owing to the hydroxyl (–OH) groups present on the surface. Therefore, surface treatment is
mainly used to enhance the dispersion of silica nanoparticles within the silicone rubber
matrix [23–26]. The silica surface can be treated using silane coupling agents to improve
the mechanical properties, thermal properties, and interactions between the filler and
matrix [27–31].

Long-term durability and stability are important factors in PEM fuel cell performance.
If the gasket degrades or the filler leaches, the performance deteriorates because the
reactive gases, i.e., hydrogen and oxygen, leak and mix together, affecting the durability
and lifespan of the PEM fuel cell [32]. Therefore, increasing the stability of the gasket
material by minimizing silicon leaching is the most important strategy for enhancing the
durability and performance of PEM fuel cells.

In this study, the effect of fillers on silicon leaching from fuel cell gaskets was in-
vestigated, specifically focusing on commercial liquid silicone rubber (LSR) materials.
Additionally, to reduce silicon leaching from gaskets under PEM fuel cell conditions,
the surface of silica—a filler used in silicone rubber—was modified with silane cou-
pling agents. Methyltrimethoxysilane (MTMS), vinyltriethoxysilane (VTES), and (3,3,3-
trifluoropropyl)trimethoxysilane (TFPTMS) were used in present study to reduce the leach-
ing of filler by improving the hydrophobicity of the filler. Furthermore, the vinyl groups in
VTES could participate in a curing reaction and, as a result, the leaching of filler could be
effectively reduced. Modifications in silica surface chemistry were examined by scanning
electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), thermogravimet-
ric analysis (TGA), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and
Fourier transform infrared (FT-IR) spectroscopy. Additionally, the effect of surface-treated
silica on the mechanical properties of silicone composites was investigated. Compatibility
of the silicone composite was confirmed by SEM. The tensile strength, elongation at break,
and hardness of the silicone composite were investigated using a universal testing machine
(UTM) and a durometer. Finally, inductively coupled plasma-optical emission spectroscopy
(ICP-OES) analysis confirmed that the surface-treated silica was very effective in reducing
silicon leaching from silicon gaskets. This study provides insights into the mitigation of
silicon contamination, contributing to the performance improvement of gaskets for PEM
fuel cells. This, in turn, is expected to improve the durability and performance of PEM
fuel cell systems, ultimately contributing to the development of clean and sustainable
energy technologies.

2. Materials and Methods
2.1. Materials

For the commercial LSR tests, component A (SL7260A) and B (SL7260B) for two-
component LSR with silica and component A (PTA) and B (PTB) for two-component LSR
without silica were procured from KCC Corp., Seoul, Republic of Korea.

For the surface modification of silica nanoparticles, fumed silica was purchased from
Evonic (AEROSIL 300; specific surface area: 300 m2/g). MTMS (98.0%) was purchased
from TCI Co., Ltd., Tokyo, Japan. VTES (98.0%) and (3,3,3-trifluoropropyl)trimethoxysilane
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(98.0%) were purchased from JSI silicone Corp., Seongnam, Republic of Korea. Ethanol
(99.5%) and ammonium hydroxide solution (28%) were purchased from Sigma-Aldrich
Corp, St. Louis, MO, USA.

2.2. Commercial LSR Test

The materials used in this study were commercial sealing materials with elastomeric
properties, i.e., silicone rubber supplied by KCC Corp., Republic of Korea. To prepare
the commercial LSR sample containing silica, equal weights of components A (SL7260A)
and B (SL7260B) were mixed using a two-roll mill. Then, the mixture was poured into a
metal mold and cured for 10 min at 170 ◦C. The cured sample was repeatedly washed with
deionized water and post-cured for 4 h at 200 ◦C to obtain the final LSR sample containing
silica. The LSR sample without silica was prepared using components A (PTA) and B (PTB)
in the same manner.

Two sheets of samples with a length and width of 30 mm and thickness of 2.0 mm were
prepared. Each sample was placed in a polypropylene (PP) container and deionized water
was filled into it, following which the sample was placed in an oven. The test temperature
was set at 80 ◦C, which is close to the actual operating temperature of a PEM fuel cell. Each
aged sample was removed from the test container after 168 h and the residual solution
was collected for subsequent analysis. A schematic of the commercial LSR test is shown
in Figure 1.
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Figure 1. Schematic of the commercial LSR test: (a) LSR containing silica and (b) LSR without silica.

2.3. Surface Modification of Silica Particles

Surface treatment of fumed silica was carried out using MTMS, VTES, and TFPTMS.
First, 20 g of fumed silica was dispersed into 700 mL ethanol in a 1-L four-neck flask by
ultrasonicating the mixture for 30 min. After dispersion, 84 mL of ammonium hydroxide
solution and each of MTMS, VTES, and TFPTMS was added to the silica suspension. Then,
the mixture was heated on a heating mantle to 70 ◦C and stirred for 12 h. After the reaction
reached completion, the mixture was centrifuged (Labogene 1248, Seoul, Republic of Korea)
for 15 min at 4000 rpm and repeatedly washed with ethanol to remove impurities. This
step was repeated three times. Finally, the residue was dried overnight in a vacuum oven
at 60 ◦C to obtain the modified silica. Four types of samples were prepared using identical
procedures. A schematic of this procedure is shown in Figure 2.
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Figure 2. Schematic of the procedure for preparing surface-modified silica nanoparticles.

The surface-modified silica nanoparticles were designated as MVF-SiO2-1, MVF-SiO2-
2, MVF-SiO2-4, and MVF-SiO2-16. MVF indicates that the samples had been modified with
MTMS, VTES, and TFPTMS. The number in each sample name represents the amount of
TFPTMS. For example, MVF-SiO2-1 represents silica modified with 4 g MTMS, 4 g VTES,
and 1 g TFPTMS. The formulation of silane-treated silica was listed in Table 1.

Table 1. Composition of silica and each silane used for surface treatment.

Fumed Silica
(g)

MTMS
(g)

VTES
(g)

TFPTMS
(g)

SiO2 20 - - -
MVF-SiO2-1 20 4 4 1
MVF-SiO2-2 20 4 4 2
MVF-SiO2-4 20 4 4 4
MVF-SiO2-16 20 4 4 16

2.4. Preparation of Silicone Rubber/Silica Filler Composites

The surface-modified silica was dispersed in PTA and PTB (LSR without silica) using
a two-roll mill to prepare the silicone rubber/silica filler composites. PTA and PTB were
mixed at the same weight ratio, and the surface-modified silica was mixed into the compos-
ite at a ratio of 28 phr. After mixing evenly, the mixture was poured into a metal mold and
cured for 10 min at 170 ◦C. The cured sample was repeatedly washed with deionized water
and post-cured for 4 h at 200 ◦C to obtain the final composites. Five types of samples were
prepared using identical procedures. A schematic of this procedure is shown in Figure 3.
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The samples were designated as silicone rubber/SiO2, silicone rubber/MVF-SiO2-1,
silicone/MVF-SiO2-2, silicone rubber/MVF-SiO2-4, and silicone rubber/MVF-SiO2-16.

2.5. Characterization

SEM (S-4300, Hitachi, Tokyo, Japan) was used to analyze the morphologies of materials
in the residual solution from the commercial silicone rubber test. It was also used to
observe the morphologies of the surface-treated silica and to confirm the compatibility
between silicone rubber and silica filler. EDS (S-4300, Hitachi, Japan) was used to determine
the chemical composition of the surface-modified silica and the residual solution from
the commercial silicone rubber test. EA (Thermo EA1112, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) was performed for the quantitative analysis of carbon and hydrogen.
FT-IR spectroscopy (VERTEX 80 V; Bruker, Billerica, MA, USA) was employed to identify
the functional groups of the surface-modified silica in range of 4000–400 cm–1. Thirty-
two scans were recorded at a resolution of 1 cm−1 to obtain the FT-IR spectrum. XPS
(Thermo Fisher Scientific K-Alpha spectrometer, USA) was used to determine the chemical
composition of the surface-treated silica using a monochromatic Al Kα X-ray source. TGA
(TGA 4000, PerkinElmer, Waltham, MA, USA) was conducted to investigate the thermal
properties of the surface-modified silica. The modified silica was heated from 30 to 880 ◦C
under an N2 atmosphere at a rate of 10 ◦C/min. ICP-OES (Optima 7300 DV, Waltham, MA,
USA) was used to detect silicon leachants.

A universal testing machine (DUT-2TC, Daekyung Engineering Co., Bucheon, Republic
of Korea) was used to evaluate the tensile strength and elongation at break (ASTM D412)
of the silicone rubber/silica composites. The tensile strengths were measured at a cross
head speed of 200 mm/min. A durometer (TECLOCK, Tokyo, Japan) was used to evaluate
the hardness (Shore A) of the silicone rubber/silica composites. The tensile strength and
harness tests were conducted five times to obtain accurate values, and the average of the
obtained values was calculated.

3. Results and Discussion
3.1. Contamination of Filler

Fillers are required to enhance the mechanical properties, including tensile strength
and hardness, of elastomeric materials employed for sealing purposes or for fabricating
gaskets. However, filler materials like silicon dioxide might leach out from the gasket into
the immersion solution under simulated PEM fuel cell conditions [3]. ICP-OES was used
to detect silicon leachants from the two residual solutions collected from the commercial
LSR test.

Table 2 shows the silicon concentration in the residual solution of commercial LSR
materials (silicone rubber with or without silica).

Table 2. Silicon concentration in the residual solution collected from the commercial LSR test
according to ICP-OES analysis.

Silicon Concentration (mg/L)

Silicone containing silica 122.8 ± 3.3
Silicone without silica 2.3 ± 0.2

Silicon concentrations in the silicone with and without silica were 122.8 and 2.3 mg/L,
respectively. The silicon contamination was likely due to leaching of the silica filler.

SEM was used to analyze the morphologies of materials in the residual solution ob-
tained from the commercial silicone rubber test. After the residual solution was sufficiently
dried in an oven, the surface of the remaining material was observed. Figure 4 shows the
morphology of the material in the residual solution obtained from the commercial silicone
rubber containing silica.
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Figure 4. SEM microphotographs of the material in the residual solution from the commercial silicone
rubber containing silica: (a) low magnification and (b) high magnification.

Figure 4a shows clustered particles, while Figure 4b shows the agglomeration of
particles in the size range of tens of nanometers. These images suggest that the materials in
the residual solution from the commercial silicone rubber containing silica could be silica
nanoparticles.

Table 3 shows the atomic concentration of the material in the residual solution obtained
from the commercial silicone rubber containing silica, according to EDS analysis.

Table 3. EDS analysis of the material in the residual solution obtained from the commercial silicone
rubber containing silica.

Element (at.%)

Silicon Oxygen Carbon

Silicone with silica 32.42 58.06 9.52

Silicon, oxygen, and carbon were detected in the EDS analysis of the residual solution
of the commercial silicone rubber containing silica. Carbon signals probably originated
from the carbon tape used to fix the materials on it. These results confirmed that the
materials in the residual solution were silica nanoparticles. Consequently, it was speculated
that silica nanoparticles—the filler material in commercial silicone rubber—leached out
into the immersion solution under simulated PEM fuel cell conditions.

3.2. Synthesis of Surface-Modified Silica

The morphologies of the fumed silica and surface-modified silica were analyzed by
SEM. Figure 5 shows SEM micrographs of the surface morphologies of silica before and
after surface modification. The morphology of the fumed silica is shown in Figure 5a and
the morphologies of the silica surface treated with MTMS, VTES, and TFPTMS are shown
in Figure 5b–e.
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A higher extent of agglomeration was observed in the surface-treated silica samples
(Figure 5b–e) than in the fumed silica (Figure 5a). Additionally, the aggregation increased
in the order MVF-SiO2-1 < (c) MVF-SiO2-2 < MVF-SiO2-4 < MVF-SiO2-16. Thus, the
agglomeration increased with an increasing content of silane coupling agents.

Table 4 shows the quantitative EDS analysis results for silica before and after surface
treatment.

Table 4. EDS analysis of silica before and after surface treatment.

Sample
Element (at.%)

Silicon Oxygen Carbon Fluorine

SiO2 34.21 57.13 8.66 -
MVF-SiO2-1 24.17 51.92 22.71 1.20
MVF-SiO2-2 24.01 47.63 26.68 2.08
MVF-SiO2-4 16.23 47.55 32.23 3.99
MVF-SiO2-16 16.09 42.05 33.91 7.95

The EDS analysis data show the atomic contents of silicon, oxygen, carbon, and flu-
orine in each sample. Fumed silica contained 34.21 at.% silicon, 57.13 at.% oxygen, and
8.66 at.% carbon. MVF-SiO2-1 contained 24.17 at.% silicon, 51.92 at.% oxygen, 22.71 at.%
carbon, and 1.20 at.% fluorine. MVF-SiO2-2 contained 24.01 at.% silicon, 47.63 at.% oxy-
gen, 26.68 at.% carbon, and 2.08 at.% fluorine. MVF-SiO2-4 contained 16.23 at.% silicon,
47.55 at.% oxygen, 32.23 at.% carbon, and 3.99 at.% fluorine. MVF-SiO2-16 contained
16.09 at.% silicon, 42.05 at.% oxygen, 33.91 at.% carbon, and 7.95 at.% fluorine. As shown
in Table 4, the atomic contents of silicon, oxygen, carbon, and fluorine in each sample
showed a consistent trend. The silicon content decreased from 34.21 to 16.09%, while the
oxygen content decreased from 57.13 to 42.05%. However, the carbon content increased
from 8.66 to 33.91% and the fluorine content increased from 0 to 7.95%. Since MTMS, VTES,
and TFPTMS have carbon and fluorine in their side chains, carbon and fluorine content
increased as the amount of silane used for surface treatment increased. Furthermore, as the
–OH groups in the fumed silica were transformed through surface modification into –CH3,
–CH=CH2, and –CH2CH2CF3 groups, the silicon and oxygen content decreased. These
results confirm that the silica surface treatment was successful.

TGA was employed to measure the organic content on the silica surface. Using TGA,
it is possible to compare the organic content in similar types of samples. Figure 6 shows the
TGA weight loss curves of silica before and after surface modification.
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The weight of all samples decreased slightly as the temperature increased from room
temperature to 160 ◦C. This could be mainly due to the evaporation of adsorbed water
and the condensation of surface ≡Si–OH groups, as they thermally aggregate to release
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water molecules. Both processes might be promoted as the surface –OH concentration
increases [33]. From 160 to 880 ◦C, the weight of the fumed silica decreased slightly,
although there was no noticeable change. However, the weight of the surface-treated
silica (i.e., MVF-SiO2) decreased significantly as the temperature increased from 400 ◦C.
Furthermore, as the quantity of the silane coupling agent used in the reaction increased, the
weight of the silica decreased proportionally. Thus, the higher the amount of MTMS, VTES,
and TFPTMS used for silica surface treatment, the higher the number of –CH3, –CH=CH2,
and –CH2CH2CF3 groups attached to the silica surface. As the temperature increased, these
organic groups decomposed, resulting in a significant weight loss. These results confirm
that the silica surface modification was successful.

EA was employed to analyze the organic content of the silica before and after surface
treatment. Table 5 shows the results of the quantitative analysis of carbon and hydrogen in
silica before and after surface treatment.

Table 5. EA analysis of silica before and after surface treatment.

Sample
Element (wt.%)

Carbon Hydrogen

SiO2 0.20 0.21
MVF-SiO2-1 3.71 0.79
MVF-SiO2-2 4.17 0.82
MVF-SiO2-4 7.48 1.29
MVF-SiO2-16 16.04 2.31

As shown in Table 5, the atomic content of carbon and hydrogen in each sample
showed a consistent trend. The carbon content increased from 0.20 to 16.04 wt.%, while
the hydrogen content increased from 0.21 to 2.31 wt.%. Since MTMS, VTES, and TFPTMS
have carbon and hydrogen in their side chains, the content of these elements increased as
the amount of silane used for surface treatment increased. Thus, as the –OH groups in the
fumed silica were transformed through surface modification into –CH3, –CH=CH2, and
–CH2CH2CF3 groups, the carbon and hydrogen content increased. This result confirms the
successful surface treatment of silica.

XPS was used to determine the chemical composition of the silica before and after
surface treatment. XPS provides a more accurate atomic content of silicon, oxygen, car-
bon, and fluorine than EDS. Figure 7 shows the results of the XPS analysis of the silica
composition before and after modification.
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The XPS spectrum of the fumed silica shows only silicon, oxygen, and carbon peaks,
while that of the surface-modified silica shows silicon, oxygen, carbon, and fluorine peaks
(Figure 7a). As the quantity of the silane coupling agent used in the reaction increased,
silicon and oxygen peak intensities decreased, whereas carbon and fluorine peak intensities
increased. Additionally, the atomic content of silicon, oxygen, carbon, and fluorine in
each sample showed a consistent trend (Figure 7b–e), similar to that observed in the EDS
analysis. The silicon content decreased from 36.62 to 27.82%, while the oxygen content
decreased from 61.69 to 40.70%. However, the carbon content increased from 1.69 to 22.54%
and the fluorine content increased from 0 to 8.94%. This trend indicated that, through
silica surface treatment, the –OH groups on the surface of silica were transformed to –CH3,
–CH=CH2, and –CH2CH2CF3 groups, resulting in a decrease in the oxygen content and
an increase in the carbon and fluorine content. Thus, the XPS results further confirm the
successful surface modification of silica.

The reaction between the fumed silica and MTMS, VTES, and TFPTMS was monitored
by FT-IR spectroscopy. Figure 8 shows the FT-IR spectra of silica before and after surface
modification. The functional groups of the surface-modified silica can be identified from
the FT-IR spectrum.
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A new band at 2960 cm−1 was observed after the modification of silica (Figure 8a).
This could be attributed to the C–H antisymmetric stretching of –CH3, indicating that
–CH3 groups were formed on the silica surface through the reaction between silica and
the silane coupling agent. Additionally, the band at 3450 cm−1 was attributable to an
Si–OH group; this band weakened with the modification of silica. Because all samples were
well dried prior to FT-IR analysis, this reduction in band intensity was mainly due to a
significant reduction in the surface concentration of the –OH groups upon treatment [33].
A strong absorption band was observed from 1130 to 1000 cm−1 and at 800 cm−1 in all the
spectra (Figure 8b); this was attributable to the –Si–O–Si– asymmetric stretching vibration
of silica. No absorption bands corresponding to the –CF3 (1210 cm−1) and −CH2CH2−
(1315 cm−1) groups were found in the spectrum of pure fumed silica, but were observed
for MVF-SiO2 owing to the grafting of TFPTMS. In the spectrum of the surface-modified
silica, the new peak at ~1405 cm−1 could be attributed to the –Si-CH=CH2 bond. This
indicated that VTES was successfully attached to the silica surface [34]. After surface
modification, new peaks corresponding to the –Si–C and C–H groups were observed at 900
and 1275 cm−1, respectively [35]. Furthermore, the peak at ~1616 cm−1 corresponded to
–CH=CH2 absorption, which was absent in fumed silica but present in MVF-SiO2 owing to
the grafting of VTES [36,37]. Thus, the FT-IR analysis confirmed all functional groups of the
fumed silica, MTMS, VTES, and TFPTMS, and the successful surface modification of silica.

3.3. Compatibility of Silicone Rubber/Surface-Modified Silica Composites

In composite materials, compatibility is one of the crucial factors that influence material
properties. Thus, the compatibility between the filler and polymer matrix is important. The
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compatibility between the silica filler and silicone rubber was examined by SEM. Figure 9
shows the SEM micrographs of the cross section of the silicone rubber/silica composites.
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As shown in Figure 9, the cross-sectional morphologies of all samples show that
the silica was well dispersed in the silicone rubber without agglomeration. Comparison
of the silicone rubber/fumed composite (Figure 9a) with the silicone rubber/MVF-SiO2
composites (Figure 9b–e) suggested that the interaction between the silica filler and silicone
rubber was excellent, even after the surface treatment of silica. However, there was a slight
decrease in compatibility as the amount of TFPTMS increased (Figure 9b–e). Therefore,
MVF-SiO2-1 and MVF-SiO2-2 were considered to be superior fillers compared to MVF-
SiO2-4 and MVF-SiO2-16 in terms of compatibility.

3.4. Mechanical Properties of Silicone Rubber/Surface-Modified Silica Composites

The influence of the fumed silica and surface-modified silica on the mechanical
properties—namely, tensile strength, elongation at break, and hardness—of the silicone
rubber/silica filler composites was examined (Figure 10 and Table 6).
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Table 6. Mechanical properties of silicone rubber/silica filler composites.

Sample Tensile Strength (MPa) Elongation at Break (%) Hardness
(Shore A)

Silicone rubber/
SiO2

5.99 232.21 65

Silicone rubber/MVF-SiO2-1 3.28 138.58 64
Silicone rubber/MVF-SiO2-2 2.90 124.30 63
Silicone rubber/MVF-SiO2-4 2.86 123.60 62

Silicone rubber/MVF-SiO2-16 1.64 73.02 55
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To investigate how the modified silica affected the mechanical properties of the com-
posites, all samples were prepared using the same silicone rubber and the same amount of
silica filler. The reinforcing effect of silica nanoparticles on silicone rubber is significantly
associated with the dispersion of fillers in the matrix [38,39]. A mechanical reinforcing
effect of a composite can be expected when silica is well dispersed within the silicone
rubber. As shown in Figure 6, a uniform distribution of silica particles in the silicone rubber
is evident when compared to MVF-SiO2 particles. Therefore, the composite containing
fumed silica, which was better dispersed in the silicone rubber, showed better mechanical
properties than the composite containing MVF-SiO2. Thus, the mechanical properties
degraded as the content of TFPTMS increased. Additionally, the amount of silane coupling
agents used for the silica surface treatment may have influenced the mechanical properties
of silicone rubber/silica filler composites. The increase in MTMS, VTES, and TFPTMS
content indicated an increase in low-viscosity silane content, which can be expected to have
a similar effect as that in the increase in silicone oil content. Therefore, as the amount of
silane coupling agents used during the surface treatment of silica increased, the tensile
strength, elongation at break, and hardness of the composites decreased [40].

3.5. Silicon Elution of Silicone Rubber/Surface-Modified Silica Composites

To compare the leaching of fumed silica and surface-modified silica from the silicone
rubber composites under simulated PEM fuel cell conditions, a test was conducted using
the same method as that for the commercial LSR test. Silicone rubber/silica filler composite
samples were placed in a PP container filled with deionized water and were subsequently
placed in an oven. The test temperature was set at 80 ◦C. Each aged sample was removed
from the test container after 168 h, and the residual solutions were collected for subsequent
analysis. The silicon concentration (Table 7) of the five residual solutions obtained from the
silicone rubber/silica filler composite materials was determined by ICP-OES.

Table 7. Silicon concentration of the residual solutions obtained from the silicone rubber/silica filler
composites, as determined by ICP-OES analysis.

Silicon Concentration (mg/L)

Silicone rubber/SiO2 65.5 ± 3.1
Silicone rubber/MVF-SiO2-1 5.9 ± 0.4
Silicone rubber/MVF-SiO2-2 5.5 ± 0.3
Silicone rubber/MVF-SiO2-4 4.8 ± 0.6

Silicone rubber/MVF-SiO2-16 4.6 ± 0.7

The silicon concentration in the silicone rubber containing fumed silica was 65.5 mg/L,
which is lower than that in commercial silicone rubber containing silica. However, this
concentration is still significantly high. For the silicone rubber containing surface-modified
silica, i.e., MVF-SiO2, silicon leaching decreased significantly to less than 10% of that in
the silicone rubber containing fumed silica. In addition, silicon leaching decreased as the
content of TFPTMS increased. Thus, the TFPTMS coupling agent was effective in reducing
silicon leaching. These results also suggest that silica containing highly electronegative
fluorine groups endowed hydrophobicity to the composite sample and was, therefore,
effective in preventing hydrolysis, which is promoted in a fuel cell environment.

4. Conclusions

In conclusion, this study has demonstrated that the cause of silicon leaching in silicone
gaskets used in PEM fuel cells was the contamination of silica, a filler. This study focused
on reducing silicon leaching through silica surface treatment using MTMS, VTES, and
TFPTMS coupling agents. The results of this study can be summarized as follows:

(1) Contamination of the filler: silicon contamination of silicone gaskets under simulated
PEM fuel cell conditions occurred owing to the leaching of silica, a common filler
used to improve the mechanical properties of elastomeric gaskets.
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(2) Synthesis of surface-treated silica: Surface treatment of silica was successfully per-
formed using three different silane coupling agents, MTMS, VTES, and TFPTMS.
Various analytical techniques, such as SEM, EDS, TGA, EA, XPS, and FT-IR spec-
troscopy, were employed to examine changes in surface chemistry and, hence, confirm
surface modifications.

(3) Compatibility of silicone rubber/surface-modified silica composites: The compati-
bility between the silicone rubber and surface-treated silica was confirmed by SEM.
Results show that the fillers were well dispersed within the polymer matrix with-
out agglomeration, confirming good compatibility. However, a slight decrease in
compatibility was observed as silane content increased.

(4) Mechanical properties: The mechanical properties—namely, tensile strength, elonga-
tion at break, and hardness—of the silicone rubber composites were investigated. The
mechanical properties of the composite containing fumed silica, which exhibited better
dispersion, were superior to those containing MVF-SiO2. Moreover, the mechanical
properties deteriorated as the content of the silane coupling agent increased.

(5) Silicon contamination: Silicon leaching from the silicone rubber composites was in-
vestigated by ICP-OES. Silicon leaching was significantly reduced in surface-treated
silica, i.e., MVF-SiO2, compared to that in the composite containing fumed silica. Fur-
thermore, the reduction in silicon leaching was more pronounced at higher contents
of the silane coupling agent. These results confirm that silica surface treatment was
effective in preventing the leaching of silica filler under PEM fuel cell conditions.

Overall, the surface treatment of silica with silane coupling agents is an effective
approach to enhance the compatibility of silicone rubber composites and to reduce silicon
leaching in PEM fuel cell environments. These findings have implications for improving
the durability and reliability of gaskets and sealing materials in such applications. The use
of surface-modified silica with fluorine-containing groups is expected to be particularly
promising for preventing the hydrolysis of silicone gaskets in PEM fuel cell environments.
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