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Abstract: Huge amounts of noxious chemicals from coal and petrochemical refineries and phar-
maceutical industries are released into water bodies. These chemicals are highly toxic and cause
adverse effects on both aquatic and terrestrial life. The removal of hazardous contaminants from
industrial effluents is expensive and environmentally driven. The majority of the technologies applied
nowadays for the removal of phenols and other contaminants are based on physio-chemical processes
such as solvent extraction, chemical precipitation, and adsorption. The removal efficiency of toxic
chemicals, especially phenols, is low with these technologies when the concentrations are very low.
Furthermore, the major drawbacks of these technologies are the high operation costs and inadequate
selectivity. To overcome these limitations, researchers are applying biological and membrane tech-
nologies together, which are gaining more attention because of their ease of use, high selectivity,
and effectiveness. In the present review, the microbial degradation of phenolics in combination with
intensified membrane bioreactors (MBRs) has been discussed. Important factors, including the origin
and mode of phenols’ biodegradation as well as the characteristics of the membrane bioreactors
for the optimal removal of phenolic contaminants from industrial effluents are considered. The
modifications of MBRs for the removal of phenols from various wastewater sources have also been
addressed in this review article. The economic analysis on the cost and benefits of MBR technology
compared with conventional wastewater treatments is discussed extensively.

Keywords: membrane bioreactor; phenolics; industrial effluents; contaminants removal; water
pollution; wastewater treatment; human health; sustainability

1. Introduction

Expansive industrialization and human activities have led to a huge increase in haz-
ardous chemicals in water bodies, causing massive water pollution [1]. Industries are
the major cause of pollution in all ecosystems since large amounts of toxic chemicals are
released either directly or indirectly into water bodies. It is believed that approximately
220 billion tons of chemicals from all sources are released annually [2]. Wastewater dis-
charged from different industries is hazardous to terrestrial and aquatic life, since it changes
the physical, chemical, and biological properties of receiving water bodies [3,4]. Phenol
is a vital part of many products, including paints, cosmetics, medicines, and lubricants.
It is used as an intermediate in the production of phenolic resins, especially in the phenol-
formaldehyde resins which account for more than 35% of overall uses. Furthermore, plastic
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precursors such as polycarbonates and epoxide resins are produced by the condensation of
phenol with acetone to produce bisphenol-A. Cyclohexanone, an important component
used in the manufacturing of nylon, is another significant chemical that can be made from
phenol. Other applications of phenol and its derivatives comprise their role as flexible pre-
cursors for the manufacturing of pharmaceuticals like aspirin and pharyngitis medicines,
carbolic soap; cosmetics like sunscreen, hair dye, and skin lightening products; and avia-
tion industry like a component of industrial paint strippers [5,6]. As a result, phenol and
its derivatives are found in the effluents of different industries including petrochemical,
fiberglass, textiles, and coking industries. The concentrations of phenols in the wastewater
discharged from different industries are varied such as refineries (6–500 mg L−1), coking
operations (28–3900 mg L−1), coal processing (9–6800 mg L−1), and petrochemical plants
(2.8–1220 mg L−1). The concentration of phenols from pharmaceuticals, plastics, wood
products, paint, pulp, and paper industries are about 0.1–1600 mg L−1 [7–9]. For the sake
of protecting human health and the ecosystem, the removal of phenol from wastewater
is necessary. These circumstances are driving the scientific community to find effective
techniques for environmental cleanup. The most effective strategies in protecting the envi-
ronment are reducing the generation of toxic chemicals, implementing advanced treatment
technologies, and improving wastewater management. It is necessary to use innovative
methods to enhance hydrological cycle management in the public and industrial sectors
to prevent water pollution and environmental changes. Applying efficient and cutting-
edge methods can enable industrial wastewater to be recycled for uses in agriculture and
industries [10–12].

A traditional wastewater treatment entails many processes for pollutants’ removal
before their release into the environment. In these technologies, several steps are involved
depending on the region, regulation & policy and level of treatment needed. The treatment
of phenolic compounds is extremely challenging for the above-mentioned industrial efflu-
ents. The common methods applied by chemical industries are based on activated sludge
digestion, solvent extraction, chemical treatment, and adsorption [13,14]. Several state-of-
the-art methods based on oxidation processes have been thoroughly investigated to remove
phenolic compounds completely. This group of methods includes chemical, photochemical,
and electrochemical oxidation [15,16]. In this context, many sophisticated procedures based
on membrane separation methods like reverse osmosis and micro/ultrafiltration have also
been considered. To remove various organic contaminants from effluents, membrane-based
technologies have extensively been studied for the removal of phenolic compounds. The
main benefits of these technologies are their small footprint and high effluent quality. How-
ever, membranes’ short lifetime due to fouling caused by particles and colloids in the feed
stream and high energy consumption are the major limitations of these technologies [17,18].

An important technology called membrane biological reactors or membrane bioreac-
tors (MBRs), which combines biological processes with membrane filtration, is an effective
alternative to traditional wastewater treatments. In MBRs, membrane filtration is used
to separate microbes and substances that has been degraded in the reactor by microor-
ganisms. The MBR technology has shown significant progress over the past few years
because of its high potential in producing quality effluent due to the significantly improved
membrane efficiency and selectivity with lower cost, and thus MBR is now regarded as
a matured technology for wastewater treatment [19,20]. The MBR improves biological
activity management, leads to pathogen-free effluents, reduces plant water footprint, and is
operated effectively for high organic loading rates [21]. Treatments of phenolic compounds
are interesting areas where MBR technology has been extensively applied, but it still re-
quires attention for a detailed experimental and economical evaluation. The construction
of versatile bioreactors that can be included in different treatment processes is required to
remove harmful compounds and makes the treated water reusable.

This article provides a detailed literature study of phenol degradation and removal
using membrane biological reactor technologies. The degradation of phenols and their
derivatives in both aerobic and anaerobic conditions by bacteria, algae, and fungi is well
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summarized. Furthermore, the capital expenditures (CAPEX) and the operational expenses
(OPEX) of conventional and modified MBR technologies compared with a traditional acti-
vated sludge treatment on phenol degradation are thoroughly investigated. Additionally,
the advantages of biobased cellulose membranes in MBRs are also discussed. The biobased
cellulose membrane separation might become a next-generation approach toward a cir-
cular economy. We believe that this review article not only provides recent and in-depth
information on membrane bioreactor technology but is also helpful in searching for novel
microorganisms that exhibit high efficiency in phenol degradation. This work provides re-
searchers with new insights that are beneficial to design new ways for phenols degradation
and removal from industrial wastewater.

2. Phenols and Their Derivatives Posing a Human Health Risk

Phenols are highly toxic, even at low concentration, because of their hydrophilic and
hydrophobic properties. They are one of the most toxic organic contaminants in wastewater
causing necrosis and protein denaturation [22]. Phenols are non-biodegradable, so they
remain in the ecosystem for a long time. They are soluble in water, oil, and most organic
solvents, including alcohols, ethers, and ketones [23]. Phenol and its methyl derivatives
were recognized as stable, priority chemical pollutants by the US Environmental Protection
Agency (EPA) in 1979 [24]. They burn the skin and eyes as they are quickly absorbed.
According to Alshabib and Onaizi’s report, acute phenol exposure can cause complication
of the central nervous system and leads to collapse and loss of consciousness. Exposure to
phenol fume can additionally cause lung edema, coughing, dyspnea, cyanosis [25], and
severe damage to internal organs including kidney, liver, spleen, heart, and lung. Biochemi-
cal system failure, infertility, and neuropsychiatric disorders are also associated with acute
phenol poisoning [26]. According to the Occupational Safety and Health Administration
(OSHA) and the American Conference of Governmental Industrial Hygienists (ACGIH),
the maximum limit of phenols that can come into contact with the skin is less than 5 mg L−1.
It is well known that the ingestion of 1 g of phenol is fatal for humans. Apart from human
beings, phenol causes damage to aquatic life when the concentration is more than 1 mg L−1.
A strict effluent discharge limit of less than 0.5 mg L−1 is, therefore, applied. The maximum
permitted quantity of phenol in non-chlorinated water, as adapted from several water
supply regulations, is 0.1 mg L−1 (100 ppb), while that in chlorinated water is in a range of
0.001–0.002 mg L−1 (1–2 ppb) [25,27,28].

Phenols and their derivatives are directly linked to the dyeing process. Since many
dyes are generated from known carcinogens, concerns over their possible toxicity and
carcinogenicity have led to research on the toxic and hazardous potential of dyes and their
intermediates. The fused aromatic structure of anthraquinone-based dyes such as solvent
green 3, solvent blue 35, dispersed red 9, and benzanthrone makes them the most resistant
to oxidation [29–31]. Due to their high color intensity and brilliance, basic dyes are more
challenging to decolorize [32]. Complex metal dyes, like those made of chromium, are
carcinogenic. Most basic dyes are poisonous and many of them are recognized as possible
carcinogens; therefore, they could pose a risk to human health [33,34].

The reduction of phenols in industrial effluents is of great environmental concern
due to their complex chemical content, high toxicity to aquatic and terrestrial life, and low
biodegradability. The toxicity of phenols and other contaminants in various industrial
effluents should be monitored before they are discharged into water bodies. There are
several assays by which the toxicity of phenols is monitored. By using aquatic species in
bioassays one can assess the toxicity of phenols. The toxicity of pre- and post-treated textile
wastewater was evaluated by Castro et al. with four different organisms, viz., Aliivibrio
fischeri, Raphidocelis subcapitata, Daphnia magna, and Lemna minor. These organisms represent
different trophic levels. The study showed that the untreated effluent was very toxic, with
A. fischeri being the most sensitive organism. While the toxicity of the effluent after the
treatment was significantly reduced for A. fischeri, R. subcapitata, and L. minor, the treated ef-
fluent was still toxic for D. magna [35]. Besides from the above-mentioned study, the toxicity
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of synthetic phenol has been examined with different groups of aquatic organisms, includ-
ing bacterial culture, the algae Scenedesmus quadricauda, the crustacean Daphnia pulex, and
the fish Oncorhynchus mykiss. The report demonstrated that phenol was more toxic to fish,
followed by crustaceans and then green algae. Among all aquatic organisms tested, the bac-
terial culture was the least sensitive to phenol toxicity [36]. Kahru et al. studied the toxicity
of eight phenolic compounds present in oil shale industry wastewaters. The organisms used
for testing represent different trophic levels, such as photobacteria, protozoa, crustacean,
and microalgae. The wastewater contained five monobasic phenolics—phenol, p-cresol,
2,4-dimethylphenol, 2,3-dimethylphenol, and 3,4-dimethylphenol—and three dibasic phe-
nolic compounds, including resorcinol, 5-methylresorcinol, and 2,5-dimethylresorcinol.
For toxicity testing, all eight phenolics were separated into three groups: a mixture of
all eight phenols, a mixture of the five monobasic phenols, and a mixture of the three
dibasic phenols. The toxicity and biodegradability of these three groups of phenols were
examined in three organisms, such as Vibrio fisheri, Daphnia magna, and Thamnocephalus
platyurus. Phenol, p-cresol, resorcinol, and 5-methylresorcinol were the most rapidly detox-
ified after conventional activated sludge treatment. Dimethylphenols and the combinations
required medium detoxifying times, while the 2,5-dimethylresorcinol and the resorcinol
mixture were detoxified at the slowest rate. Among the eight phenolic chemicals exam-
ined, 2,5-dimethylresorcinol exhibited the highest toxicity and was classified as the most
environmentally hazardous pollutant [37].

3. Physicochemical Methods of Phenols Treatment in Wastewater

Wastewater should be cleaned of toxic phenolic compounds to protect human health
and the environment. A range of conventional and cutting-edge treatment methods are
used to remove phenols from industrial effluents. These treatments are based on physical
or chemical treatments including distillation, solvent extraction, evaporation, adsorption,
oxidation, ion exchange, phytoremediation, and biodegradation [38–41].

Removal of phenols by distillation is based on the variation in steam distillation, which
requires high energy levels; therefore, it is not economically feasible. This method can be
either destructive or non-destructive, the latter of which enables the recovery of phenols.
Steam or azeotropic distillation can remove phenolic pollutants from wastewater depending
on the relative volatility of the substances [6]. In a study, an advanced steam plasma torch
was used to directly inject an aqueous phenol solution. Phenols were quickly decomposed
in the thermal plasma jet, generating hydroxyl radicals, which lead to oxidatively degrading
organic pollutants in the aqueous solution. Pyrocatechol, hydroquinone, maleic acid,
butanedioic acid, and muconic acid were the main liquid intermediates generated from
phenols, whereas H2, CO, and CO2 were the main gaseous products. Steam thermal plasma
technology is popular in the field of environmental cleanup due to its high thermodynamic
efficiency, reactivity, and environmental friendliness [42].

Phenols can be removed from wastewater through adsorption or extraction techniques
depending on the economy of utilizing and reusing the necessary secondary materials,
i.e., adsorbent, or extractant. This technique is applied when the concentration of phe-
nols ranges from a trace to a high percentage [43]. Phenol removal from wastewater
through adsorption has been carried out with several types of adsorbents, including ac-
tivated alumina [44], bentonite modified with a surfactant [45], activated carbon from
biomass, organo-modified montmorillonite (MT) [46], titanium dioxide [47], and Filtrasorb-
400 [48–50]. The most popular and effective adsorbent is activated carbon. The high specific
surface area, tunable mesopore ratio and ease of procurement make activated carbon an
outstanding candidate material with a high adsorption capacity for phenol removal from
wastewater. Both physical and chemical activation methods, such as heating and nitric acid
activation, can be used to improve the properties of activated carbon [51–53]. Recently, new
methods have been developed, such as chemical modification of the activated carbon [54],
impregnation with nanoparticles as magnetic activated carbon–cobalt nanoparticles, and
silver nanoparticle-modified palm kernel shell activated carbon [55,56]. Different carbon
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sources, such as activated carbon prepared from biomass materials and avocado kernel
seeds [57,58], using different activation methods [59], as well as substitution with affordable
biosorbents such as chitin and chitosan, peat, and biomass [60] are promising alternatives
for removing phenolic compounds. In a previous study, activated carbon from black wat-
tle bark waste was produced under different carbonization and activation conditions for
phenol adsorption. The highest adsorption capacity was 98.57 mg g−1 at 55 ◦C [61]. In the
adsorption method, phenol is selectively deposited onto a solid adsorbent rather than being
totally removed from wastewater. Therefore, it generates a lot of solid waste, which needs
to be disposed safely. Using activated carbon for adsorption is, thus, expensive because of
the recovery of activated carbon particles from the treated wastewater [62].

Another non-destructive method for treating phenolic compounds is liquid–liquid
extraction, also called conventional solvent extraction. This method is acceptable through-
out a wide range of phenol concentrations and provides economic feasibility in some
cases [63,64]. In a study, imidazole and its similar compounds were used as extraction
agents for liquid–liquid extraction to separate phenols from coal tar. It was reported that
both imidazole and its homolog compounds could form a deep eutectic solvent with phe-
nols, and, therefore, the removal efficiency was more than 90% [63]. In another study,
Patel et al. applied liquid–liquid extraction for the treatment of pharmaceutical wastewater.
They reported the maximum phenol removal efficiency as 68% using toluene as an organic
solvent extractant [64]. The effectiveness of cumene as an extractant for phenol in wastewa-
ter was examined by Liu et al. for treating 100 mg L−1 aqueous phenol solution. It was
reported that the stripping efficiency was above 99% when 0.1 mol L−1 NaOH was used
for stripping phenol from loaded cumene [65]. The recovery and regenerating processes of
extractant still involve considerable effort and are costly.

Ion exchange is another physicochemical method for phenolic wastewater treatment.
A non-functional or mostly OH group ion exchange resin is used. It is documented that
the resin type affects the phenol removal efficacy. Nevertheless, the ion exchange method
of wastewater treatment is expensive because of the resin’s high cost. Furthermore, each
resin removes specific pollutants. According to reports, non-functionalized ion exchange
resins remove phenol more effectively in a basic medium than in acidic condition. Phenolic
compounds are effectively removed by Amberlite XAD resins, which are hydrophobic
polyaromatic resins with molecular weights ranging from 20,000 to 60,000 MW. Their
non-polar to moderate polar property is suitable for the adsorption of both the non-polar
aromatic structure and the -OH polar group of phenols. Previous studies showed that the
sorption capacity of Amberlite XAD was higher for chlorophenol (2.27 mmol g−1) than
phenol (1.50 mmol g−1). Resin regeneration was conducted through extraction (elution)
with methanol [66,67]. After every process, the recovery and regeneration of the resin are
relatively laborious and expensive.

In a destructive treatment, aqueous phenols are subjected to chemical oxidants. The
most common chemicals used in oxidative wastewater treatments are ozone, chlorine,
chlorine dioxide, chloramines, ferrate (FeO4

2− or Fe(VI)), and permanganate (MnO4
−

or Mn(VII)). Because of their high reduction potential, permanganate and ferrate have
received much attention [68–70]. Electrochemical oxidation is another destructive method
of removing aqueous phenols that does not require additional chemicals but does involve
energy and equipment costs. This method of phenol treatment is further divided into
direct and indirect oxidation [71]. For direct electrochemical oxidation, contaminants are
adsorbed onto the anode surface, resulting in direct or anodic oxidation. A variety of anode
materials are used in direct oxidation; however, the most efficient one is boron-doped
diamond (BDD) [72]. Besides BDD, other materials used in electrochemical oxidations
are Pt, PbO2, SnO2, and IrO2, with the latter being the most explored due to its less bio-
toxicity [73–75]. Indirect electrochemical oxidation uses intermediary redox chemicals
to transfer electrons from the electrode to the pollutant, preventing the electrode from
contamination and fouling. Indirect electrochemical oxidation with active chlorine is
more effective compared to direct electrochemical oxidation as chloride enhances electron
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transport from the phenolic chemicals to the electrodes [76]. Based on the redox reagents,
indirect electrochemical oxidation can be separated into two processes: anodic processes
and cathodic processes. The cathodic process takes place at the cathode, where hydrogen
peroxide (H2O2) is produced through the iron catalyst on the electrode surface, which is
constantly renewed. Oxygen or air is continuously delivered to the area around the cathode
to produce H2O2 [77]. This procedure is called electro-Fenton reaction (EF). The idea of
EF has now been adopted by new emerging technologies, such as photo-EF and solar-EF,
which combine the EF process with photocatalysis [78,79].

Although chemical oxidation processes have a number of advantages, the high cost of
the chemicals and the emission of numerous toxic byproducts and harmful gases are the
main problems. Several oxidizing agents, like hydrogen peroxide, have limited reactivity,
resulting in the incomplete oxidation of many organic pollutants. Therefore, the focus of
the present research has shifted towards technology that prioritizes phenol detoxification
and degradation without the aforementioned downsides. Biological degradation utilizing
both pure and mixed microbial strains has markedly become an appealing and practical
alternative for the treatment of contaminated wastewater, including resistant substances
like phenols, because the process is more selective, produces non-toxic byproducts and is
economically feasible relative to the other aforementioned technologies [80,81].

4. Biodegradation of Phenols and Their Derivatives

Compared with the various treatment methods of phenolic chemicals in wastewater,
biodegradation is the most effective. Biodegradation techniques have the ability to trans-
form contaminated and toxic compounds in wastewater into safe and usable forms. It is
a more affordable, sustainable, and environmentally friendly process. Several microor-
ganisms such as bacteria, fungi, yeast, and algae have shown the ability to break down
phenolic compounds under aerobic and anaerobic conditions. These microorganisms utilize
phenols as a carbon source for their growth and metabolism. A range of microorganisms
degrading various phenolic compounds are shown in Table 1. The Pseudomonas sp. is well
known for its capacity to use a variety of aromatic compounds as a single carbon source.
Pseudomonas putida exhibited a substantial degrading ability toward phenol and its deriva-
tives like 2,4-dichlorophenol [82]. Mahgoub et al. isolated and identified three bacteria
from sewage sludge, namely, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Klebsiella
variicola. They reported that these bacteria effectively degraded 1000 mg L−1 phenol in
a mineral salt medium [83]. In addition to Pseudomonas sp. and Klebsiella sp., a num-
ber of bacterial species, including Bacillus stearothermophilus [84], Bacillus laterosporus [85],
Rhodococcus erythropolis [86], and others, have been identified for their capacity to break
down phenolic compounds. A variety of aromatic chemicals can be assimilated by these
bacteria, though at low concentration. Pseudomonas cepacia and Bacillus brevis, which have
been isolated from an industrial effluent which contains phenol, exhibit a high phenol
degradation efficiency. The modified cultures of P. cepacia and B. brevis have been shown
to break down 2.5 and 1.75 g L−1 of phenol in 144 h, respectively [87]. In another study,
phenolic wastewater treated by Acinetobacter calcoaceticus lowered phenol concentration by
91.6% from 1.7 to 0.8 g L−1 after two days [88]. Acinetobacter lwoffii NL1 has a potential for
effective phenol degradation in wastewater containing heavy metals since it can withstand
up to 1.1 g L−1 of phenol and can break down phenol to a final concentration of 0.5 g L−1

in about 12 h [89]. A diverse consortium of immobilized microorganisms has been used
in a nitrifying system to remove bisphenol A (BPA). In this study, with 1.5 h of hydraulic
retention time (HRT), BPA was removed from an initial concentration of 10 mg L−1 by
more than 92% [90]. Pseudomonas putida displayed a breakdown of 1 g L−1 phenol in 162 h
(6.17 mg L−1 h−1) [91], while P. cepacia, isolated from industrial wastewaters, effectively
degraded 2.5 g L−1 of phenol in only 144 h (17.36 mg L−1 h−1) [87]. At 0.5 g L−1 phenol,
Rhodococcus aetherivorans even more degraded phenol at a rate of 35.7 mg L−1 h−1 [92]. The
mutant M1 of Rhodococcus ruber SD3 displayed 98% phenol breakdown of a 2 g L−1 initial
concentration in 72 h by immobilized cells system (27.2 mg L−1 h−1) [93]. Klebsiella oxytoca
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degraded 100 ppm phenol in 72 h [94]. In another study, a number of microorganisms were
applied in the biodegradation of phenol to catechol. The degradation of β-naphthol was
evaluated using Volvox aureus, Lyngbya lagerlerimi, and Nostoc linckia, while the oxidation of
catechol was assessed using Chlorella vulgaris and V. aureus. The maximum naphthalene
degradation was observed with N. linckia at 47.71% after 7 days, while anthracene was
degraded at 92.28% by E. viridis after 7 days [95]. The separate and simultaneous biodegra-
dations of phenol and p-cresol were evaluated using Pseudomonas putida ATCC 17484 in an
aerobic batch reactor system. The concentration of phenol and p-cresol was in the same
range as 50–600 mg L−1. Complete degradation of phenol and p-cresol was achieved within
48 h and 48–56 h, respectively, for all the initial concentrations of phenol and p-cresol [96].
Li et al. reported an almost 100% removal of 2,4-dichlorophenol (200 µg L−1) by Chlorella
pyrenoidosa [97]. In another study, it has been revealed that bisphenol A can be adsorbed
by algal cells, Desmodesmus sp. WR1. As a result, the efficacy of BPA removal may be
higher due to algal bioactivity. BPA was incubated with algal cells, and BPA removal
efficiencies were reported as 57%, 25%, 18%, and 26% for initial BPA concentrations of 1, 3,
5.5, and 13.5 mg L−1, respectively [98]. In case of bacterial degradation of phenols, both
pure and mix cultures can be applied to phenol biodegradation [99,100]. However, high
salt and phenol concentrations inhibit the growth of microorganisms by the mechanism
of substrate inhibition. A high concentration of phenol also prevents microbe activity (or
inactivation), which limits the efficacy of biodegradation. This problem greatly restricts
the use of biodegradation methods in the treatment of phenol-rich and salty phenol efflu-
ents [101–103]. Therefore, it is particularly important to isolate suitable microorganisms that
can effectively decompose phenol at a high concentration of salt to remove the maximum
amount of phenol from contaminated effluents.

Table 1. Degradation of phenolic compounds by different microorganisms.

Type of
Contaminants Initial Concentration Microorganisms Contaminant Removal

Efficiency (%) Time References

2,4-dichlorophenol 51 mg L−1 Pseudomonas putida 35 8 days [82]

Phenol 1000 mg L−1 Pseudomonas aeruginosa, Klebsiella
pneumoniae, Klebsiella variicola 71.70–74.67 3 days [83]

Phenol 300 mg L−1 Bacillus laterosporus BT-271 100 15
days [85]

Phenol NA Rhodococcus erythropolis (pSRKBphe-cat)
Rhodococcus erythropolis (pSRKphe)

100
87

14
days [86]

Phenol 2500 mg L−1 Pseudomonas cepacia 100 96 h [87]

Phenol 1750 mg L−1 Bacillus brevis 100 132 h [87]

Phenol 800 mg L−1 Acinetobacter calcoaceticus 91.6 48 h [88]

Phenol 1.1 g L−1 Acinetobacter lwoffii NL1 0.5 g L−1 12 h [89]

Bisphenol A 2.5 to 10.0 mg L−1 Consortia of immobilized microorganisms 87.1–92.9 NA [90]

Phenol 1000 mg L−1 Pseudomonas putida (MTCC1194) 100 162 h [91]

Catechol 500 mg L−1 Pseudomonas putida (MTCC1194) 100 92 h [91]

Phenol 500 mg L−1 Rhodococcus aetherivorans UCMAc-603 35.7 mg L−1 h−1 NA [92]

Phenol 1750 mg L−1 Rhodococcus aetherivorans UCMAc-603 18.2 mg L−1 h−l NA [92]

Phenol NA Rhodococcus ruber SD3 98 72 h [93]

α-Naphthol NA Oscillatoria rubescens 59.49 5 days [95]

Phenol and p-cresol NA Pseudomonas putida ATCC 17484 100 48 h [96]

2,4-Dichlorophenol NA Chlorella pyrenoidosa 100 120 h [97]

Bisphenol A NA Desmodesmus sp.WR1 18–57 10
days [98]

Note: NA = not available.
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The main limiting factor of biodegradation is the capacity of microorganisms toward
salt tolerance. Halophilic microorganisms, especially halophilic archaea, are apparently
appropriate for such a treatment as they generate extracellular polymeric substances (EPSs)
that maintain the structural stability of bacteria [104]. An EPS is a complex high-molecular-
weight polymer mixture, protecting bacteria from hazardous compounds. An EPS is
made up of protein, polysaccharides, humic acid, phospholipid, and nucleic acid, and it is
produced through secretion by microbes. Bacterial EPSs can absorb organic compounds
through hydrogen bonds along with hydrophobic and electrostatic interactions. There have
been studies on how EPSs affect the development of biofilms for the improved degradation
of polycyclic aromatic hydrocarbon. Phenanthrene and pyrene biodegradation through
EPSs in Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P has been improved signifi-
cantly [105]. It was demonstrated that EPSs act as electron shuttles because protein and
humic compounds are highly enriched with conductive substances. Therefore, the overall
electron transport system in EPSs is much greater than the normal electron transport chain.
According to the previous studies, phenol degradation in bacteria like Syntrophorhabdus
sp., Brooklawnia sp., Treponema sp., Syntrophus sp., and electroactive methanogens such as
Methanosaeta sp. is markedly enhanced by the addition of conductive substances. Moreover,
the addition of mediators such as aromatic lignin molecules assists the electron transporting
system and reduces the notable chemical oxygen demand (COD) of wastewater containing
phenolic compounds under anaerobic conditions [106–108]. The functional genera involved
in methanogenic phenol degradation by means of extracellular electron transfer have been
hypothesized for the Syntrophus sp. and the Methanosaeta sp. [104]. Furthermore, removing
bacterial EPSs drastically reduces the organic absorption ability of microbes. These findings
suggest that EPSs are crucial for the uptake and removal of organic substances during
biodegradation. However, there is still less research on the function of EPSs and their
release during phenol biodegradation [109–111].

5. Mechanism of Phenol Biodegradation
5.1. Aerobic Biodegradation

The mechanism of phenol degradation was first identified in the 1950s, and it is now
well established. Many aerobic phenol-degrading bacteria have been discovered during
the last few decades. A vibrio-like organism called ‘Vibrio 01′ has been isolated from
wastewater discharged during coal gasification. It was firstly reported for its synthesis
of beta-ketoadipate, which is an intermediate of phenol biodegradation [112,113]. Then,
a number of microorganisms, including Pseudomonas species, Acinetobacter calcoaceticus,
a thermophilic Bacillus species, an actinomycete Streptomyces setonii, and two eukaryotic
microorganisms, the yeasts Trichosporon cutaneum and Candida tropicalis, have been isolated
from phenol degradation system [114].

The oxygenation of phenol is the first step in the aerobic breakdown of phenol by
microorganisms. This step is catalyzed by phenol hydroxylase, which is a mono-oxygenase
enzyme involved in the aerobic phenol degradation pathway (Figure 1). In this step,
a catechol is generated by the phenol hydroxylase-catalyzed mono-hydroxylation of the
phenol’s aromatic ring at the ortho position to the hydroxyl group. This is the main output
of the breakdown of phenol by various microorganisms. Catechol then goes through ring
cleavage, which depends on the microbial strain. It can occur in either ortho or meta
positions, triggering either the ortho pathway which generates succinyl Co-A and acetyl
Co-A or the meta pathway which produces pyruvate and acetaldehyde. Pseudomonas
putida, Pseudomonas cepacia, Pseudomonas picketti, and Alcaligene deutrophus have been
reported for their phenol biodegradability via the meta cleavage pathway, while Trichosporon
cutaneum, Rhodotorula rubura, and Acinetobacter calcoacetium have been discovered for
their biodegradability via the ortho cleavage pathway [115]. The mechanism of the aerobic
degradation of phenol and its derivatives in microorganisms is shown in Figure 1.
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5.2. Anaerobic Biodegradation

Although anaerobic biodegradation is less effective than the aerobic process, phenol
can nevertheless be biologically degraded in the absence of oxygen. Carboxylation at
the para position of phenol to 4-hydroxybenzoate is the first step in the anaerobic phenol
breakdown pathway (Figure 2) [117]. The anaerobic pathway exhibits two processes of
phenol carboxylation. The enzyme phenyl phosphate synthase (kinase) initially phosphory-
lates phenol by adding a phosphate group from an unidentified phosphoryl donor, which
catalyzes the formation of phenyl phosphate as the first intermediate. Subsequently, the
enzyme phenyl phosphate carboxylase, which requires Mn2+, carboxylates phenyl phos-
phate to produce 4-hydroxybenzoate. The synthesis of phosphorylation and carboxylation
enzymes is strictly regulated.
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Figure 2. Anaerobic biodegradation pathway of phenol and p-cresol in bacteria [117]. Copyright 2015,
Elsevier. Phenyl phosphate synthase (PPS); p-cresol methyl hydroxylase (CMH); phenyl phosphate
carboxylase (PPC); aldehyde dehydrogenase (ADH); 4-hydroxybenzoate-CoA ligase (HBCL); and
4-hydroxybenzoyl-CoA reductase (HBCR). Note: Texts with black color are degrading substances
and those with blue colors are enzymes.

The anaerobic biodegradation of phenol involves several intermediates, including
benzoate, catechol, cis-muconate, α-ketoadipate, succinate, and acetate [118]. It has been
intensively studied on how pure and mixed microbial cultures degrade phenol. The
Pseudomonas sp. has been mostly used in various studies on phenol breakdown. Phenol
can be degraded to a free form or bound to soil or sediments, even though the rate of
biodegradation is slow down in the presence of a sorbent [119]. The phenol carboxy-
lation enzyme (phenyl phosphate carboxylase) in Thauera aromatica seems to proceed
through a phosphorylated-free intermediate and is not related to any of the studied car-
boxylases. Phenyl phosphate carboxylase has a high sensitivity to oxygen and is receptive
to molecules that trap free radicals but not dependent on biotin or thiamine diphosphate.
Unlike the other known carboxylases, it uses metal as a co-catalyst and carbon dioxide as
a substrate [120,121]. Rhodopseudomonas palustris, Magnetospirillum sp., Thauera aromatica,
Azoarcus sp., Geobacter metallireducens, and Syntrophus aciditrophicus were the first group
of anaerobic phenol-degrading bacteria explored for chemical and genomic characteriza-
tion [122,123]. In a laboratory and pilot-scale investigation, several bacterial species were
found in anoxic granular denitrifying reactors for the treatment of synthetic wastewater
containing phenol as the only carbon source because of their capacity to utilize aromatic
chemicals as electron donors. These bacteria included Desulfotomaculum sp., Clostridium
sp., Syntrophus sp., Ignavibacterium sp., Denitratisoma sp., and Thaurea sp. [124,125]. Along
with Advenella sp., Corynebacterium sp., Sphingobium sp., and Ottowia sp. were listed as the
most prevalent genera of phenol degraders for refining wastewater [126]. The anaerobic
biodegradation pathway of phenol and p-cresol in bacteria is shown in Figure 2.

6. Membrane Bioreactors (MBRs)

The biological approaches for wastewater treatment have been used since long time
ago. Activated sludge is the most common biological treatment method applied in wastew-
ater treatments [127]. When a direct reuse of effluent or a strict discharge requirement
are intended, filtration techniques like reverse osmosis, ultrafiltration, microfiltration, and
nanofiltration are widely used. The MBR system, therefore, is currently gaining popularity
because of advancement in highly efficient membrane technology and the availability of
selective membrane modules [128,129].

Generally, an MBR is made up of two main components: (1) the biological unit, which
is involved in the biodegradation of wastewater; and (2) the membrane module, which
physically separates treated water from mixed wastewater [130,131]. Depending on the
configuration, MBRs can be divided into two categories: integrated MBR systems and
recirculated MBR systems. The bioreactors equipped with internal membranes are included
in the first category, which is commonly called an integrated MBR system (Figure 3). The
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driving force across the membrane is produced by pressurizing the bioreactor or generating
negative pressure on the permeate side. Frequent permeate back-pulsing and sporadic
chemical backwashing are used to clean the membrane. To assist with the scouring of the
filter surface, a diffuser is positioned directly beneath the membrane module. At the same
time, the diffuser is simultaneously utilized for mixing and aeration purposes. Anaerobic
or anoxic compartments can be added to allow the simultaneous biological removal of
substrates [132,133].
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The second configuration is known as a recirculated (external) MBR system, in which
the membrane module is externally assembled to the bioreactor (Figure 4). Membranes for
both the inner and outer skin layers can be utilized in this application. A high crossflow
velocity of the feed along the membrane surface results in a pressurized environment,
which acts as a driving force for the separation. The commercial use of MBRs has been
increasing currently due to the development of less expensive, and more durable polymeric
membranes such as polyvinylidene fluoride (PVDF), polyether sulfone (PES), polyethylene
(PE), and polysulfone (PSF) that provide lower pressure requirements, and larger permeate
fluxes [133,135].

Polymers 2024, 16, x FOR PEER REVIEW  12  of  36 
 

 

 

Figure 4. A recirculated (external) MBR system [134]. Copyright 2018, Elsevier. 

A MBR system has numerous benefits over conventional activated sludge (CAS) and 

other wastewater treatment methods. Primarily, the bioreactor’s ability  to retain all the 

suspended matter and most of the soluble substances results in an outstanding effluent 

quality that may pass strict discharge standards and pave the way for direct water reuse. 

Secondly, MBRs have  the potential  to retain microorganisms e.g., bacteria and viruses, 

especially pathogenic microbes in the bioreactor, leading to a sterile effluent and reducing 

the requirement of thorough disinfection and associated health risks. The best possible 

management of microbial population control and operational flexibility is accomplished 

by the fact that the clarification stage does not cause any losses of suspended solids. The 

total separation and the control of solid retention time (SRT) and hydraulic retention time 

(HRT) are, therefore, achievable. With a lack of clarifier, which also acts as a natural selec-

tor for settling microorganisms, the anaerobic MBR system enables delicate and slow-re-

producing species to grow. For example, denitrifying bacteria, which are able to digest 

complex  compounds,  emerge  and  persist  in  such  a  system  even  during  brief  SRTs 

[18,136,137]. Common denitrifying bacteria such as Acinetobacter sp., Azoarcus sp., Thauera 

sp., Acidovorax  sp.,  and  Stenotrophomonas  sp.  are  employed  for  phenolic  treatment  in 

wastewater [138–140]. Settling is a major challenging aspect of wastewater treatment that 

is typically eliminated with MBRs [141,142]. High microbial concentrations are possibly 

employed in an MBR system due to its capability of operating at very high solid retention 

durations without encountering the problem of settling. The quality of the rejected water 

is unaffected by changes in the sludge settling velocity because of the membrane module’s 

improved compactness compared to a conventional secondary clarifier [143]. Suspended 

solids can be totally removed by using the membrane to separate liquid and solid compo-

nents  rather  than  relying on  the  traditional method  of  settling  [144,145]  in which  the 

sludge concentration and hydraulic loading rates are higher that cause increased expend-

itures. Input is pre-screened and processed before entering in the MBR, where biodegra-

dation takes place [146–148]. The mixed fluid in the bioreactor is removed and pumped 

along modules with submerged or semi-crossflow filtering membranes. Concentrated bi-

osolids from the reject stream are fed back into the bioreactor [149,150]. Excess biosolids 

from the reactor or the return line are discarded. The separation of the HRT from the sol-

ids’ retention time offers excellent control of the biological activities. Due to the high bio-

mass  concentration  in MBR,  the  system  is  substantially  smaller  than  a  conventional 

wastewater treatment system [151–153].   

The MBR is a hybrid approach that combines membranes with the traditional biologi-

cal process. Initially, the MBR system was applied to domestic wastewater treatment but has 

been  now  effectively  used  in  the  treatment  of  industrial  effluents  containing  phenolics 

[6,154]. Due to its low carbon emission, the MBR system has attracted much attention for its 

Figure 4. A recirculated (external) MBR system [134]. Copyright 2018, Elsevier.

A MBR system has numerous benefits over conventional activated sludge (CAS) and
other wastewater treatment methods. Primarily, the bioreactor’s ability to retain all the
suspended matter and most of the soluble substances results in an outstanding effluent
quality that may pass strict discharge standards and pave the way for direct water reuse.
Secondly, MBRs have the potential to retain microorganisms e.g., bacteria and viruses,



Polymers 2024, 16, 443 12 of 34

especially pathogenic microbes in the bioreactor, leading to a sterile effluent and reducing
the requirement of thorough disinfection and associated health risks. The best possible
management of microbial population control and operational flexibility is accomplished by
the fact that the clarification stage does not cause any losses of suspended solids. The total
separation and the control of solid retention time (SRT) and hydraulic retention time (HRT)
are, therefore, achievable. With a lack of clarifier, which also acts as a natural selector for
settling microorganisms, the anaerobic MBR system enables delicate and slow-reproducing
species to grow. For example, denitrifying bacteria, which are able to digest complex com-
pounds, emerge and persist in such a system even during brief SRTs [18,136,137]. Common
denitrifying bacteria such as Acinetobacter sp., Azoarcus sp., Thauera sp., Acidovorax sp.,
and Stenotrophomonas sp. are employed for phenolic treatment in wastewater [138–140].
Settling is a major challenging aspect of wastewater treatment that is typically eliminated
with MBRs [141,142]. High microbial concentrations are possibly employed in an MBR
system due to its capability of operating at very high solid retention durations without
encountering the problem of settling. The quality of the rejected water is unaffected by
changes in the sludge settling velocity because of the membrane module’s improved com-
pactness compared to a conventional secondary clarifier [143]. Suspended solids can be
totally removed by using the membrane to separate liquid and solid components rather
than relying on the traditional method of settling [144,145] in which the sludge concen-
tration and hydraulic loading rates are higher that cause increased expenditures. Input
is pre-screened and processed before entering in the MBR, where biodegradation takes
place [146–148]. The mixed fluid in the bioreactor is removed and pumped along modules
with submerged or semi-crossflow filtering membranes. Concentrated biosolids from the
reject stream are fed back into the bioreactor [149,150]. Excess biosolids from the reactor
or the return line are discarded. The separation of the HRT from the solids’ retention time
offers excellent control of the biological activities. Due to the high biomass concentration
in MBR, the system is substantially smaller than a conventional wastewater treatment
system [151–153].

The MBR is a hybrid approach that combines membranes with the traditional biologi-
cal process. Initially, the MBR system was applied to domestic wastewater treatment but
has been now effectively used in the treatment of industrial effluents containing pheno-
lics [6,154]. Due to its low carbon emission, the MBR system has attracted much attention
for its wastewater treatment applications. The advantage associated with the MBR over
other treatment techniques is disinfection. The biological process that is part of the MBR
system contains microbes and activated sludge [142] that effectively degrade hydrocarbon,
including phenol, through their microbial metabolism. The parameters for biodegradation,
such as pH, oxygen, temperature, nutrient, and the uniform distribution of biomass and
pollutants in the reactor, are more precisely controlled and managed by the bioreactor
component. The MBR system enables longer sludge retention times and higher mixed
liquor suspended solid concentrations than traditional activated sludge, hence allowing
the biomass to develop and adapt toward wastewater more effectively [155].

Wastewater first undergoes pretreatment or screening to remove grit, hair, and other fi-
brous and abrasive contaminants that might clog the membrane and cause a significant and
quick decrease in flux. Therefore, a multi-step physical process including grit removal and
fine-screening is necessary before entering the MBR system. Air is then introduced to scour
the membrane and propel the biological treatment to break down hydrocarbon. To prevent
membrane fouling and force the water to pass through the membrane, which serves as a
solid–liquid separation mechanism and keeps the microbial inside the bioreactor, a signif-
icant amount of pumping power is needed to maintain high velocity, pressure, and flux.
Disinfection is applied to kill microorganisms that are retained in the bioreactor [156,157].

7. Modified Membrane Bioreactors (MMBRs)

Compared to traditional treatment methods, modified membrane bioreactors (MM-
BRs) have several benefits in wastewater treatment. The comparison of phenol removal
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by different configurations in membrane bioreactors is shown in Table 2. MMBRs clean
wastewater very effectively because of their combination of biological processes and mem-
brane filtration. MMBRs have a smaller environmental impact than traditional wastewater
treatment methods as secondary clarifiers are not necessary with the membrane filtering
method, enabling the design of a more streamlined and compact treatment facility. This is
especially helpful when retrofitting existing treatment facilities or in places with small area
available. This can lessen the environmental impact of sludge management and lower the
expenditures related to sludge handling and disposal [158]. The membrane filtration in
MMBRs offers excellent solid removal, results in effluent with a low turbidity and fewer
suspended solids. Furthermore, the membrane barrier effectively retains bacteria and
pathogens, leading to a high level of microbial removal. As a result, effluent from MMBRs
is often of superior quality, meeting strict water reuse criteria and reducing the risk of
waterborne diseases. Advanced monitoring and control systems can help modified MMBRs
with the real-time monitoring of numerous parameters, such as membrane fouling, oxygen
levels, pH or nutritional concentrations and gaseous products. This enables operators
to improve system performance real-time, identify problems quickly, and choose wisely
between necessary maintenance and operational changes. Thus, MMBRs are a desirable
alternative for both municipal and industrial wastewater treatment applications because
they generate high-quality effluents that can be used for a variety of water reuse tasks,
including irrigation, commercial operation, and groundwater replenishment [159,160].

Table 2. Comparison of phenol removal by different modified membrane bioreactors (MMBRs).

Membrane
Bioreactor Membrane Type Contaminants MBR Operating Parameters Phenol Removal

Efficiency References

EMBR PDMS/PMMA/MWCNTs Phenol
(1000–4000 mg L−1)

Saline wastewater; effective membrane
surface area: 20 cm2; HRT: 24 h; and

temperature: 24 ± 2 ◦C.
100% [161]

EMBR Hytrel™ 3548 tubing

Methyl ethyl ketone,
benzene, phenol, and

acetic acid
(1000 mg L−1)

Synthetic hydraulic fracturing
wastewater; T: 30 ± 0.5 ◦C; effective

membrane surface area: 0.132 m2; V: 3 L;
and HRT: ~8 h and microorganisms:

microbial consortium (Pseudomonas sp.,
Comamonas sp., Achromobacter sp.,

Lysinibacillus sp., and Oxalobacter sp.).

Benzene and
phenol: 99%
Methyl ethyl
ketone: 96%

Acetic acid: 53%

[162]

EMBR

Electro-spun fiber of
polydimethylsilox-

ane/polymethyl
methacrylate

Synthetic phenol-laden
saline wastewater

(phenol:
14.1–290.7 mg L−1)

Effective membrane surface area:
0.0048 m2; HRT: 24 h; T: 24–26 ◦C; and

microorganism: ProtTeobacteria and
Saccharibacteria.

100% [156]

EMBR Silicone membrane
(capillary membrane)

Benzene, toluene,
ethylbenzene, and

xylene (BTEX)

T: 25 ◦C; pH: 6.8–7.0; agitation rate:
300 rpm; and microorganism:

Pseudomonas putida TX1 and BTE1.
75–99% [163]

MBBR Polypropylene and
polyurethane

Phenol (0.1 g L−1) and
ammonia (0.1 g L−1)

pH: 6.5; HRT: 2–12 h; and air flow rate:
2.15 L min−1; and microorganism:
acclimatized bacterial consortium.

91.2% [164]

MBBR Polyethylene
Phenol (800 mg L−1)
and saline (40 g L−1)

wastewater

HRT: 18 h; T: 23 ± 2 ◦C; pH: neutral;
dissolved oxygen (DO): 4–5 mg O2 L−1;
and microorganism: activated biomass

mixed consortia.

99% [165]

MBBR Polyethylene Synthetic wastewater;
phenol (200 mg L−1)

HRT: 24 h; DO: 5.0 ± 1.0 mg L−1;
pH: 7.0; T: 32 ± 2.0 ◦C; and

microorganism: Bacillus cereus.
87.64% [166]

MBR Flat sheet membrane
from methacrylate

Hypersaline
wastewater,

phenol (8–15 mg L−1)
and salt

(150–160 mS cm−1)

HRT: 0.5–0.7 days; and pH: 7.5–8.3; and
microorganism: Halomonas and

Marinobacter.
>98% [167]
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Table 2. Cont.

Membrane
Bioreactor Membrane Type Contaminants MBR Operating Parameters Phenol Removal

Efficiency References

MBR Flat sheet PVDF
membrane

Coir retting
wastewater;

phenol (90 mg L−1)

HRT: 8 h; pH: 6.5-7.2; effective
membrane surface area: 0.8 m2; and
microorganism: activated sludge.

99% [168]

MBR Flat sheet ceramic
membrane

Phenol-rich
pharmaceutical

wastewater

Phenol: 539 ± 67 mg L−1; HRT: 18 h;
T: 27 ± 1 ◦C; pH: pH: 8.0 ± 0.5;

effective membrane surface area:
0.008 m2; and microorganism:

Rhodococcus sp.

>99% [169]

AnMBR PVDF membrane

Synthetic wastewater
p-cresol

(1200 mg p-cresol L−1)
and phenol

(2000 mg phenol L−1),
resorcinol

(800 mg resorcinol L−1)
and phenol

(2000 mg phenol L−1)

HRT: 6 d; T: 35 ◦C; operation time
77–112 d; and microorganism:

Syntrophorhabdus sp. and
Methanosaeta sp.;

100%
100% [170]

A/O-MBR PVDF hollow-fiber
membrane

Coal gasification
wastewater with

abundant phenols

HRT: 12 h and 47 h; T: 20–25 ◦C;
total membrane surface area: 0.2 m2;
and microorganisms: Flavobacterium
sp., Holophaga sp., and Geobacter sp.

>97% [171]

SMBR Polyvinylidene fluoride
Synthetic phenolic

wastewater
(phenol: 1000 mg L−1)

HRT: 16.6 h; T: 23–24 ◦C; effective
membrane surface area:

5 × 10−2 m2; DO: 2 mg L−1; and
microorganisms: activated sludge.

>99% [154]

HFMBR
Trioctylphosphine oxide
(TOPO) impregnated in

polypropylene

Phenolic wastewater
(phenol: 100 mg L−1)

HRT: 12 h; pH: 6.5–7.0; and
microorganisms: Pseudomonas putida

ATCC 11172.
100% [172]

HFMBR Polyether sulfone +
granular activated carbon

Synthetic wastewater
(phenol:

1000 mg L−1)

HRT: 18 h; and microorganisms:
Pseudomonas putida. 100% [173]

Note: EMBR: extractive membrane bioreactor; MBBR: moving bed biofilm reactor; MBR: membrane bioreactor;
AnMBR: anaerobic membrane bioreactor; A/O MBR: anoxic/aerobic membrane bioreactor; SMBR: submerged
membrane bioreactor; and HFMBR; hollow-fiber membrane bioreactor.

7.1. Capillary Membrane Bioreactor (CMBR)

A capillary membrane bioreactor has been studied and tested for the removal of
phenolic compounds from synthetic and industrial effluents (Figure 5). Two polymeric
membranes with various morphologies have also been used to immobilize polyphenol
oxidase on a single capillary membrane in a small-scale bioreactor. The uniqueness of this
membrane is its lack of the outer skin layer that generally serves as a support. Therefore, it
permits a higher flow rate and has demonstrated remarkable performance in the removal
of substances from this kind of reactor. It has been reported that 45 units of polyphenol
oxidase were used with this high-flux membrane to remove 949 µmol of phenols from a
solution containing 4 mmol L−1 of total phenolics in 8 h. This result was much greater
than the 120 µmol of phenolics that was removed using a non-immobilized enzyme, as the
enzyme had become inactive due to product inhibition after 7 h [174]. Oxidative enzymes,
produced by the fungus Neurospora crassa, have been utilized in the biodegradation of
phenolic compounds in both shaken and static batch cultures equipped with a capillary
membrane. In the above-mentioned research, the N. crassa enzyme system was used
to execute bioremediation on two phenolic substrates, phenol and p-cresol, which are
components of effluents discharged from industries. Over a six-day period, the fungal
cultures in the flasks removed 18 mg p-cresol and 23 mg phenol, respectively, from the initial
5 mmol L−1 solutions of g−1 wet biomass. While the immobilized cultures’ system removed
10 mg p-cresol or 8 mg phenol g−1 wet biomass during the same period. It was reported
that the immobilized biomass in a continuous reactor could maintain this removal efficacy
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for a duration of four months. In contrast, the batch liquid culture systems-maintained
activity for an estimated 8–15 days, after which the cultures were no longer viable. This
was the first instance of continuously applying immobilized N. crassa biofilms for phenol
bioremediation [175]. In a study, Pseudomonas putida was used in an immobilized cell
membrane bioreactor to degrade large concentrations of phenol. It was documented that
P. putida in suspension cultures utilized phenol at concentrations below 1000 mg L−1, but
it experienced substrate inhibition at higher concentrations. On the other hand, P. putida
immobilized in 25 w% polysulfone fibers decomposed phenol at a higher concentration. The
immobilized cells completely broke down the phenol within 9 h at a phenol concentration
of 1200 mg L−1; however, no cell growth or phenol degradation appeared in the free-
suspension system at 1000 mg L−1 phenol. In a number of studies, it has been noticed that
cells dispersed from the membranes once phenol concentrations reached sub-inhibitory
levels. In these instances, the duration required for full degradation was reduced when
cell diffusion was employed, as quick phenol degradation was primarily attributed to the
suspended cells [176]. An example of fifteen single-fiber capillary membrane bioreactor
(SFCMBR) setup for kinetic study of Phanerochaete chrysosporium biofilms was illustrated
in Figure 5. This bioreactor units were vertically oriented according to the configuration
and the capillary polysulphone membranes utilized were internally skinned and externally
unskinned, manufactured specifically for this purpose [177].
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Figure 5. A single-fiber immobilized cell, capillary membrane bioreactor system [177]. Copyright
2006, Elsevier.

In another study, chitosan gel was chosen as a matrix to coat on skinned polysulphone
capillary membranes for the immobilization of polyphenol oxidase. The effect of this
chitosan coating on the removal of phenolics from industrial wastewater by immobilized
polyphenol oxidase was studied using bench-scale single-capillary membrane bioreactors.
This study showed that capillary membranes coated with a gel-like chitosan exhibited
higher protein carrying capacities than uncoated membranes. Due to the action of chitosan,
which provides an in-situ product removal function along with a greater enzyme loading
capacity. The enzyme loading capacity for the chitosan-coated membrane was 143 U with
a phenol removal of 1224.4 mg, which was remarkably high compared to the non-coated
capillary membranes, for which the values were 55 U and 20.3 mg, respectively. Thus,
the use of immobilized polyphenol oxidase and chitosan-coated capillary membranes
serves two purposes: first, they provide a highly effective method for removing phenolic
contaminants from water, and second, they provide a method for successfully removing
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color from the resulting permeate. Furthermore, the presence of chitosan significantly
reduces the product inhibition that is a characteristic of polyphenol oxidase [178].

7.2. Extractive Membrane Bioreactor (EMBR)

The extractive membrane bioreactor (EMBR) is a promising technology used to treat
wastewater, like in the processes of denitrification of drinking water, organic saline removal
from wastewater, and organic pollutant removal [179,180]. As shown in Figure 6a, an EMBR
is made up of three parts: an effective microorganism compartment, a selectively permeable
membrane, and a targeted effluent compartment. This system allows the separation of
biomass from harmful wastewater, provides concentration gradient control, and yields a
slow release of pollutants into the bioreactor through an absorptive or diffusive membrane
where microorganisms break down organic molecules. The membrane only permits the
passage of target chemicals depending on their thermodynamic affinities [181]. The EMBR
separates organic chemicals from inorganic compounds while simultaneously facilitating
their biological degradation. The selective membrane helps the EMBR to remove particular
extracted molecules from the waste stream. The hollow-fiber selective membrane allows
the selective transport of biodegradable organic pollutants through the membrane and
biofilm from the lumen into the shell side. The bio-medium is circulated on the shell
side, while the wastewater is pumped into the membrane module through the lumen side
of the operating mechanism. Subsequently, only the target components are introduced
into the bio-medium [180]. The bulk solution of extracted organic molecules and biomass
is progressively released to the other side of the membrane, and then it is conveyed to
bioreactor in which biodegradation occurs [181].
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In the EMBR, diffusion is the method by which mass is transferred (Figure 6b). In this
setup, wastewater flows to the membrane module via the lumen side, while the bio-medium
is recirculated via the shell side. When a nonporous membrane (such as polydimethysilox-
ane or PDMS) is utilized, the diffusion component is characterized as a solution-diffusion
mechanism. For these kinds of membranes, components diffuse across the membrane
from the feed side into the bio-medium after dissolving into the membrane from the feed
side [180]. To supply vital nutrients and oxygen to the biofilm and eliminate biodegradation
products like phenol, a small stream runs through the bio-medium. The biodegradation of
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the organic components contained in a hydraulic fracturing effluent has been investigated
using an EMBR employing HytrelTM3548 tubing. Methylethylketone, benzene, phenol, and
acetic acid were present in significant amounts (1000 mg L−1) in the synthetic hydraulic
fracturing effluent, along with 30–120 g L−1 of Cl− at a low pH. This wastewater was
pumped through the polymeric tubing, which then allowed an enhanced bacterial con-
sortium of Pseudomonas sp., Comamonas sp., Achromobacter sp., Lysinibacillus sp., and
Oxalobacter sp. to preferentially transport the organic chemicals across the membrane for
biological breakdown. The report showed a 99% removal of benzene and phenol, a 96%
removal of methylethylketone, and a 53% removal of acetic acid by a continuous EMBR
operation [162].

An EMBR can be operated at ambient temperature and pressure, displaying a wide
range of applications and being appropriate for wastewater containing harsh or inhibiting
substances such as salinity, acid, or alkali substances. During biodegradation, isolated
organic components are completely broken down, necessitating no further generation of
pollutants. The EMBR is primarily utilized for water rejection and organic compound
permeation, as opposed to nanofiltration (NF), reverse osmosis (RO), and forward osmosis
(FO), which are often used for organic compound rejection and water permeation.

Based on the three hypotheses which form the foundation of the models, the mass
transfer coefficient may be defined using each of the membrane’s distinct barriers. First,
the mass transfer is in a steady-state condition. Second, the membrane’s pores contain the
organic aqueous liquid interface. Third, the coefficients of solute partition across the con-
centration range are assessed using the two liquids’ immiscibility. Using EMBRs, numerous
studies have been carried out to remove phenolic compounds from wastewater. In a study,
an EMBR membrane made of polydimethylsiloxane, polymethyl methacrylate, and multi-
walled carbon nanotubes was employed. In comparison to those without activated sludge,
the phenol transmembrane mass transfer rates rose by 21.6–31.7% when biofilm was formed
and activated sludge was present. With 1000–4000 mg L−1 phenol and 10 g L−1 sodium
chloride in the effluent, 100% of the phenol was removed, while 99.96% of the salt was
rejected [161]. Another study showed a novel EMBR for simultaneous phenol permeation,
salt rejection, and biodegradation. The electro-spun polydimethylsiloxane/polymethyl
methacrylate (PDMS/PMMA) membrane showed contact angles of 160.9 ± 2.2◦ for water
and 0.0◦ for phenol, indicating that this superhydrophobic/super-organophilic membrane
was suitable for separating phenol from water-soluble salt. Under an HRT of 24 h, phenols
with concentrations ranging from 14.1 ± 2.7 to 290.7 ± 10.4 mg L−1 were continuously
permeated and were totally biodegraded in an external EMBR, which corresponded to
an improvement in detoxification performance from 6.3% to 70.5% [156]. A combination
of phenolic chemicals, including benzene (513 ppm), toluene (269 ppm), ethylbenzene
(78 ppm), and xylene (177 ppm), were metabolized in an EMBR by microbes Pseudomonas
putida TX1 and BTE1. The EMBR system efficiently eliminated the phenolics at rates of up
to 30 µg h−1 cm−2 of the membrane area, with an efficiency of removal ranging from 75%
to 99% depending on the concentration of the phenolic compound and their vapor flow
rate [163].

7.3. Hollow-Fiber Membrane Bioreactor (HFMBR)

The hollow-fiber membrane bioreactor (HFMBR) is an efficient membrane configura-
tion for wastewater treatment because it has the maximum surface area per unit volume,
as illustrated in Figure 7. The HFMBR is mechanically self-supporting and can encourage
hollow-fiber movement through backwashing and air scouring, which aid in reducing
membrane fouling [182]. HFMBRs are made up of hollow-fiber membranes that are parallel-
assembled in an exterior shell with shape like a cylinder. The membranes are produced
when the fibers are placed in the shell [183]. In a study, an HFMBR was developed for the
biodegradation of phenol. Through mixing, solvent was consistently distributed through-
out the feed phenol solution. Two peristaltic pumps were used to deliver the aqueous
organic dispersion to the shell side, and the cell culture from the medium vessel to the tube
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side in the HFMBR as illustrated in Figure 7. HFMBR is equipped with carbon nanotube
hollow-fiber membranes. A 0.45 µm filter was used to sterilize the cleaned air before it was
introduced to a humidification tank. The cells were then sparged with the saturated air at
two gas volumes per reactor volume per minute [184]. A flow diagram of the HFMBR is
shown in Figure 7.
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The HRT and the temperature are two main parameters that need to be closely mon-
itored while operating a HFMBR. A short HRT may result in a high organic load rate,
which is related to both the characteristics of the biomass used in the activated sludge
process and the MBR process’s ability to treat wastewater effectively [185]. On the other
hand, an extended HRT improves effluent quality by allowing bacteria for a longer time
to degrade contaminants in wastewater [186]. Moreover, raising the temperature may
result in a drop in feed viscosity and an increase in solute diffusion, which would raise
the flux [186]. Aeration is another essential factor because it offers dissolved oxygen to
biomass, which improves the efficiency of biodegradation [187]. Low aeration causes high
salt concentrations in wastewater, which increase stressed conditions to microbes in a way
which may have harmful or inhibitory effects to microorganisms. Environmental stress
also makes bacteria undergo plasmolysis, lose cell function, or even develop too much EPS
and soluble microbial products (SMP), which may block membrane pores and cause foul-
ing [188]. Moreover, the properties of hollow-fiber membranes and their filtration efficiency
are influenced by the membrane’s condition. The low hollow-fiber packing density, long
and loose fibers, and small hollow-fiber diameter that allow the lateral movement of fibers
enhance the hollow membrane’s filtration performance [182].

Trioctylphosphine oxide impregnated in polypropylene hollow-fiber membranes was
used by Praveen et al. in an HFMBR system for the two-phase biodegradation of phe-
nol employing Pseudomonas putida ATCC 11172. At a specific growth rate of 0.73 h−1,
1000 mg L−1 phenol was completely degraded in 12 h with the average biodegradation rate
of 86 mg L−1 h−1. During the biodegradation of 3000 mg L−1 phenol, the biodegradation
capacity and the degradation rate of the extractant impregnated hollow-fiber membrane
bioreactor (EIHFMB) were enhanced by extending the effective length of the fibers by
50%. Increasing the aqueous phase flow rate also improved the adsorption and desorption
rates [172]. Recently, the degradation and separation of purified terephthalic acid (PTA)
wastewater in a lab-scale hollow-fiber anaerobic membrane bioreactor (HF-AnMBR) was
examined by Kudisi et al. Synthetic PTA wastewater was run for 200 days with progres-
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sively lower HRTs to study long-term performance, membrane fouling mechanism, and
the evolution of microbial communities. According to the published results, the methane
generation rate was 0.33 ± 0.02 L L−1 reactor d−1, with a steady COD elimination rate of
65.8 ± 4.1% at an organic loading rate of 3.1 ± 0.3 g COD L−1 reactor d−1 and an HRT
of 24 h. The reduced COD removal could have been related to the shortened HRTs. As
a result, the petrochemical wastewater had a high level of toxicity, which inhibited the
accumulation of harmful materials in the HF-AnMBR system and led to microorganism
survival at risk. Consequently, methane formation was inhibited, and COD removal was
reduced. The predominant methanogens that produced methane were Methanosaeta sp. and
Methanolinea sp. [186]. In a different study, Pseudomonas putida was used for the biodegra-
dation of phenol in an HFMBR containing granular activated carbon (GAC). In batch
biotransformation experiments, the hybrid bioreactor completely removed 1000 mg L−1

phenol (at this concentration free cells cannot grow) in a hollow-fiber membrane bioreactor
containing GAC in 18 h, compared with the 23 h taken in a GAC-free bioreactor. When
phenol loading was <24 mg h−1, more than 90% of the phenol was converted during a
continuous operation in the GAC bioreactor [173]. In another study, lithography was used
to make polyvinylidene fluoride (PVDF) hollow-fiber modules with patterned membrane
surfaces. The anti-biofouling characteristics of two distinct patterned hollow-fiber (PHF)
PVDF membranes, a pyramid and a prism, were examined in an MBR that was used
to treat wastewater. Due to the increased effective membrane surface, the PHF demon-
strated a higher water flux as well as improved anti-fouling properties compared to the
non-patterned hollow-fiber membrane [189].

7.4. Moving Bed Biofilm Reactor (MBBR)

A moving bed biofilm reactor (MBBR) is a fully mixed continuously running biofilm
reactor that was developed to provide the benefits of the biofilm process, including steady
toxin removal. A larger biomass concentration can be obtained in MBBRs by using large
moving media or media with a high effective biofilm surface area, which enhances toxin
resistance and consequently boosts MBBR performance [190,191]. The other benefits of the
MBBR technology include an enhanced volumetric treatment capacity, a low head loss,
less clogging of the carrier medium, an increased resistance to environmental changes,
reduced space requirements, and shorter HRTs [192,193]. The fundamental concept of the
MBBR technology is that biomass is developed on uniquely designed carrier parts that
can freely move throughout the reactor due to mechanical mixing, liquid recirculation, or
aeration [194]. The flow diagram of an MBBR system is shown in Figure 8.
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Several factors, including pH, nutrients, and HRT, affect the efficiency of MBBRs.
Biofilm development is controlled by the availability of nutrients, and, hence, biofilm
flourishes when the system contains a high number of nutrients. On the other hand, pH
fluctuation influences the growth of biofilm since bacteria can modify the protein activity
and protein synthesis related to various cellular processes during pH fluctuation [192].
A long HRT facilitates the acclimatization of microorganisms in wastewater, thus im-
proving the removal efficiency of the pollutants. Conversely, a short HRT can lead to
incomplete degradation. Increasing the wastewater loading rate over the biomass’s capac-
ity for biodegradation may prevent complete mineralization. Therefore, the concentration
of metabolites in the effluent could be increased [164]. Another factor influencing system
performance is the biofilm carrier. In MBBR systems, biocarriers can be modified accord-
ing to the categories of the process, namely, aerobic, anoxic, and anaerobic. A biocarrier
with wider openings minimizes specific surface area loss, which makes it suitable for the
rapid-growing heterotrophic biofilm in aerobic systems, whereas for slow-growing au-
totrophic microbial biofilm, a more appropriate biocarrier may contain small openings and
a large effective surface [192]. Biocarriers, including polypropylene-polyurethane (PP/PU)
foam [164] and polyethylene (PET) [165], have been successfully used to degrade phenol.

In order to remove phenol and ammonia collectively, a MBBR containing biocarriers
made of PP/PU foam was investigated by Swain et al. [164]. Retention time, pH, and air
flow rate were the three variables studied. Under ideal circumstances, the maximal removal
of phenol and ammonia was measured to be 92.6 and 91.8%, respectively. In another
study, an immobilized Bacillus cereus GS2 biocarrier was used in a lab-scale MBBR. The
response surface method was applied to optimize the process variables including the
mixing intensity, the phenol content, and the HRT. At 100 rpm of mixing, 200 mg L−1 of
phenol concentration, and 24 h of HRT, the best phenol removal efficiency (87.64%) was
reported. The increased mixing intensity substantially improved the substrate diffusion
between the liquid phase and the surface of the biofilm. Catechol and 2-hydroxymuconic
semialdehyde were found to be produced during the biodegradation of phenol, providing
additional proof that the Bacillus sp. followed the meta cleavage pathway (Figure 1) [166].
The effectiveness of an aerobic MBBR was assessed for the removal of sole phenol from
saline wastewater. A mixed culture of active biomass that had been gradually acclimated
to salt and phenol was introduced into the 10 L MBBR for phenol and COD removal. The
studied parameters included inlet phenol concentration, HRT, inlet salt content, phenol
shock loading, hydraulic shock loading, and salt shock loading. The findings showed that
the HRT and the concentration of phenol and salt in the bioreactor feed have an impact on
the removal efficiency of phenol and COD. At inlet phenol concentration up to 800 mg L−1,
an HRT of 18 h, and inlet salt value up to 40 g L−1, the MBBR could remove up to 99%
of phenol and COD from the feed saline wastewater. Additionally, quantifying biological
factors revealed that the biofilm is a crucial factor for the removal of phenols [165].

Industrial wastewater having a low phenol concentration (8–16 mg L−1) and a high
salinity (~150–160 mS cm−1) was treated in a membrane biological reactor with submerged
flat membranes in both lab-scale and pilot-scale conditions. During the operation of both
reactors, the phenol loading rate was gradually increased, and less than 1 mg L−1 phenol
was detected even at very low HRTs (0.5–0.7 days). Membrane fouling was reduced by
increasing the crossflow aeration rate within the MBR and using alternating permeation.
A microbial community study of both reactors revealed that representatives of the genera
Halomonas and Marinobacter were prominent. The phenol removal efficiency was >98.5%
from the industrial hypersaline wastewater (8–15 mg L−1) with a short HRT (0.5 days)
and an excellent operational flexibility [167]. In another study, phenol-rich pharmaceutical
wastewater was treated in membrane bioreactors by applying quorum quenching (QQ)
technology to minimize membrane fouling. Rhodococcus sp. BH4 and an isolated quorum
quenching consortium (QQcs) from activated sludge were used for reduction of membrane
fouling in MBR. It was shown that neither BH4 nor QQcs impact the removal efficiency
of COD (>94%), phenol (>94%), and ammonium (>94%) indicating that QQ did not have
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adverse effect on treatment performance. Both BH4 and QQcs delayed the production
of soluble microbial products and, thus, mitigated membrane fouling that delayed an
increased transmembrane pressure. Interestingly, BH4 exhibited a higher filtration perfor-
mance compared to QQcs, which might be attributed to the relatively higher degradation
of short- and medium-chain N-acyl-homoserine lactones by BH4 and potential QQ mi-
croorganisms in QQcs [169]. In another study, a membrane bioreactor combined with
the photo-Fenton process was applied to degrade phenol and other organic compounds.
Coir retting wastewater was treated, in which the phenol concentration was 420 mg L−1.
The treatment was carried out in an MBR for 1–15 h with an HRT of 8 h. The COD and
phenol removals were determined to be 99% and 78%, respectively. The response surface
methodology was utilized to optimize the photo-Fenton process [168]. Petrochemical efflu-
ent treatment poses a significant challenge for traditional anaerobic reactors from which
gasification effluent has significant levels of phenol, cresols, and resorcinol. These phenolic
chemicals are hazardous and inhibitory. Garcia et al. investigated the simultaneous de-
composition of p-cresol, resorcinol, and phenol in anaerobic saline conditions. The saline
condition (8 g Na+ L−1) was applied in two anaerobic membrane bioreactors, which were
supplied with phenol-p-cresol or phenol–resorcinol mixtures. With influent concentra-
tions of 1200 mg p-cresol L−1 and 2000 mg phenol L−1, the removal efficiency was nearly
100 percent. The complex solution of resorcinol and phenol at 800 mg resorcinol L−1 and
2000 mg phenol L−1 demonstrated a similar elimination efficiency. It was reported that the
Syntrophorhabdus sp. and Methanosaeta sp. were the most common bacteria and methanogen
in both the AnMBRs, respectively [170]. Another study demonstrated the treatment of coal
gasification wastewater using an anoxic/aerobic MBR with and without PU foam carrier.
The findings revealed that both systems effectively removed COD (>93%) and total phenols
(>97%) but exhibited poor ammonia nitrogen removal (<35%) regarding the ammonia oxi-
dation process. The microbial community demonstrated that Flavobacterium sp., Holophaga
sp., and Geobacter sp. were abundant microorganisms found on PU foam [171].

8. Cellulose Membranes in MBRs and Wastewater Treatments

Cellulose membranes have drawn a lot of attention due to their distinctive features and
advantages. Cellulose membranes are highly biodegradable as they are made from natural
materials like wood pulp or cotton fibers, thus reducing the negative effects on the environ-
ment [195]. Their high affinity with water makes them hydrophilic, resulting in minimized
membrane fouling. These characteristics prevent both organic and inorganic contaminants
from sticking to the membranes’ surface [196]. Cellulose membrane surfaces can be modi-
fied by adding functional groups targeting specific contaminants’ removal or achieving
preferential filtration based on molecular size, charge, and hydrophilic/hydrophobic prop-
erties [197,198]. Cellulose membranes are non-toxic and biocompatible, and they do not
have any negative effects on the biological processes or microorganisms that are a part of
the MBR system [199]. The application of cellulose membrane in MBRs encourages the
development and attachment of microorganisms, facilitating the formation of biofilms,
and improving treatment effectiveness. Compared with synthetic membranes, it requires
less energy and lower costs. Their distinct structure and characteristic enable them high
permeability, which lowers the energy required to maintain hydraulic pressure in the MBR
system. Energy saving and operational cost reduction are important factors considered
in MBR-based wastewater treatment. The application of cellulose membranes in MBRs
adheres to the ideals of sustainable technology, encouraging environmental stewardship
and lowering dependency on petroleum resources [200,201].

Current MBR membranes are made from synthetic polymers, including polysul-
fone (PS), polyvinylidene fluoride (PVDF), polyethersulfone (PES), and polyacrylonitrile
(PAN) [202]. These membranes exhibit strong mechanical properties as well as chemical
and thermal stability. Nevertheless, these synthetic polymeric membranes are susceptible
to a decline in permeability caused by the build-up of solids, suspended particles, and
other substances on the membrane surface and/or within the pores [203]. A recent study
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demonstrated that the nanostructured modification of cellulose by silica nanoparticles
could serve to mitigate the membrane’s inclination toward filler aggregation. Consequently,
this promoted the formation of a more uniformly consolidated structure within the nanos-
tructured cellulose fibers, and, thus, a low-fouling cellulose membrane was successfully
fabricated [204].

Another work reported a refined cellulose membrane having promising characteristics
on wastewater collected from MBRs in a sewage treatment plant. The cellulose membrane
was comprised of a lyocell microfiber scaffold infused with TEMPO-oxidized cellulose
nanofibers (CNF) crosslinked using polyamideamine-epichlorohydrin (PAE). A high perme-
ation flux of 127.6 ± 21.8 L m−2 h−1 bar−1, an exceptional separation efficiency exceeding
99.9%, a favorable flux recovery ratio surpassing 95%, and the capability of self-healing
were achieved from cellulose membrane compared with commercial polymeric membranes,
namely PVDF and PES [199]. TEMPO-modified cellulose nanofibers were reported to
have improved the mechanical property and reduced the pore size of a membrane [198].
By incorporating cellulose nanofibers into the cellulose-based microfibers, the design effec-
tively circumvented the common issue of delamination that often arises in membranes with
layer-by-layer coatings. Apart from their anti-fouling properties, to improve the mechanical
properties and to enhance the water flux and chemical resistance of cellulose membranes,
cellulose nanofiber or nanocrystals can be easily blended with synthetic polymers such
as polyamide [205] or other biopolymers such as chitosan [206] or alginate [207]. These
biopolymer-blended membranes are excellent for a variety of MBR applications due to their
enhanced mechanical strength, fouling resistance, and selectivity. This makes it possible to
employ cellulose membranes in MBRs for wastewater treatment.

Recently, the filtration efficiency, anti-fouling performance, and flux recovery of nanofi-
brous composite cellulose nanofiber (TFNC-CNF)-coated membrane and PVDF membrane
were compared. It was shown that the super-hydrophilic nature and negative charge on
the surface of the TFNC-CNF membrane resulted in enhanced anti-fouling properties.
The TFNC-CNF membrane had an initial flux recovery of 90% which was substantially
higher than that of PVDF membrane, which showed a flux recovery of 26–43%, after me-
chanical cleaning. The permeability of the TFNC-CNF membrane ranged from 71.3 to
138.9 L m−2 h−1 bar−1 in the tests for continuous wastewater ultrafiltration. The analyzed
variables demonstrated that TFNC-CNF membranes exhibited better potential as mem-
branes for MBRs [208]. In another study, a solution casting phase inversion technique was
applied to produce the amino-functionalized nanodiamond (ND) and polyethylene glycol
(PEG)-grafted ND embedded cellulose acetate (CA) membranes. Properties such as the
critical flux, fouling behavior, and anti-fouling properties against EPS formation of the
pure and modified cellulose acetate membranes were studied in a bench-scale MBR system
for filtering pharmaceutical wastewater. The results demonstrated that cellulose acetate
membrane loaded with 0.5 wt% ND-PEG showed highest hydrophilic property as well as
higher anti-fouling and greater critical flux. CA/ND-NH2 (0.5 wt.%) and CA/ND-PEG
(0.5 wt.%) facilitated less formation of EPS that caused delay of bio-fouling and thus in-
crease CA membrane durability. This was owing to the strong hydrogen bonding of the
water molecule to the oxygen atoms in the PEG and a strong interaction between the amine
group and water [209].

9. Techno-Economic Analysis of Wastewater Treatment Using Conventional and MBRs
Technologies

MBRs are projected to be used more frequently in municipal and industrial wastewater
treatment because of the high quality of their effluents. Steam stripping, activated carbon,
pervaporation, and conventional activated sludge (CAS) are common technologies that
compete with the MBRs for wastewater treatment. Most conventional processes produce
solid or liquid waste streams e.g., sewage sludge, contaminated sorbent, or extractant, etc.
that must be disposed of or further treated, resulting in additional expenses and treatment
steps [210]. MBRs based wastewater treatment technologies employ a combination of
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biodegradation and micro/ultrafiltration and reverse osmosis methods, and therefore,
treated water is advised for indirect potable reuse for various purposes e.g., agricultural,
and industrial uses [18]. Although MBRs have advantages over the CAS method, the
technology transition from CAS to MBR systems has been controversial owing to the
excessive use of energy and membrane fouling in MBR applications. What about the
cost-effectiveness of MBRs over CAS? It is critical to clarify these challenges by comparing
the CAS ecosystem to that of MBRs [211,212]. The existing literatures have extensively
analyzed the performance and cost of MBRs under various scenarios, including different
temperatures, flux levels, aeration modes, membrane lifespans, and other relevant parame-
ters [213]. The energy consumption, capital/operating costs (CAPEX/OPEX), and full life
cycle costs of MBRs have been thoroughly evaluated [214,215] and compared with CAS
processes [216].

As demonstrated in Table 3, the techno-economic analysis of conventional and MBR
technologies for wastewater treatment consists of two major components: operational
expenses (OPEX) and capital expenditures (CAPEX). Energy consumption as well as
membrane maintenance and replacement are the main operational costs in MBRs, where
energy consumption accounts for around 40–60% of the total operating costs [217]. The cost
comparison on full-scale MBR wastewater reclamation system is scarce due to inadequate
literature. Activated carbon appears to be more expensive than alternative technologies.
Moreover, activated carbon systems do not adsorb dichloromethane effectively, and higher
amount of carbon would be necessary for high organic concentration. Another membrane-
based method for treating wastewater is the application of pervaporation system in which
wastewater treatment takes place without microbial degradation [218].

Table 3. Capital, operational, and unit wastewater treatment cost of conventional and MBR
technologies.

Wastewater
Treatment

Technologies
Wastewater Type Capital/Operational Cost

(CAPEX/OPEX) References

CAS Municipal wastewater 0.11 USD/m3 [217,219]

Pervaporation Organic-contaminated
Wastewater

Capital cost: USD 180K
Operating cost: USD 50K [218]

MBR Wastewater
Capital cost USD 2.9–6.9 million

(1 megaliter per day flow
capacity plant)

[220,221]

MBR Municipal wastewater
Industrial wastewater

Capital cost: 600 USD/(m3/d)
Capital cost: 900 USD/(m3/d)

[222]

MBR Municipal wastewater 0.48–0.59 USD/m3 [223]

HFMBR Municipal wastewater 0.55–0.68 USD/m3 [213]

HFMBR Domestic wastewater 0.24–0.25 USD/m3 [224]

SMBR

Greywater
(operating capacity

3 m3/day)
(operating capacity

30 m3/day)

SMBR: 7.40 USD/m3

NF: 7.80 USD/m3

SMBR: 4.40 USD/m3

NF: 4.82 USD/m3

[225]

FSMBR Municipal wastewater 0.42 USD/m3 [213]
Note: CAS: conventional activated sludge; MBR: membrane bioreactor; SMBR: submerged membrane bioreactor;
HFBMR: hollow-fiber membrane bioreactor; and FSMBR: flat sheet membrane bioreactor (1 EUR is approximately
1 USD in January 2024).

In 2017, Iglesias et al. reviewed actual data on both CAPEX and OPEX for fourteen
MBRs with capacities ranging from 288 to 35,000 m3/d. They compared hollow-fiber and
immersed flat sheet membrane architectures and CAS system, and reported that the CAPEX
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of MBR was around 10% less than that of extended aeration with advanced reclamation
treatment. The OPEX of MBR system was roughly 30% higher when an advanced water
reclamation treatment was followed by a conventional water reclamation treatment. This
OPEX analysis was carried out in treatment plants with capacities less than 10,000 m3/d.
When compared with the prolonged aeration and advanced water reclamation treatment,
the MBR treatment has superior cost conditions above this capacity and is 1.34 times more
expensive [226]. In a study, Xiao et al. reported that the construction of wastewater treat-
ment plants for biological treatment or MBR procedures accounted for 55–85% of the cost.
The findings of this study, which was carried out in 2018, revealed that the CAPEX of MBRs
for municipal wastewater treatment was around 600 USD/(m3/d), but the cost of MBRs
for the treatment of industrial wastewater was approximately 900 USD/(m3/d) [222]. The
CAPEX for the construction of a plant with a one megaliters per day flow capacity would
be between USD 2.9 million and 6.9 million [220,221]. Because of the high input concentra-
tion and extended treatment time, MBR technology for industrial wastewater treatment
often has higher CAPEX and a larger land footprint than that for municipal wastewater
treatments. A cost analysis for the recycling of greywater using SMBR and a tubular
nanofiltration (NF) process with two different production capacities of 3 and 30 m3/d was
carried out by Humeau et al. Based on their report, the expenses associated with greywater
recycling by a NF facility operating at a capacity of 3 m3/d were 7.80 EUR/m3. In contrast,
on-site recycling using an SMBR incurred a cost of 7.40 USD/m3. When the plant’s capacity
was expanded to 30 m3/d, the cost was nearly cut in half. Indeed, the direct expenses were
4.82 USD/m3 for the NF process and 4.40 USD/m3 for the SMBR [225]. The CAPEX of
MBR construction for a wastewater treatment plant ranges from 6000 to 1000 USD/m3/d
depending on the system’s productivity. The membrane plant itself, along with all the
supporting equipment, accounts for 30–60% of the entire cost, which is a significant portion.
The price range for membrane blocks is 75–150 USD/m2 with a typical specific productivity
of 15–30 L/h/m2 of membrane area. The cost for treating household wastewater with
hollow-fiber modules ranges from ~0.24 to 0.25 USD/m3 [224]. Another study by DeCarolis
et al. found that the overall CAPEX and OPEX for 3785.4 m3/d capacity for MBR raw
wastewater recycling systems were between 0.478 USD/m3 and 0.592 USD/m3. Based on
the information presented, the overall expense of MBR facilities remains comparatively
stable [223].

Although the OPEX of MBRs have been reported to be in a range two to four times
higher than that of CAS, as shown in Table 3, indeed, assessing the overall technical and
economic viability of MBRs solely based on costs is insufficient. High costs may be jus-
tified by corresponding high benefits. To provide a more comprehensive evaluation, it
is crucial to consider net profit and technical efficiency, taking into account both inputs
and outputs, which encompass costs and net profits [227]. A more reasonable measure
of the techno-economic feasibility and effectiveness of MBRs involves a quantitative as-
sessment of the environmental benefits associated with wastewater treatment. Based on
CAPEX and OPEX data, the marginal cost and environmental benefits could be assessed
(considering the shadow prices of pollutants), resulting in a net profit of approximately
35 CNY/m3 or roughly 4.9 USD/m3, on average, for MBR technology [228]. Therefore,
a net profit is roughly evaluated as approximately 10 times greater than CAPEX+OPEX for
MBRs reported in a range of 0.478 to 0.592 USD/m3 [223]. Nevertheless, the net profit and
cost/energy efficiencies exhibited substantial variations based on factors such as geograph-
ical location, effluent standard, and operating year of the MBRs. A techno-economic model
analysis additionally indicated that external factors like the regional economic level and
population density also influenced the cost/energy efficiencies of the MBRs. To sum up, the
economic viability of MBRs was particularly notable under strict effluent standards and in
underground locations, besides there is a potential for improvement through technological
advancements and policy incentives following environmental concerns.
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10. Conclusions

The rigorous management of the chemical and biological substances in the effluents
from petrochemical and pharmaceutical industries that are discharged into ground and
surface water bodies is necessarily being implemented. Specific MBR configurations could
retain, concentrate, and subsequently break down many of these chemicals without the
requirement of any complex tertiary treatment procedures. It is possible to acclimate a large
number of microorganisms and improve their reaction kinetics by retaining all biomass
and biological catalysts inside the bioreactor to enhance biodegradation efficiency. MBR
technology has significant potential in various applications such as solid waste digestion,
odor control, and industrial wastewater treatment. The technical feasibility of this technol-
ogy has already been proven through a series of bench-scale and pilot research. To remove
important phenolic and aromatic contaminants from effluents, membrane-assisted hybrid
systems are promising approach for significant advancement and attention regarding fron-
tier development in membrane module fabrication in terms of more selectivity, longer
durability, and lower cost. Future studies in this sector for sustainability, good health,
and well-being will undoubtedly be sparked by the potential of combining the removal
of organic matter, nutrients, hazardous substances, and biological organisms as well as
downstream processing in a single and compact treatment system. In terms of techno-
economic assessment, not only cost estimations but also the valuation of the associated
environmental benefits of MBRs system are necessary to justify a suitable investment policy.
Detailed cost–benefit analyses and technical efficiency evaluations of full-scale membrane
bioreactors are crucial for a comprehensive understanding of their performance, economic
viability, and sustainability.
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