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Abstract: A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pen-
dant chains displaying different lower critical solution temperatures (LCSTs), combined with a
pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer form-
ing micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-
responsive side chains, the copolymer forms hydrogels with a thermo-induced sol–gel transition,
above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium
in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect
was more pronounced in low temperatures (below Tgel), suggesting secondary physical crosslinking,
which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol–gel
transition to soft gel–strong gel. Moreover, the onset of thermo-thickening shifted to lower tempera-
tures followed by the broadening of the transition zone, implying intermolecular interactions between
the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The
shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows poten-
tial applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite
hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles,
was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system
might be useful for biomedical potential applications.

Keywords: heterograft copolymer; hydrogel; alginate; thermo-responsive; pH-responsive;
poly(2-vinyl pyridine)-b-polyethylene oxide; diblock copolymer micelles; drug delivery

1. Introduction

Hydrogels are three-dimensional (3D) network structures formed through chemical or
physical cross-links or chain entanglements. Stimuli-responsive hydrogels, also known as
“smart” hydrogels, are materials that respond to various stimuli (pH, temperature, light,
ionic strength, magnetic, redox, electric, and chemical response), exhibiting reversible
changes in their chemical and physical state [1–4]. Due to their soft texture, elasticity,
biocompatibility, high swelling capability, and similarity to body tissues, hydrogels are
ideal candidates for use as biomaterials in a variety of applications [5,6] like delivery of
drugs and other bioactive ingredients [7–16], 3D printing [17–20], tissue engineering, repair
and regeneration [21–24], or shear-thinning injectable matrices for bioapplications [25,26].

Nowadays, various stimuli-responsive hydrogels, originating from synthetic as well as
natural resources, are extensively used as biomaterials in several bioapplications, including
tissue engineering, drug delivery, etc. Mostly known examples of synthetic hydrogels
as biomaterials include polymeric and composite systems. On the other hand, common
biomaterials of natural origin are polysaccharide-based or protein-based biomaterials.
Polysaccharides are non-synthetic polymers that can be isolated from a variety of natural
sources like plants, animals, or algae. Some examples of polysaccharides are chitosan,
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hyaluronan, pullulan, dextran, xanthan, cellulose, pectin, guar gum, collagen, gelatin,
agar, alginate, carrageenan, and silk. This class of materials has gained scientific interest
over synthetic polymers due to their exceptional advantages such as biocompatibility,
biodegradability, hydrophilicity, environmentally friendly, and low or non-toxicity.

The Incorporation of thermo-sensitive groups in polysaccharides creates new “smart”
materials with thermo-responsive behavior [27–29]. Interestingly, such materials can
present thermo-induced sol-to-gel transition properties, rendering them ideal candidates
for use as potential injectable hydrogels [30]. In this respect, thermo-sensitive polymers
like poly(N–isopropylacrylamide) (PNIPAM) are grafted onto or cross-linked with polysac-
charide backbones. PNIPAM is one of the most extensively studied thermo-responsive
polymers exhibiting a lower critical solution temperature (LCST) of around 32 ◦C, close to
physiological body temperature. Its polymer chains are hydrophilic and water soluble at
temperatures below the LCST, but above the LCST, they become hydrophobic and their
solubility in water is not favorable anymore, leading to phase separation [31]. The LCST
behavior of PNIPAM can be finely altered and tuned to desired values simply by the
addition of hydrophobic or hydrophilic monomers. The addition of more hydrophobic
monomers like N-tert-butyl acrylamide (NtBAM) decreases the LCST [32,33], while the
incorporation of more hydrophilic monomers such as acrylic acid shifts LCST to higher
temperatures [34]. Many interesting articles report the thermo-induced sol-to-gel transition
of alginate polysaccharide grafted with PNIPAM chains [35–40]. Our group has long experi-
ence in the design and study of thermo-responsive graft copolymers comprising an alginate
backbone and thermo-sensitive NIPAM-based homopolymers or copolymers [32,41,42]. It
has been shown that such polymers, due to shear-thinning and thermo-thickening effects,
can form hydrogels with injectability and self-healing capabilities, rendering them ideal
applicants for use in fields like tissue engineering and therapeutic cargo delivery.

The incorporation of organic or inorganic particles into polymeric scaffolds like hy-
drogels has been proven to better control the pharmacokinetic profiles of drug-loaded
molecules as well as to improve their stability and increase local drug concentration, pro-
viding a drug reservoir at the site of administration [43–49]. Moreover, it has been reported
that hydrogel/nanoparticle complex systems display improved rheological and mechanical
properties, which in turn enhance their printability and injectability [38,50,51].

In this paper, we report on a composite hydrogel constituted of an alginate hetero-
grafted gelator, exhibiting thermo-thickening behavior through a sol–gel transition at Tgel of
34.5 ◦C, encapsulating polymeric nanoparticles, formed by the spontaneous self-assembly
of P2VP-b-PEO diblock copolymers (Scheme 1). Thanks to the pH-dependent properties of
P2VP (cationic/hydrophobic), the rheological behavior of the composite was focused on a
pH range of 3.5–5.4 in the vicinity of its pKa. The data showed a remarkable influence of pH
on the thermo-induced gelation of the alginate copolymer, namely, elasticity enhancement,
shift of the critical thermo-thickening temperature at lower values, and broadening of the
gelation transition zone. Surprisingly, the same behavior was observed for the gelator
without nanoparticles, showing for the first time that pH is another stimulus that signif-
icantly affects the thermo-responsiveness of this kind of PNIPAM-based alginate graft
copolymers. These results are attributed to secondary intermolecular interactions between
the protonated repeating units of the alginate backbone and the PNIPAM side chains.
Importantly, the hydrogel can be formed at a pH below 4.0, even at room temperature
without the necessity of heating, which is beneficial for 3D-printing stabilization. Finally,
the composite was evaluated as a pH-dependent drug delivery system using Nile Red as a
model hydrophobic drug. For this purpose, a pH-dependent hydrophobic core of diblock
copolymer micellar nanocarriers was used to encapsulate the drug.
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Scheme 1. Schematic representation of the composite hydrogel. The digital photo demonstrates a
free-standing gel prepared at room temperature and pH 3.5.

2. Materials and Methods
2.1. Materials

The synthesis of the heterograft copolymer ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM
(denoted by ALG-g-HG) has been previously described [42]. A linear diblock P2VP-b-PEO
copolymer was created in our lab by anionic “living” polymerization and sequential ad-
dition of monomers, according to the literature [52]. The molecular characteristics of
ALG-g-HG and P2VP-b-PEO copolymers are presented in Tables S1 and S2, respectively
(see Supplementary Materials). Nile Red was purchased from Sigma-Aldrich (St. Louis,
MO, USA). Standard solutions of hydrochloric acid (HCl) and sodium hydroxide (NaOH)
were purchased from Panreac (Chicago, IL, USA) and used as received, without further
purification. Disodium hydrogen phosphate (Na2HPO4) and potassium dihydrogen phos-
phate (KH2PO4) were obtained from Carlo Erba (Milan, Italy) and Merck (Darmstadt,
Germany), respectively, and used as received for the preparation of two PB buffer solutions
(10 mM, pH 3.5 or pH 7.4). The organic solvent tetrahydrofuran (THF) was obtained from
Sigma-Aldrich (St. Louis, MO, USA). An ELGA Medica-R7/15 device (ELGA Labwater,
Woodridge, IL, USA) was used to produce ultrapure water.

2.2. Preparation of Aqueous Polymer Solutions and Rheology Study

Aqueous solutions of ALG-g-HG copolymer or hybrid ALG-g-HG/P2VP-b-PEO sys-
tems were prepared and left under stirring at room temperature until homogeneity. In all
solutions, the concentration of heterograft ALG-g-HG copolymer was set at 4 wt%, while
the concentration of the P2VP-b-PEO micelles in the ALG-g-HG/P2VP-b-PEO hybrids was
set at 4 wt%. The pH of the solutions was set at the desired values, using HCl (1 M) or
NaOH (1 M). The rheological study of the ALG-g-HG heterograft copolymer and hybrid
ALG-g-HG/P2VP-b-PEO system was performed using an AR-2000ex stress-controlled
rheometer (TA Instruments, New Castle, DE, USA) equipped with a Peltier system for
controlling the temperature and a solvent trap to avoid concentration changes owing to
water evaporation. Cone-plate geometry was used (diameter 20 mm, angle 3◦, truncation
111 µm), and the experiments were performed in the linear viscoelastic regime (LVR), which
was determined by strain sweep tests at a frequency of 1 Hz.

2.3. Loading and Release of Nile Red from P2VP-b-PEO Micelles

The P2VP-b-PEO micelles were prepared by the film hydration method. In brief,
predetermined amounts of P2VP-b-PEO copolymer and the target model drug (Nile Red)
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were solubilized in THF. The theoretical (feed) loading (Lth %) in the polymeric micelles
was equal to 9.98%, as calculated by Equation (1):

Lth % =
w0

wm + w0
× 100 (1)

where w0 and wm are the amounts (µg) of the initially added probe (Nile Red) and amount
of polymer micelles, respectively.

At the next step, THF was removed using a rotary evaporator until a thin polymer/Nile
Red film was formed. Afterwards, ultrapure water was added to solubilize the film and
form the P2VP-b-PEO copolymer micelles, which were loaded with Nile Red (P2VP-b-
PEO@Nile Red). Finally, the Nile Red loaded micelles were obtained in a solid state using
freeze drying. In order to determine the encapsulation efficiency (EE %) and the loading
efficiency (LE %) of Nile Red in the P2VP-b-PEO copolymer micelles, two calibration curves
were constructed in THF/PB buffer at pH 3.5 and THF/PB buffer at 7.4, where the volume
ratio of THF to PB buffers was 60/40 v/v.

For these calibration curves, different concentrations of Nile Red (ranging from 0.5 to
15 µg/mL) in THF/PB buffer solutions were prepared and their absorbance values were
recorded on a Hitachi U–2001 UV–VIS spectrophotometer (Schaumburg, IL, USA). Ab-
sorbances were determined at the lambda maximum (550 nm), and probe concentra-
tions were quantified using molar absorption coefficients (ε) determined in each THF/PB
buffered solution (pH 3.5; pH 7.4).

The loading efficiency (LE %) and encapsulation efficiency (EE %) of Nile Red were
calculated using Equations (2) and (3), respectively:

LE % =
w

wm + w
× 100 (2)

EE % =
w
w0

× 100 (3)

where w, w0, and wm are the amounts (µg) of an entrapped model drug, initially added
probe (Nile Red), and amount of polymer micelles, respectively.

As for the drug release kinetics study, a given amount (~5 mg) of lyophilized model
drug-loaded micellar powder (P2VP–b–PEO@Nile Red) was dispersed in 1 mL of PB buffer
with pH 3.5 (stimulating the stomach pH) or 7.4 (which is specific for blood and colonic
fluids) and then these solutions were transferred into dialysis membranes (12 kDa MWCO).
These membranes were immersed in 5 mL PB buffer solutions of pH 3.5 or pH 7.4, in glass
bottles, and kept under stirring (100 rpm) in a water bath at 37 ◦C, in the dark, to avoid
photo-degradation of the model drug. After 120 h of experiment, the dialysis membranes
in 5 mL PB buffer solutions were subjected to sonication using an ultrasonic bath sonicator.
All 5 mL PB samples were extracted at definite time intervals and replaced with newly
added 5 mL of fresh PB solution in the glass bottles with the membranes. The extracted
5 mL samples were mixed with 7.5 mL of THF to achieve a mixture of THF/PB with a
60/40 ratio in volume and then used to spectrophotometrically quantify the amount of the
released Nile Red at a wavelength of 550 nm. The amount of Nile Red from the micelles was
spectrophotometrically quantified based on their calibration curve, as previously designed.

2.4. Release of Nile Red from ALG-g-HG/P2VP-b-PEO Hydrogel Composite System

Two 4 wt% ALG-g-HG aqueous solutions with pH adjusted to 3.5 and 7.4 were
prepared, as described in Section 2.2; 12 mg of Nile Red loaded P2VP–b–PEO micelles
(P2VP–b–PEO@Nile Red) were added to 1.2 mL of the prepared ALG-g-HG aqueous
solutions. The mixtures were transferred in two dialysis membranes (MWCO 12 kDa),
which in turn were immediately submerged in 5 mL of phosphate buffer, 10 mM of
pH = 3.5 or 7.4, at 37 ◦C and shaken at 100 rpm in the dark. At specific timed intervals,
the 5 mL of buffer was removed and renewed with 5 mL of fresh buffer. The cumulative
release rate (%) of Nile Red was calculated in a similar way, as described in Section 2.3.
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2.5. Techniques

Zeta potential and dynamic light scattering (DLS) measurements of ALG-g-HG and
P2VP-b-PEO aqueous solutions were obtained from a Malvern Nano Zetasizer analyzer
(Malvern, UK) equipped with a He–Ne laser at 633 nm. The final polymer concentration of
ALG-g-HG was set at 0.4 %wt while the concentration of P2VP-b-PEO was set at 0.1 %wt
(keeping a 4:1 ratio of ALG-g-HG:P2VP-b-PEO). The desired pH values of the solutions
were achieved by adding HCl (1 M) or NaOH (1 M).

3. Results and Discussion
3.1. Rheological Investigation at Various pHs

A hydrogel nanocomposite was designed, comprising a thermo-responsive alginate-
based gelator, encapsulating polymeric nanoparticles (NPs) as nano-carriers. Particu-
larly, the gelator used is the heterograft copolymer constituted of an alginate backbone,
which is grafted by two different types of thermo-responsive polymer chains (ALG-g-
HG): (a) pure poly(N–isopropylacrylamide) (PNIPAM) homopolymer and (b) poly[(N–
isopropylacrylamide)–co–(N–tert–butyl acrylamide)] (P(NIPAM–co–NtBAM)) random
copolymer, displaying different lower critical solution temperatures (LCST) [42]. The
aqueous dispersion of 4 wt% ALG-g-HG, at pH 7.4, exhibits a sol–gel transition upon
heating at Tgel = 34.5 ◦C as determined by oscillatory shear experiments at the G’/G”
crossover point (Figure S1a). The NPs formed by spontaneous self-assembly of 1 wt%
P2VP-b-PEO block copolymers in aqueous media of pH 7.4, forming star-like micelles of
a core-shell structure with P2VP hydrophobic cores and PEO water-soluble shells. Note
that P2VP is a pH-dependent cationic polyelectrolyte, exhibiting pKa at pH 5.0, above
which it becomes hydrophobic, driving hydrophobic association [53–55]. The hydrody-
namic diameter of NPs at pH 7.4 was determined by dynamic light scattering at 23.56 nm
(volume average, PDI 0.267) (Figure 1). Some bigger aggregates appearing in the volume-
weighted size distribution are negligible in number as they disappear in the number-
weighted distribution.
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Figure 1. (a) Volume and (b) number average particle size distributions of 0.075 wt% P2VP-b-PEO
aqueous solution at pH 7.4 and at 25 ◦C.

The final mixed aqueous solution under investigation contained 4 wt% ALG-g-HG and
1 wt% P2VP-b-PEO-based NPs. Nanocomposite hydrogels regulated at different pH were
explored by oscillatory shear measurements to evaluate the potential influence of pH on
their thermal and mechanical response. The pH window was chosen in the narrow range of
3.5–5.5, which lies in the vicinity of pKa of P2VP in which its degree of ionization increases
by lowering the pH (see z-potential versus pH in Supplementary Materials, Figure S2).
Figure 2 demonstrates the storage (G’) and loss (G”) modulus as a function of temperature
at different pH values. The experiments were conducted in the linear viscoelastic regime
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by applying a successive heating/cooling ramp with a rate of 1 ◦C/min. In all cases, the
moduli exhibit strong temperature dependence revealing a thermo-thickening behavior
that depends on the medium pH. At pH 5.4, a thermo-induced sol–gel transition can be
observed, providing that the storage modulus increases sharply upon heating, surpassing
the loss of one at the critical Tgel determined at 34.1 ◦C. The phenomenon is reversible
as revealed by the cooling procedure, with slight hysteresis. The gel–sol transition was
shifted at 30.9 ◦C, which is a few degrees lower than that observed by heating, due to
kinetic effects [29]. This thermo-thickening behavior is quite similar to the formulation
of 4 wt% ALG-g-HG without NPs (Figure S1b). This implies that the presence of P2VP-b-
PEO-based micelles at pH 5.4 does not affect the network structure formed by the physical
crosslinking of the thermo-responsive side chains of the gelator. However, by lowering the
pH, remarkable changes in the characteristics of the hydrogel thermo-responsiveness can be
observed. The main variation observed in the general thermal behavior of the formulations
is that the sol–gel transition observed at pH 5.4 was transformed to a soft gel–strong gel
transition at pH 3.5 since the G’/G” crosslinking disappeared and G’ predominates G” in
the entire temperature range explored. At the intermediate pH 4.5 and 4.0, the thermo-
responsive behavior exhibits additional significant hysteresis effects. Particularly, at pH
4.5, the transition point Tgel in the heating procedure was shifted to lower values of about
8 ◦C, which is notably more pronounced than in the cooling procedure. While at pH 4.0,
Tgel (heating) dropped to 20.2 ◦C, which is about 14 ◦C lower than that at pH 5.4. Moreover,
in the cooling procedure, the gel–sol transition did not occur and provided that the moduli,
although it decreased upon lowering the temperature, never crossed each other, hence
preserving the gel-like behavior at low temperatures.
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We now focus on the data dealing with the heating process, which is related to
potential biomedical applications. Figure 3 presents the temperature dependence of the
elastic part of the complex modulus, G’ (Figure 3a) together with the loss tangent (G”/G’)
at various pHs. By lowering the pH, two main effects can be observed: (a) a decrease of the
sol–gel transition (defined at tanδ = 1, Figure 3b) and (b) the elasticity of the formulation is
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expanded at lower temperatures and simultaneously increases. Provided that G’ reflects
the degree of crosslinking, this behavior should be ascribed to additional crosslinking
leading to the mechanical reinforcement of the hydrogel. This is also reflected in tanδ,
which decreases with the pH alongside the temperature variation.
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Figure 3. (a) Storage (G’) modulus and (b) tanδ as a function of the temperature of the ALG-g-
HG/P2VP-b-PEO nanocomposite hydrogels at various pHs: pH 3.5 (black symbols); pH 4.0 (green
symbols); pH 4.5 (red symbols); pH 5.4 (purple symbols).

To better qualitatively analyze the data, we can distinguish three temperature zones as
indicated in Figure 4: the low-temperature zone, the high-temperature zone, and between
them, the transition zone. The latter zone is defined as the region between the temperature
at the onset of the abrupt increase of the elastic modulus G’, namely, Tc,thermo-thickening
and Tf, i.e., the temperature where G’ becomes independent of T or increases slightly and
smoothly. A number of characteristic factors related to the thermo-thickening phenomenon
based on the elastic modulus G’, i.e., Tc,thermo-thickening, Tf, Tgel, ∆T (transition zone), and
the extent of the thermo-thickening effect exemplified by the ratio of G’ augmentation
(G’(T = 50)/G’(Tc,thermo-thickening)) are gathered in Table 1 at various pHs.
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Figure 4. The three temperature zones designated in the storage (G’) and loss (G”) modulus versus
the temperature plot of an ALG-g-HG/P2VP-b-PEO nanocomposite hydrogel.
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Table 1. Characteristic factors of thermo-responsiveness at various pHs.

ALG-g-HG/P2VP-b-PEO

pH Tc,thermo-thickening (◦C) Tgel (◦C) Tf (◦C) ∆T = Tf−Tc, thermo-thickening (◦C) G’(T = 50)/G’(Tc, thermo-thickening)

5.4 32.6 34.1 41.7 9.4 86.2/0.78 = 110.5
4.5 22.3 26.1 40.8 18.5 92.3/0.95 = 97.2
4.0 18.1 20.2 36.6 18.5 244.6/2.8 = 87.3
3.5 19.2 - 38.7 19.5 565.2/160.7 = 3.5

One of the important effects of pH concerns the transition zone. As indicated in
Figure 5a, the onset of thermo-thickening is shifted to a lower temperature of more than
13 ◦C, from pH 5.4 to 3.5. This causes the broadening of the transition zone ∆T from 9.4 to
19.5 degrees and the shifting of the sol–gel transition to lower temperatures. As is known,
the thermo-thickening effect is due to the thermal-induced hydrophobic interactions of
the PNIPAM-based sticky side chains of the gelator, which are activated above their LCST,
leading to an intermolecular association. The fact that this association starts occurring at
lower temperatures implies that the solubility of the side chains was obstructed by other
interactions. Indeed, focusing on the low-temperature zone, we observe a remarkable
increase of G’ by more than two orders of magnitude (Figures 3a and 5b), which leads
to gel-like behavior even at low temperatures below Tgel at pH 3.5. This suggests the
formation of a network different than that induced by heating, which is formed from the
interactions, responsible for the variations (Tc,thermo-thickening, Tgel, ∆T) observed in the
transition zone. Moreover, these new interactions seem to contribute as well to the G’
augmentation in the high-temperature zone (Figure 5b). Provided that the G’ augmentation
is more pronounced in low temperatures, it eventually significantly weakens the extent
of the thermo-thickening effect, as reflected by the G’(T = 50)/G’(Tc,thermo-thickening) ratio,
from 110.5 to 3.5 (Table 1). This likely suggests that a smaller number of side chains are
now available for hydrophobic association.
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Figure 5. pH dependence of (a) Tc,thermo-thickening and (b) storage modulus (G’) at 15 and 50 ◦C, as
obtained from Figure 3a, for the ALG-g-HG/P2VP-b-PEO nanocomposite hydrogels.

In order to elucidate the nature of the interactions, other than the hydrophobic one
induced by heating, that contributes to the reinforcement of the network, we also explored
the behavior of the ALG-g-HG without the presence of NPs. Figure S3 demonstrates the
data from the temperature ramp experiments performed in the linear viscoelastic regime
(strain amplitude 0.1%) at 1 Hz of 4 wt% ALG-g-HG at pH 4.5 and 3.5, keeping the same
conditions with the composite formulations. For the sake of comparison, these data have
been plotted together with the data of Figure 3a and Figure S1b in Figure 6. Surprisingly, the
behavior of the bare ALG-g-HG gelator is quite like those of the formulations incorporating
the P2VP-b-PEO micellar NPs, since the data for the corresponding formulations at the
same pH almost coincide. This suggests that the additional crosslinking of the ALG-g-HG,
observed at low temperatures in the absence of PNIPAM hydrophobic association, must
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be attributed to the intermolecular interaction between the alginate backbone and the
PNIPAM-based side chains. This is corroborated by the shift of the characteristics of the
transition zone (Tc,thermo-thickening, Tgel) to the lower temperatures discussed above. Note
that a gel-like behavior was not observed in pure alginate formulations of 4 wt% at the
same pH range. At low pH, although the degree of ionization of the alginate backbone
decreases, a number of negatively charged units persists. These units might interact with
the positively charged units of P2VP lying within the micellar cores (Figure S2). It seems
that this is not the case, which should be attributed to the thick PEO shells that protect
the P2VP cores from contact with the grafted alginate. However, some differentiation
in Tc,thermo-thickening between the composite and the pure ALG-g-HG, i.e., shift at lower
temperatures for the composite at pH < 5, below the pKa of P2VP (Table S3), shows that
ionic interactions between the charged units of P2VP and alginate should not be excluded.
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Figure 6. Storage modulus (G’) as a function of the temperature of the pure ALG-g-HG hydrogels
(open symbols) and ALG-g-HG/P2VP-b-PEO nanocomposite hydrogels (solid symbols), at various
pHs: pH 3.5 (black symbols); pH 4.5 (blue symbols); pH 5.4 (purple symbols).

In a previous paper [18] dealing with the thermo-thickening of ALG-g-P(NIPAM–
co–NtBAM) hydrogels, it was shown that the ionic interactions between the negatively
charged alginate units with the divalent cations of Ca2+ resulted in a strong reinforcement
of the network, as revealed by a significant increase of the elasticity below and above the
transition temperature of thermo-thickening. Interestingly, the presence of the additional
ionic interactions slightly affected the transition temperature, i.e., a few degrees lowering
for the highest Ca2+ concentration. This means that the ionic interactions act independently
and do not affect the hydrophobic ones exerted by the PNIPAM-based side chains, inducing
thermo-thickening. The above corroborates our interpretation that the significant shift of the
characteristics of the transition zone (Table 1 and Table S3) is due to the interactions between
the alginate backbone and the side chains, the nature of which is likely for H-bonding,
providing that at low pH, most of the carboxylic units are in their protonated form.

3.2. Self-Healing and Injectability

As it is known, these kinds of physically crosslinked hydrogels exhibit a finite linear
viscoelastic regime, the extent of which depends on the network structure. Above a certain
critical strain (γc), a gel–sol transition occurs due to the mechanical disruption of the
physical crosslinks. This γc was determined at 51%, conducting a strain sweep test at 37 ◦C
on the formulation of pH 4.0 (Figure S4), where a reinforced network was observed.

To evaluate the self-healing of this hydrogel, successive oscillatory, time sweep exper-
iments were performed by applying stepwise strains below and above γc. Particularly,
the hydrogel was subjected to strain amplitudes at 1% and 300% for 600 s at each step,
at 37 ◦C. As seen in Figure 7, the formulation exhibits gel-like behavior (G’ > G”) at 1%
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strain, which turns instantly to sol (G’ < G”) upon applying 300% strain. The hydrogel
was recovered instantly in the third step by switching the strain amplitude again to 1%,
within the linear regime. The hydrogel recovery was reproducible, as shown in the fourth
and fifth steps. The above results confirmed the self-healing ability of the hydrogel since
it is recovered after a sudden network disruption. The self-healing property concerns the
application of injectability and 3D printing of the hydrogels. The underpinning physical
network is disrupted at high shears, which were applied during these procedures, and it
self-heals instantly upon cessation of the shear forces, due to the reformation of the physical
network junctions.
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Figure 7. Time dependence of G’ (solid symbols) and G” (open symbols), subjected to consecutive
variations of strain amplitude, for the ALG-g-HG/P2VP-b-PEO composite hydrogel at pH 4.0 and
37 ◦C.

Concerning hydrogel performance (e.g., 3D printing), injectability is one of the critical
properties of hydrogels as carriers of payloads. This property can be easily afforded when
the thermo-responsive hydrogel exhibits a sol–gel transition above room temperature
since it flows below the gelation temperature. This is the case for all the formulations
for pH > 4.0, while for the system at lower pH (pH 3.5), a gel-like behavior is valid even
at room temperature. In the latter case, shear thinning behavior is demanded. Hence,
shear flow experiments were conducted to evaluate the response of the hydrogels to shear.
Figure 8 displays the apparent shear viscosity (η/Pa·s) as a function of the shear rate
(increasing/decreasing) obtained at 20 ◦C for all pHs. Obviously, the viscosity increased
by lowering the pH in any shear rate examined, exhibiting shear thinning except for that
at pH 5.4 where a Newtonian behavior was observed. Notably, the shear thinning is
perfectly reversible practically without hysteresis since the viscosity values were recovered
by decreasing the shear rate. Moreover, the extent of shear thinning augments when
the viscosity increases by lowering the pH. For instance, the viscosity drops more than
500-fold by progressively increasing the shear rate from 0.01 to 100 s−1 for the formulation
of pH 3.5, exhibiting the highest elasticity, while at pH 4.0, the viscosity decrease is about
200 times lower.
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Figure 8. Apparent shear viscosity as a function of shear rate (increasing (open symbols)/decreasing
(solid symbols)) obtained at 20 ◦C for the ALG-g-HG/P2VP-b-PEO composite hydrogel at all pHs:
pH 3.5 (black symbols); pH 4.0 (green symbols); pH 4.5 (red symbols); pH 5.4 (purple symbols).

Finally, the response of viscosity to shear was evaluated by sudden changes in the
applied shear rate as demonstrated in Figure 9. Specifically, the formulation of the high-
est elasticity (pH 3.5) was subjected to successive stepwise changes of shear rates from
0.01 (approaching situation at rest) to 20 s−1 (situation under shear). As observed, the
viscosity drops about two orders of magnitude, and it is recovered promptly and re-
producibly. Note that the shear rate that is applied during the real injection through a
syringe depends on the syringe/needle characteristics and the applied flow rate. For
instance, the shear viscosity should be lower than 0.35 Pa·s, when using a 25G needle with a
1 mL/min injection rate, to ensure comfortable injection (see Supplementary Materials) [56].
Provided that the applied shear rate is of the order of thousands s−1 (see Supplementary
Materials) and that the extrapolated at 103 s−1 shear viscosity for the formulation of pH 3.5
(thickest gel) is about 0.16 Pa·s (Figure 8), the present system is considered to be injectable.
In conclusion, the results of the experiments demonstrated in Figures 7–9 showed that
this kind of hydrogel exhibits reversible shear thinning, responding perfectly to sudden
changes of shear and self-healing properties, meeting the requirements of 3D printable and
injectable hydrogels.
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Figure 9. Time dependence of apparent shear viscosity subjected to consecutive variations of shear
rates from 0.01 (□) to 20 s−1 (o) for the ALG-g-HG/P2VP-b-PEO composite hydrogel at pH 3.5 and
20 ◦C.
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3.3. Evaluation as Drug Delivery System

In order to evaluate the effectiveness of the nanocomposite hydrogel as a pH-controlled
drug delivery system, the micellar P2VP-b-PEO NPs were loaded with the hydrophobic
Nile Red, which was encapsulated in their hydrophobic cores, and its release kinetics was
conducted at the physiological temperature at two different pH.

It was found that the P2VP-b-PEO@Nile Red micelles displayed Nile Red loading
efficiency, LE = 1.79% (w/w), for a theoretical (feed) loading, Lth = 9.98% (w/w), and
encapsulation efficiency, EE = 17.93% (w/w).

The Nile Red-loaded P2VP-b-PEO micelles (P2VP-b-PEO@Nile Red) and ALG-g-
HG//P2VP-b-PEO@Nile Red nanocomposite hydrogels were studied to evaluate the Nile
Red release. Figure 10 presents the cumulative release of Nile Red versus time for both
nanocarrier systems, at 37 ◦C and at two different buffer solutions of pH 3.5 (similar to
the pH of gastric acid in the human stomach) and pH 7.4 (simulates the pH of blood and
pH of healthy tissues). From the release study of the P2VP-b-PEO@Nile Red micelles, it
appears that the release process is highly influenced by the pH of the medium. The micelles
in buffer pH 3.5 release a higher amount of Nile Red (16% of Nile Red is released at 120 h)
than the micelles in buffer pH 7.4 (4% of Nile Red is released at 120 h). This is due to
the protonation of the P2VP moieties of the P2VP-b-PEO polymer that makes them less
hydrophobic, leading to micelles with a less dense P2VP core. This way, the Nile Red
molecules can escape more easily from the hydrophobic P2VP micelle cores.
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Figure 10. Release of: Nile Red from P2VP-b-PEO@Nile Red micelles and ALG-g-HG/P2VP-b-
PEO@Nile Red nanocomposite hydrogels at pH 3.5 and pH 7.4 buffer solutions and at 37 ◦C.

Table S4 in the Supplementary Material summarizes the particle size distributions of
the P2VP-b-PEO NPs at three different pH values of the aqueous medium. As observed,
when the pH was adjusted to a lower value of pH 3.5, the micellar diameter was sub-
stantially decreased to ~3.5 nm. In such an acidic environment, the degree of ionization
of P2VP blocks increases by protonation, leading to the disassembly of the micelles into
smaller associates or even unimers. These results are in good agreement with those previ-
ously reported for copolymers with similar PEO/P2VP(P4VP) hydrophilic/hydrophobic
balance [57–59]. Thus, one would expect an acceleration of the Nile Red release from the
P2VP-b-PEO micelles at pH 3.5, where the P2VP blocks are partially charged (Figure S2).
However, only 16% of Nile Red was achieved at 120 h, at pH 3.5. This probably could
be attributed to the fact that Nile Red is a molecule of high hydrophobicity that could
also form π–π stacking interactions with the PVP blocks, making it firmly retained in the
polymer micelles.
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At pH 7.4, an initial burst release can be observed, which may imply that some
Nile Red molecules are weakly bound within the micelle cores and that a fraction of the
encapsulated Nile Red is located at the core/corona interface of the micelles and therefore
it is more accessible and prone to release. In this pH, high above the pKa of P2VP at pH
5.0, the P2VP moieties are hydrophobic. The low release of 4% of Nile Red in buffer pH
7.4 could be attributed to the highly hydrophobic nature of Nile Red and possible strong,
non-covalent interactions of Nile Red with the P2VP hydrophobic micellar cores causing
a more firmly Nile Red entrapment in the P2VP-b-PEO micelles. These findings are in
agreement with the pH-dependent release profiles of various hydrophobic drugs from
poly(ethylene glycol)-b-poly(2-vinylpyridine) micelles. It should be mentioned that the
release kinetics of hydrophobic drugs are remarkably influenced by their chemical structure
except for the size and the degree of protonation (controlled by pH) of the P2VP blocks
forming the hydrophobic cores [59].

Inspired by the study of Chroni et al. [60], which proved that ultrasound has a signif-
icant influence on the release profile of curcumin (CUR) from CUR-loaded nanocarriers,
we proceeded to a similar study. Therefore, after the 120 h of the release experiments, the
samples were subjected to ultrasonication. It can be clearly seen that for pH 3.5, after 8 h
under ultrasound stimulation, a high release of Nile Red occurred (release rate increased
from 16% to 31% at 128 h (total experiment hours). After further sonication, for 16 more
hours (to reach 144 total experiment hours), Nile Red release increased further to 35%. The
increase of Nile Red release from the micelles submerged in the PB buffer of pH 7.4 was
marginal, showing a rise of only 2% after 24 h of sonication (from 4% at 120 h, the release of
Nile Red reached 6% at 144 h). This release resistance under sonication confirms the strong
attractive interactions between Nile Red and the vinyl pyridine moieties of the micellar
cores (see also reference [61]), which justifies the observed release kinetics.

When the P2VP-b-PEO@Nile Red micelles were loaded in the ALG-g-HG hydrogel, it
can be seen, that for both PB buffer solutions at pH 3.5 and pH 7.4, Nile Red release is lower,
at around 6% and 3.3%, suggesting a noticeable slowdown of the Nile Red release rate,
which is attributed to the high viscosity of the hydrogel medium [50]. Importantly, this effect
was more pronounced at pH 3.5. This behavior is related to the pH-induced alteration of
the network structure formed by the ALG-g-HG gelator. As already discussed in Figures 2
and 3, the network is reinforced by decreasing pH as reflected in G’ augmentation, due
to additional crosslinking induced by H-bonding. Particularly, the complex viscosity η*
increased remarkably with the pH reduction at 37 ◦C, where the release experiments were
conducted, as demonstrated in Figure S5. This effect might justify the deceleration of the
Nile Red release rate due to the decrease of drug diffusion within the higher viscosity
hydrogel medium.

4. Conclusions

The pH-dependent properties of LCST-type thermo-responsive alginate-based hy-
drogels incorporating poly(2-vinyl pyridine)-b-polyethylene oxide (P2VP-b-PEO) micellar
nanoparticles were explored by rheology. Due to the thermo-responsive side chains, the
ALG-g-HG copolymer (4 wt%) self-assembles upon heating, exhibiting thermo-thickening
behavior above a sol–gel transition Tgel. Interestingly, the study at a low pH range of just
below 5.0 revealed a notable increase in the elasticity of the polymer solution occurring even
at low temperatures below Tgel. This effect transformed the sol–gel to a soft gel–strong gel
transition. It was proved that this was not due to the interactions with the protonated P2VP
(pH < pKa) of the diblock copolymer, provided that this effect was similar to the formula-
tion in the absence of P2VP-b-PEO copolymer. Importantly, the onset of thermo-thickening
shifted notably to lower temperatures followed by the broadening of the transition zone,
implying secondary intermolecular interactions between the protonated repeating units of
the alginate backbone with the PNIPAM side chains, likely through H-bonding.

Evaluating the ALG-g-HG/P2VP-b-PEO composite hydrogel as a drug delivery sys-
tem, it was found that the release of a hydrophobic model drug (Nile Red) is affected by the
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pH of the medium. At pH 3.5, the release of Nile Red was decelerated, due to the additional
H-bonding that increases the crosslinking density of the hydrogel network and in turn the
viscosity of the hydrogel medium. Moreover, the shear-thinning behavior in combination
with the thermo-thickening characteristics of the material, make it a good candidate for
potential applications such as a 3D printable composite carrier of payloads in biomedicine.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/polym16070886/s1, Table S1: Molecular characteristics of the ALG-
g-HG heterograft copolymer; Table S2: Molecular characteristics of the P2VP-b-PEO copolymer;
Table S3: Characteristic factors of thermo-responsiveness at various pHs for the pure ALG-g-HG
copolymer; Table S4: The hydrodynamic diameters of P2VP-b-PEO polymeric micelles obtained
from DLS analyses; Figure S1: Storage (G’) and loss (G”) modulus as a function of temperature of
ALG-g-HG solutions (a) 5 wt% and (b) 4 wt%; Figure S2: Zeta potential of aqueous P2VP-b-PEO and
ALG-g-HG solutions at different pH; Figure S3: Storage (G’) and loss (G”) modulus as a function of
temperature of 4 wt% ALG-g-HG hydrogels at (a) pH 4.5 and (b) pH 3.5; Figure S4: Oscillatory strain
sweep data at 1 Hz of the 4 wt% ALG-g-HG hydrogel at pH 4 and 37 ◦C; Figure S5: pH dependence
of complex viscosity (1Hz) at 37 ◦C. Ref. [62] is cited in the Supplementary Materials.
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