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Abstract: The present paper aims to investigate the buckling load of functionally graded carbon-
fiber-reinforced polymer (FG-CFRP) composite laminated plates under in-plane loads in a thermal
environment. The effective material properties of the CFRP composite are calculated by the Mori–
Tanaka homogenization method. The theoretical formulations are based on classical laminate plate
theory (CLPT) and the von Kármán equations for large deflections. The governing equations are
derived based on the principle of virtual work and then solved through the Navier solution. Results
are obtained for the critical buckling load and temperature effect of a simply supported plate subjected
to in-plane loading. A detailed numerical study is conducted to provide important insights into the
effects of the functionally graded carbon fiber (CF) distribution pattern and volume fraction, total
number of layers, temperature, geometrical dimension and lamination angle on the buckling load of
functionally carbon-fiber-reinforced composite plates. Finally, the validation is compared with the
Reddy and finite element analyses, which show consistency with each other.

Keywords: carbon fiber reinforced composite; functionally graded materials; classical laminate plate
theory; buckling; thermal effect

1. Introduction

Composite material refers to the combination of two or more kinds of materials with
different properties or different structures, usually composed of matrix materials and
reinforcing agents, and composites with carbon fibers as the reinforcement are called
carbon-fiber-reinforced polymer (CFRP) composites. Carbon-fiber-reinforced polymers
are composite materials that rely on carbon fiber for strength and stiffness while polymer
provides a cohesive matrix to protect, hold the fibers together and provide some toughness.
In recent years, carbon-fiber-reinforced, composite, laminated plate structures have been
widely used in the aerospace [1], marine, automobile, architectural [2] and other engineering
industries due to their superior characteristics, such as high strength and stiffness, low
weight and high fatigue resistance [3–5]. For example, applications in aerospace may
involve aircraft wing boxes, horizontal and vertical stabilizers, and wing panels [6]. When
such structures are subjected to various types of loadings, buckling happens locally, such
as material failure modes, and/or globally. The investigation of the behavior of structures
under mechanical and thermal loading is a challenging task.

Approximation models for buckling problems usually employ numerical, analytical
or semi-analytical approaches to evaluate the critical buckling load of structures, in which
the Rayleigh–Ritz method [7], Galerkin method [8,9], finite strip method [10–13], etc. are
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commonly used. In most cases, the Ritz method is able to derive explicit results for
the buckling load. Vescovini et al. [14] used the Ritz method for a free vibration and
buckling analysis of composite plates; the Ritz approximation was applied to models
based on both the classical lamination theory and a more advanced variable-kinematic
formulation. Feng et al. [15] used the theorem of minimum potential energy and the Ritz
method based on orthotropic plate theory to investigate the elastic buckling behaviors of
trapezoidal corrugated-steel shear walls. Eirik et al. [7] developed an analytical model
for a buckling analysis of stiffened panels, and the efficiency of the calculations was high.
The Galerkin method is another effective algorithm for solving differential equations,
and it can also be used to establish an eigenvalue problem for linear buckling analysis.
Fiorenzo and Erasmo [8] investigated the accuracy of plate theories for buckling and
vibration analysis, and the results were obtained based on both the Ritz and Galerkin
methods. When the boundary terms were zero, then the two methods led to the same
results. Jaberzadeh et al. [9] presented the solution for elastic and inelastic local buckling
using the Galerkin method. Wang et al. [16] proposed the multiterm Kantorovich–Galerkin
method to investigate the buckling and free vibration behavior of thin composite plates
with the classical plate theory. In an analysis of shell structures, the finite strip method
(FSM) combines the merits of both analytical and numerical methods and can be considered
an efficient method to predict buckling loads. Dawe and Yuan [17] gave a description of the
B-spline finite strip method for predicting the buckling stresses of rectangular sandwich
plates, which allowed the efficient prediction of buckling stresses for both overall modes
and highly localized, wrinkling-type modes. Ovesy and Assaee [10–13] developed a
nonlinear, multiterm, finite strip method for the post-buckling analysis of thin-walled,
symmetric, cross-ply laminated plates under uniform end-shortening. Their method was
based on solving von Kármán’s compatibility equation to obtain mid-plane stresses and
displacements, and then, by invoking the principle of the minimum potential energy,
deriving equilibrium equations for finite strips. Pandit et al. [18] used an improved higher-
order zigzag theory to study the buckling of laminated sandwich plates. Falkowicz [19]
investigated the effect of the localization and geometric parameters of cut-outs on the
buckling load using the finite element method. Debski et al. [20] investigated the effect of
an eccentric compressive load on the stability, critical states and load-carrying capacity of
thin-walled composite Z-profiles. Wysmulski [21] investigated the postbuckling behavior
of eccentrically compressed, composite channel-section columns. Thus, more complex
structures can be analyzed with numerical, analytical or semi-analytical approaches.

Functionally gradient composites, in which the material properties are graded but
continuous, especially along the thickness direction, are heterogeneous composites in
nature. The definition is the gradation in its material properties by changing the volume
fraction of its constituent materials [22–24]. The incorporation of two different materials
using gradients enhances the mechanical properties to withstand high temperatures, as the
graded thermal barrier eliminates the stress concentration issue. These unique properties
have been widely used in the aerospace, civil, mechanical and biomedical engineering
fields [25–27]. Hu et al. [28] presented new analytic solutions for the buckling of non-Lévy-
type, carbon nanotube (CNT)-reinforced, composite rectangular plates and the buckling
problems of cantilever, free, and clamped plates. Lei et al. [29,30] used the element-free
kp-Ritz method to conduct a buckling analysis of functionally graded composite laminated
plates under various in-plane mechanical loads. A meshless model of variable-stiffness
composite (VSC) plates was developed using a radial basis point interpolation method
based on the naturally stabilized nodal integration scheme, and the buckling behavior
of the VSC plates with elliptical cutouts was investigated [31]. The authors concluded
that changes of the CNT volume fraction, plate width-to-thickness ratio, plate aspect ratio,
temperature, boundary conditions and loading conditions have pronounced effects on
the buckling strength of various types of carbon-nanotube-reinforced composite (CNTRC)
plates. Moreover, it is worth noting that the type of distribution of CNT also significantly
affects the buckling strength of CNTRC plates.
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Shen et al. [32–34] showed that the material properties of the composite are affected by
the variation of the temperature. As a result, a careful evaluation of the effects of thermal
expansion is required to find the property and extent of their deleterious effects upon perfor-
mance. Whitney and Ashton [35] first developed laminated plate equations, which include
the effect of thermal strains. Shen et al. [34] proposed a perturbation technique to determine
buckling loads and postbuckling equilibrium paths—and the governing equations of a
laminated plate are based on Reddy’s higher-order shear deformation plate theory, which
includes hygrothermal effects—and then presented an investigation on the nonlinear bend-
ing of functionally graded, graphene-reinforced, composite (FG-GRC) laminated plates
resting on an elastic foundation and in a thermal environment [30]. The results of Shen and
Zhang [36,37] show that the FG-X gradient arrangement can significantly improve the com-
pressive buckling load of plates. Song et al. [38] presented compressive buckling analyses
of functionally graded, multilayer, graphene nanoplatelet/polymer composite plates. Thai
et al. [39] reported a NURBS formulation for free vibration, buckling and static bending
analyses of multilayer, functionally graded, graphene-platelets-reinforced composite plates.
Wu et al. [40] used fast converging finite double Chebyshev polynomials to investigate
the post-buckling response of the functionally graded materials plate. Zaitoun et al. [41]
presented the buckling response of FG “sandwich plate” on a viscoelastic foundation and
exposed it to hygrothermal conditions. They confirmed that the characteristics of buckling
were significantly affected by the temperature increase, character of the in-plane boundary
conditions, transverse shear deformation, aspect ratio of the plate, total number of plies,
fiber orientation, fiber volume fraction and initial geometric imperfections.

The present paper aims to investigate the buckling load of functionally graded CFRP
plates under in-plane loads in a thermal environment. The effective material properties of the
CFRP composite are calculated by the Mori–Tanaka homogenization method. The theoretical
formulations are based on the classical laminate plate theory. The governing equations are
derived based on the principle of virtual work and then solved through the Navier solution.
Results are obtained for the critical buckling load and temperature effects of a simply supported
plate subjected to in-plane loading. Detailed numerical studies are conducted to provide
important insight into the effect of the CF distribution pattern and volume fraction, total
number of layers, temperature, geometrical dimension and lamination scheme on the buckling
load of FG-CFRP composite plates. This paper innovatively arranges the volume fraction of
carbon fibers to be functionally graded distributed along the thickness direction.

2. Problem Formulation

Part of the structure of CFRP composite plate is presented in Figure 1. The carbon fiber
is laid with a specific direction in each layer. Its length and width are a and b, respectively.
A cartesian coordinate system (x, y, z) is set on the mid-plane of the plate, defined by z = 0,
where zn and zn−1 are the top and the bottom z-coordinates of the nth layer. The thickness
of the plate is h.
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Figure 1. Structure of CFRP layers: (a) ply stacking sequence of the CFRP layers; (b) coordinate
system transformation.
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The geometry of the plate and loading condition are shown in Figure 2: k0 = N0
y /N0

x .
Both positive and negative values of k0 are shown in Figure 2. The dotted line indicates
simple support.
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Figure 2. (a) Uniaxial compression, (b) Biaxial compression, (c) k0 < 0, Ncr > 0, (d) k0 = −1, Ncr < 0.

Various micromechanics models have been developed to determine the effective
properties of fiber-reinforced composites. Herein, the Mori–Tanaka homogenization ap-
proach [39], which uses the average behavior of the matrix and fiber materials, is adopted.
Considering transversely isotropic carbon fibers embedded in the isotropic matrix, the
resulting properties of the CFRP composite plate can be expressed as in [42].
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in which VF is the volume fraction of fiber; E, G and v denote the Young’s modulus, shear
modulus and Poisson’s ratio, respectively; and the superscript F and M signify the fiber
and matrix. Consequently, the effective material properties of CFRP are functions of the CF
volume fraction.
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A functionally graded CFRP composite plate with the thickness h and length a is
considered. The plate includes NL layers, with the same thickness of each layer h/NL. CFs
are assumed to be solid fillers uniformly dispersed in the polymer matrix of each layer,
with a change of the CF volume fraction from layer to layer through the thickness of the
plate. Three CFs’ distribution patterns, including uniform, FG-O and FG-X, are considered
and plotted in Figure 3.

The volume fraction VF follows a simple law:

V(k)
F =


V∗F Uniform

2V∗F
|2k−1−N|

N FG− X

2V∗F
(

1− |2k−1−N|
N

)
FG−O

(8)

where N is the number of layers, V*
F is the average of the volume fraction; V(k)

F is the volume
fraction of the kth layer.
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Figure 3. Functionally gradient carbon-fiber-reinforced polymer plates.

Figure 4 plots the volume fraction in each layer (NL = 8). It shows that uniform
distribution (UD) is a special case of an orthotropic homogeneous plate; FG-X has a CF
volume fraction that increases at the top and bottom layers of the plate; and FG-O has a
CF volume fraction that increases at the central layer of the plate. Furthermore, all the
distribution patterns of plates are symmetric according to the mid-surface of the plate.

Polymers 2023, 15, x FOR PEER REVIEW 6 of 22 
 

 

Figure 4. Volume fraction in each layer; NL = 8. 

The thermal expansion coefficients in the longitudinal and transverse directions are 

stated as: 

( )
( )

F F M M

F 11 11 F

11 F M

F 11 F

1

1

V E V E

V E V E

α α
α

+ −
=

+ −
 (9)

( ) ( )( )F F M M

22 F 12 22 F 12 11
1 1 1V v V v vα α α α= + + − + −  (10)

where α11
F  and α22

F  are the thermal expansion coefficients of the fiber, and αM is the ther-

mal expansion coefficient of the matrix. Therefore, the thermal expansion coefficients of 

CFRP are functions of the volume fraction. 

The laminated plate is exposed to the thermal environment. The temperature distri-

butions are assumed through the thickness of the plate by three types of distribution; 

however, the present paper only concerns uniform distribution: 

( ) 0
 T z T T= + ∆  (11)

where ΔT is the temperature rise from the reference temperature, at which there are no 

thermal strains. T0 indicate the reference temperature. 

We assume that the material properties of the matrix EM and αM are functions of the 

temperature; hence, all the effective material properties of CFRP are functions of the tem-

perature and CF volume fraction. 

3. Theoretical Formulation 

3.1. Displacement Field Model 

Based on the classical laminate plate theory [43], the displacement field of the lami-

nated plate theory can be expressed as: 

( ) ( ) 0

0
, , , , ,

w
u x y z t u x y t z

x

∂= −
∂

 (12)

( ) ( ) 0

0
, , , , ,

w
v x y z t v x y t z

y

∂= −
∂

 (13)

( ) ( )0
, , , , ,w x y z t w x y t=  (14)

where (u0, v0, w0) are the displacement components along each coordinate direction of a 

point on the midplane (z = 0). The displacement field implies that straight lines normal to 

the xy-plane before deformation remain straight and normal to the mid-surface after de-

formation. The strain-displacement relations are as follows: 

Figure 4. Volume fraction in each layer; NL = 8.

The thermal expansion coefficients in the longitudinal and transverse directions are
stated as:

α11 =
VFEF

11αF
11 + (1−VF)EMαM

VFEF
11 + (1−VF)EM

(9)

α22 = VF

(
1 + vF

12

)
αF

22 + (1−VF)
(

1 + vM
)

αM − v12α11 (10)

where αF
11 and αF

22 are the thermal expansion coefficients of the fiber, and αM is the thermal
expansion coefficient of the matrix. Therefore, the thermal expansion coefficients of CFRP
are functions of the volume fraction.
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The laminated plate is exposed to the thermal environment. The temperature distribu-
tions are assumed through the thickness of the plate by three types of distribution; however,
the present paper only concerns uniform distribution:

T(z) = T0 + ∆T (11)

where ∆T is the temperature rise from the reference temperature, at which there are no
thermal strains. T0 indicate the reference temperature.

We assume that the material properties of the matrix EM and αM are functions of
the temperature; hence, all the effective material properties of CFRP are functions of the
temperature and CF volume fraction.

3. Theoretical Formulation
3.1. Displacement Field Model

Based on the classical laminate plate theory [43], the displacement field of the lami-
nated plate theory can be expressed as:

u(x, y, z, t) = u0(x, y, t)− z
∂w0

∂x
(12)

v(x, y, z, t) = v0(x, y, t)− z
∂w0

∂y
(13)

w(x, y, z, t) = w0(x, y, t) (14)

where (u0, v0, w0) are the displacement components along each coordinate direction of a
point on the midplane (z = 0). The displacement field implies that straight lines normal
to the xy-plane before deformation remain straight and normal to the mid-surface after
deformation. The strain-displacement relations are as follows: εx

εy
γxy

 =

 εo
x

εo
y

γo
xy

+ z

 κx
κy
κxy

 (15)

where εo
x, εo

y, γo
xy are the mid-plane strains:

 κx
κy
κxy

 =


− ∂2w0

∂x2

− ∂2w0
∂y2

−2 ∂2w0
∂x∂y

 (16)

Based on the von Kármán anisotropic plate equations for large deflections [44]:

εo
x = ∂u

∂x + 1
2

(
∂w
∂x

)2

εo
y = ∂v

∂y + 1
2

(
∂w
∂y

)2

γo
xy = ∂u

∂y + ∂v
∂x +

(
∂w
∂x

)(
∂w
∂y

) (17)

In thermal environments, the constitutive relations are written as: σx
σy
τxy

(k) =
Q11 Q12 Q16

Q12 Q22 Q26
Q16 Q26 Q66

(k)

 εx

εy
γxy

−
 αx

αy
αxy

(k)∆T

 (18)
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where the transformed coefficients of stiffness are as follows [43]:

Q11 = Q11 cos4 θ + 2(Q12 + 2Q66) cos2 θ sin2 θ + Q22 sin4 θ

Q22 = Q11 sin4 θ + 2(Q12 + 2Q66) cos2 θ sin2 θ + Q22 cos4 θ

Q12 = (Q11 + Q22 − 4Q66) cos2 θ sin2 θ + Q12

(
cos4 θ + sin4 θ

)
Q16 = (Q11 −Q12 − 2Q66) cos3 θ sin θ + (Q12 −Q22 + 2Q66) cos θ sin3 θ

Q26 = (Q11 −Q12 − 2Q66) cos θ sin3 θ + (Q12 −Q22 + 2Q66) cos3 θ sin θ

Q66 = (Q11 + Q22 − 2Q12 − 2Q66) cos2 θ sin2 θ + Q66

(
cos4 θ + sin4 θ

)
(19)

with
Q11 =

E11

1− v12v21
, Q22 =

E22

1− v12v21
, Q12 =

v12E22

1− v12v21
, Q66 = G12 (20)

The transformed coefficients of thermal expansion are denoted as:

αx = α11 cos2 θ + α22 sin2 θ

αy = α11 sin2 θ + α22 cos2 θ
αxy = 2(α11 − α22) sin θ cos θ

(21)

3.2. Buckling Equations

The variation of the strain energy of the laminated plate is calculated in Equation (22).

δU =
∫

V

[
σ
(n)
x δε

(n)
x + σ

(n)
y δε

(n)
y + τ

(n)
xy δγ

(n)
xy

]
dV

=
∫

Ω

(
Nxδε

(0)
x + Mxδkx + Nyδε

(0)
y + Myδky + Nxyδγ

(0)
xy + Mxyδkxy

)
dΩ

(22)

The work performed by external forces can be defined as:

W = −1
2

x
[

N0
x

(
∂w
∂x

)2
+ N0

y

(
∂w
∂y

)2
+ 2N0

xy
∂w
∂x

∂w
∂y

]
dΩ (23)

where N0
x , N0

y and N0
xy stand for in-plane compression loads per unit length.

The principle of virtual work for the present problem can be expressed as:∫
Ω

(
Nxδε

(0)
x + Mxδkx + Nyδε

(0)
y + Myδky + Nxyδγ

(0)
xy + Mxyδkxy

)
dΩ−

∫
Ω

NδwdΩ = 0 (24)

where

N =

(
N0

x
∂2w
∂x2 + N0

y
∂2w
∂y2 + 2N0

xy
∂2w
∂x∂y

)
(25)

where the force resultants are as follows:

[
Nj, Mj

]
=

n

∑
k=1

∫ zk+1

zk

σ
(k)
j [1, z]dz, (j = x, y, xy) (26)

In a thermal environment, the above force resultants can be expressed in terms of
strains as follows: Nx

Ny
Nxy

 =

 A11 A12 A16
A12 A22 A26
A16 A26 A66


 εo

x
εo

y
γo

xy

+

 B11 B12 B16
B12 B22 B26
B16 B26 B66

 κx
κy
κxy

−
 NT

x
NT

y
NT

xy

 (27)

 Mx
My
Mxy

 =

B11 B12 B16
B12 B22 B26
B16 B26 B66

 εo
x

εo
y

γo
xy

+

D11 D12 D16
D12 D22 D26
D16 D26 D66

 κx
κy
κxy

−
MT

x
MT

y
MT

xy

 (28)
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where the stiffness matrices are as follows:

[
Aij, Bij, Dij

]
=

N

∑
k=1

∫ zk+1

zk

Q(k)
ij

[
1, z, z2

]
dz, (i, j = 1, 2, 6) (29)

where the thermal stress and moment are as follows:NT
x

NT
y

NT
xy

 =
∫ t

2

− t
2

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

(k) αx
αy
αxy

(k)∆T(k)dz (30)

MT
x

MT
y

MT
xy

 =
∫ t

2

− t
2

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

(k) αx
αy
αxy

(k)∆T(k)zdz (31)

The stability equations of the plate may be derived by the adjacent equilibrium cri-
terion [45]. Assume that the equilibrium state of the plate under mechanical and thermal
loads is defined in terms of the displacement components

(
u0

0, v0
0, w0

0
)
. The displace-

ment components of a neighboring stable state differ by
(
u1

0, v1
0, w1

0
)

with respect to the
equilibrium position. Thus, the total displacements of a neighboring state are as follows:

u0 = u0
0 + u1

0, v0 = v0
0 + v1

0, w0 = w0
0 + w1

0 (32)

Substituting Equations (15), (27) and (32) into Equation (24), integrating the displace-
ment gradients by parts and then setting the coefficients δu1

0, δv1
0 and δw1 to zero separately,

the governing stability equations are calculated as in Equation (33).

∂2M1
x

∂x2 + 2
∂2M1

xy

∂x∂y
+

∂2M1
y

∂y2 + N + NT
= 0 (33)

in which

NT
= −NT

x
∂2w1

0
∂x2 − NT

y
∂2w1

0
∂y2 − 2NT

xy
∂2w1

0
∂x∂y

(34)

In the present paper, the laminate is symmetric, so the bending–stretching matrix [B] = 0.
Moreover, we assume that D16 and D26 in the bending matrix [D] are zero, so Equation (33)
can be expressed as Equation (35).

−D11
∂4w1

0
∂x4 − 2(D12 + 2D66)

∂4w1
0

∂x2∂y2 −D22
∂4w1

0
∂y4 +

(
N0

x − NT
x

)∂2w1
0

∂x2 +
(

N0
y − NT

y

)∂2w1
0

∂y2 + 2
(

N0
xy − NT

xy

)∂2w1
0

∂x∂y
= 0 (35)

The boundary conditions are calculated in Equation (36).

w = Mx = 0 x = 0 x = a
w = My = 0 y = 0 y = b

(36)

An expression for w1
0 that satisfies all the boundary conditions takes the form of the

following double trigonometric series.

w1
0 = ∑ ∑ Amn sin

mπx
a

sin
nπy

b
(37)

where m and n are the number of half-waves in the x direction and y direction, respectively,
and Amn is the coefficients.

Therefore, for the special orthotropic and symmetric laminated plates, Equation (35)
can be expressed as follows.
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π2 Amn

[
D11m4 + 2(D16 + 2D66)m2n2(AR)2 + D22n4(AR)4

]
= −Amna2

[
Nxm2 + Nyn2(AR)2

]
(38)

Since Amn 6= 0

N0 =
π2
[

D11m4 + 2(D12 + 2D66)m2n2(k1)
2 + D22n4(k1)

4
]

a2
[
m2 + k0n2(k1)

2
] − NT

x (39)

where k0 = N0
y /N0

x , k1 = a/b, N0 = −N0
x , the stiffness matric Dij (i, j = 1,2,6) and the thermal

stress NT
x are functions of the temperature and CF volume fraction.

Clearly, for each pair of m and n, there is a unique N0, according to Equation (39). The
critical buckling load is the smallest value of all N0 = N0(m, n), and it can be obtained with
Equation (40).

Ncr = min
1≤m,n≤∞

{N0(m, n)} (40)

Non-dimensional critical buckling load can be expressed as Equation (41).

γcr =
Ncrb2

π2D22
(41)

4. Result and Discussion
4.1. Validation

Here, we need a paragraph to describe the validation in detail. A comparison of the
present results with published results and finite element analysis is given in Tables 1 and 2.
As a verification example, the buckling load of a simply supported laminated plate is
calculated and compared. In Table 1, the material properties of the laminated plate (a = b)
are considered as in [43]: G12 = G13 = 0.5 E2, v12 = 0.25. The non-dimensional buckling loads
are λcr = Ncr

(
b2/π2D22

)
. The finite element analysis is performed using Workbench 19.0

software. The simply supported plates under uniform compression and biaxial compression
are modeled in Workbench software using the four-node element with six degrees of
freedom at each node. In Table 2, the material properties of the laminated plate (a = b)
are adopted as in [40]: aluminum—Em = 70 GPa, v = 0.3; alumina—Ec = 380 GPa, v = 0.3.
The non-dimensional buckling loads are λcr= Ncrb2/Ech3. It can be seen that the present
results for an anisotropic and isotropic plate are in good agreement with the analytical
results obtained in Equation (39).

Table 1. Non-dimensional buckling loads λcr of rectangular laminates (0/90)s under uniform com-
pression and biaxial compression.

k a/b Theory
E1/E2

5 10 20 25 40

0

0.5
Reddy [43] 13.9000 18.1260 21.8780 22.8740 24.5900

Present 13.9000 18.1265 21.8778 22.8738 24.5899
Ansys 13.8666 17.6971 20.4871 20.9996 21.3372

1.0
Reddy [43] 5.6500 6.3470 6.9610 7.1240 7.4040

Present 5.6500 6.3470 6.9611 7.1238 7.4037
Ansys 6.0568 6.6009 7.0363 7.1347 7.2598

1.5
Reddy [43] 5.2330 5.2770 5.3100 5.3180 5.3320

Present 5.2333 5.2768 5.3099 5.3182 5.3322
Ansys 6.1796 5.8636 5.6220 5.5597 5.4452
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Table 1. Cont.

k a/b Theory
E1/E2

5 10 20 25 40

1

0.5
Reddy [43] 11.1200 12.6940 13.9220 14.2480 14.7660

Present 11.1200 12.6941 13.9222 14.2475 14.7661
Ansys 11.6391 13.3583 13.7016 13.6693 13.3272

1.0
Reddy [43] 2.8250 3.1740 3.4840 3.5620 3.7020

Present 2.8250 3.1735 3.4806 3.5619 3.7019
Ansys 3.0285 3.3005 3.5183 3.5675 3.6300

1.5
Reddy [43] 1.6100 1.6240 1.6340 1.6360 1.6410

Present 1.6103 1.6236 1.6338 1.6364 1.6407
Ansys 1.7208 1.6935 1.6671 1.6590 1.6414

Table 2. Non-dimensional buckling loads for a simply supported square plate (a/h = 40).

Plate Tsung-Lin Wu [40] Present

Alumina 3.6498 3.6152
Aluminum 0.67 0.6660

4.2. Parametric Studies

In this section, a parametric study is carried out to reveal the buckling properties of the
simply supported laminated plates. The effects of the CF distribution pattern and volume
fraction, total number of layers, temperature, geometrical dimension and lamination angle
are investigated. The material properties of the CFRP composite laminated plates are listed
in Table 3. Unless otherwise specified, the geometry of the laminated plate is defined as
a = 80 mm.

Table 3. Material properties of the CFRP plate [46].

Material properties of fiber(carbon):
EF

11 = 230 GPa EF
22 = 23 GPa GF

12 = 9 GPa V∗F = 0.3
vF

12 = 0.2 αF
11 = −5.4× 10−7°C−1 αF

22 = 1.008× 10−5°C−1

Material properties of epoxy matrix:
EM = (3.51 − 0.003 ∆T) GPa vM = 0.35 αM = 45(1 + 0.001)∆T× 10−6°C−1

Figure 5 displays the effect of the total number of layers, NL, on the critical buckling
load for the UD, FG-O and FG-X CFRP laminated plates. We can see that the buckling
load of the UD distribution pattern is not affected by the number of layers. As the total
number of layers increases up to 10–15, the buckling load increases within an increase of
the total number of layers for the FG-X distribution pattern, but becomes lower for the
FG-O distribution pattern, and then almost unchanged when NL ≥ 10–15. The multilayer
structure with 10~15 layers stacked up would be accurate enough to approximate the
desired continuous and smooth through-thickness change in the CF distribution. This is
consistent with the results in Ref. [38]. In order to simplify the parameter study, in the
present paper, the total number of layers of the laminated plate is defined as NL = 8 when
the buckling load of the FG-X distribution pattern is 42% higher than that of the UD.

The effect of the lamination scheme is demonstrated in Table 4, where a comparison is
also made between the buckling loads obtained via analytical and finite element analyses.
In the present paper, the method is applied to parallel-fiber or cross-ply plates, but the
results of this study are in close agreement with the finite element analysis in the random-
twenty laminate schemes; we conclude that the method can accurately predict the buckling
load of the plates discussed in this paper. We also find that 45◦ and −45◦ in the same layer
have the same buckling load for three distribution patterns. Meanwhile, 0◦ and 90◦ in the
same layer have the same buckling load for uniform patterns. The result confirms that the
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[−45/45/90/0]s, [−45/45/0/90]s, [45/−45/90/0]s and [45/−45/0/90]s plates have the
highest buckling load among the twenty laminate arrangements. Unless otherwise speci-
fied, in the present paper, the eight-layer symmetric lamination scheme [−45/45/90/0]s is
considered for the analysis, and the buckling load of the FG-X distribution pattern is 47%
higher than that of the UD.
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Table 4. Effect of lamination scheme (k0 = 0, k1 = 1, k2 = 50).

Lay-Up
UD

FG_X FG_O
Ansys Present

[90/0/−45/45]s,
[90/0/45/−45]s,
[0/90/−45/45]s,
[0/90/45/−45]s

50.78 51.46 69.11 ( + 34%) 34.61 (−33%)

[90/−45/45/0]s,
[90/45/−45/0]s

59.41 61.25 73.48 (+20%) 41.43 (−32%)

[90/−45/0/45]s,
[90/45/0/−45]s

54.63 57.99 77.40 (+33%) 37.62 (−35%)

[0/−45/90/45]s,
[0/45/90/−45]s

54.63 57.99 79.14 (+36%) 37.62 (−35%)

[0/−45/45/90]s,
[0/45/−45/90]s

59.41 61.25 81.87 (+34%) 41.43 (−32%)

[−45/90/45/0]s,
[−45/0/45/90]s,
[45/90/−45/0]s,
[45/0/−45/90]s

63.26 71.04 103.94 (+46%) 38.72 (−45%)

[−45/45/90/0]s,
[−45/45/0/90]s,
[45/−45/90/0]s,
[45/−45/0/90]s

74.24 77.57 113.97 (+47%) 41.73 (−46%)

Difference = 100%[Ncr(FG) − Ncr(UD)]/Ncr(UD).

4.2.1. Effect of Carbon Fiber Volume Fraction

The effect of the volume fraction V∗F on the buckling loads for UD, FG-X and FG-O
plates under uniaxial and equal biaxial compressions is presented in Table 5. An increase of
the buckling load is found when the CF average volume fraction increases in our considered
ranges. The buckling load increases by more than 40% when the average volume fraction
increases from 0.05 to 0.1, but the slope of the buckling load decreases, in which, the
buckling load slope is calculated as |Ncr(V∗F )− Ncr(V∗F − 0.05)|/Ncr(V∗F − 0.05), where
Ncr(V∗F ) and Ncr(V∗F − 0.05) are the buckling loads when the average volume fraction is
V∗F and V∗F − 0.05. The slope goes down to less than 20% when the average volume fraction
is 0.3. It has also been demonstrated that the CF distribution pattern plays a significant role
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in the buckling load of the plate. FG-X has a larger buckling load when the average volume
fraction of CF is the same. For this reason, it can be concluded that the stiffness of the plate
can be improved in the range where the average volume fraction increases. At the same
time, distributing more CFs close to the top and bottom surfaces is a more efficient way to
improve the plate stiffness.

Table 5. Effect of average of CF volume fraction on the buckling loads (N/mm) for CFRP plates with
different distribution patterns.

V*
F

0.05 0.1 0.15 0.2 0.25 0.3

Uniaxial compression
Uniform 14.78 21.17(+43%) 27.59(+30%) 34.05(+23%) 40.55(+19%) 47.11(+16%)

FG-X 17.84 27.34(+53%) 36.93(+35%) 46.65(+26%) 56.51(+21%) 66.58(+18%)
FG-O 11.73 15.04(+28%) 18.37(+22%) 21.72(+18%) 25.09(+16%) 28.48(+14%)

Biaxial compression
Uniform 7.39 10.58(+43%) 13.79(+30%) 17.02(+23%) 20.28(+19%) 23.56(+16%)

FG-X 8.92 13.67(+53%) 18.47(+35%) 23.32(+26%) 28.26(+21%) 33.29(+18%)
FG-O 5.86 7.52(+28%) 9.19(+22%) 10.86(+18%) 12.54(+15%) 14.24(+14%)

Slope = |Ncr(V∗F )− Ncr(V∗F − 0.05)|/Ncr(V∗F − 0.05).

4.2.2. Effect of Thermal Environment

Figure 6 investigates the effect of the temperature on the buckling load. It can be seen
that the buckling load parameters decrease as the temperature increases, because with an
increase of the temperature, the elastic modulus of CFRC reduces and the stiffness of the
laminated plates reduce since the material properties of the matrix and CFs are assumed to
be temperature-dependent, and the resultant stress is reduced by the thermal stress and
the momentum produced by the thermal effects. For the three distribution patterns, the
lowest and highest buckling loads correspond to FG-O and FG-X. Moreover, the effect of the
temperature on the buckling load ratio of the FG CFRC plate is investigated in Figure 7. The
buckling load ratio is calculated as

∣∣∣NT
cr − NT0

cr

∣∣∣/NT0
cr , where NT0

cr and NT
cr are the buckling

loads at the reference and actual temperatures. FG-O has a much larger buckling load ratio
than that of FG-X.
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4.2.3. Effect of Geometrical Dimension of Plate

The effect of length on the buckling of a UD CFRP is depicted in Figure 8. Five
different biaxial loading ratios, k0 = −2, k0 = −1, k0 = 0, k0 = 1, k0 = 2, are considered.
Positive values of k0 mean that the sign of N0

x is the same as N0
y and since Ncr > 0 implies

biaxial compression. Then, negative values of k0 mean that N0
x is opposite to N0

y . When
Ncr > 0, buckling occurs in the x direction; otherwise, buckling occurs in the y direction.
As is seen in Figure 8, a tensile load Ny (k0 < 0) tends to stabilize the plate and increase
its buckling load. A compressive load Ny (k0 > 0) tends to precipitate the buckling earlier
(plate is pressed from both x and y directions) and decreases the buckling load. The case of
k0 = 0 corresponds to uniaxial compression. The buckling load is shown in Figure 8 as a
function of the plate size and different load ratio k0.
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Figure 8. Effect of length on the buckling of a UD CFRP; k1 = 1, k2 = 50.

Figure 9 illustrates the effect of length and temperature on the buckling load for the
three distribution patterns. Increasing the plate size decreases the buckling load for all three
distribution patterns, and the buckling load of FG-X reduces the fastest with the increase
of length.

Figure 10 shows the effect of the aspect ratio on the non-dimensional critical buckling
load. It is worth noting that for CFRC plates under uniaxial compression, as shown in
Figure 10, the variation of the aspect ratio of the plate has a very small effect on the non-
dimensional buckling load parameter. Meanwhile, the biaxial non-dimensional buckling
load decreases with an increasing aspect ratio of the plate.

As shown in Figure 11, the effect of the aspect ratio and the number of half-waves
m on the non-dimensional critical buckling load (k0 = 0) is such that when the number of
half-waves m on the buckling load takes on different values, the minimum value is taken
as the buckling load. As the aspect ratio increases, the value of m in the buckling load
direction increases. Points (k1 = 1.33, k1 = 2.30) of the inflection of the curves corresponding
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to successive m values indicate that the plate may experience buckling in either of the two
modes (differing by one half-wave) and have the same buckling load. In the following,
there are inflection points on the non-dimensional critical buckling load curve due to the
change of the number of half-waves m.
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Figure 11. Effect of aspect ratio and the number of half-waves m on non-dimensional critical buckling
load; k0 = 0, k2 = 50.

Figure 12 illustrates the effect of the aspect ratio and temperature for the three distri-
bution patterns. In each case, three types of CFs distributions are taken into consideration.
There are two inflection points for each curve, and the value of k1 at the inflection point
is larger for FG-X than for FG-O and uniform. Table 6 gives a detailed comparison of
some data in Figure 12. The effect of the temperature difference for FG-O is greater than
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those for the FG-X and uniform; the temperature difference results in a 31.65% reduction
in the FG-O non-dimensional critical buckling load when k1 = 1, and the reduction goes
down to 5.09% when k1 = 2.5. The results indicate that the temperature change reduces the
non-dimensional critical buckling load.
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Table 6. Effect of aspect ratio and temperature difference for three distribution patterns.

Distribution
Pattern

Temperature
Difference
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γcr Difference γcr Difference

Uniform
∆T = 0 °C 5.35 −17.57%

5.39 −2.60%∆T = 40 °C 4.41 5.24

FG-X
∆T = 0 °C 6.11 −12.11%

6.18 −1.78%∆T = 40 °C 5.37 6.07

FG-O
∆T = 0 °C 3.95 −31.65%

3.93 −5.09%∆T = 40 °C 2.70 3.73

Figure 13 shows the effect of the length-to-thickness ratio k2 in aspect ratio k1 = 1 and
k1 = 2, respectively. Compared with (a) and (b), it can be found that the buckling load
rapidly decreases with the increase of the length-to-thickness ratio k2. This is because the
stiffness depends on the integral of z2 along the thickness, and the stiffness is lowered by
the reduction of the thickness. The results also show that the effect of the distribution of
CFs becomes weaker for moderately thick CFRC plates.
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Figure 14 reveals the effect of the length-to-thickness ratio k2 and the temperature
difference for the three distribution patterns. Similar to the conclusions above, the buckling
load decreases with increasing temperature, but the effect of thickness dominates.
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Figure 14. Effect of length-to-thickness ratio k2 and temperature difference for three distribution
patterns; k0 = 0, k1 = 1.

4.2.4. Effect of Lamination Angle

The effect of the fiber angle is shown in Figures 15 and 16 for square and rectangular
plates, respectively, for the length-to-thickness ratio k2 = 50. The plots shown in Figures 15
and 16 are symmetric about θ = 0◦. It is also demonstrated that the aspect ratio k1 plays a
significant role in the optimal lamination angle of the plate. In Figure 15, it is worth noting
that the buckling load increases with the increase of the lamination angle θ and decreases
very quickly with a further increase of the lamination angle θ. Negative values of k0
(k0 =−1) mean that N0

x is opposite to N0
y , and when θ =±45◦, the buckling direction changes

from the x direction to the y direction. In conclusion, the buckling load is the maximum at
θ = 45◦ for a square plate under three types of load and a rectangular plate under uniaxial
compression (k0 = 0); the rectangle plate buckling load under biaxial compression (k0 = 1)
and opposite load (k0 = −1) is the maximum in θ = 70◦ and θ = 90◦, respectively. The angle
of lamination that maximizes the buckling load is related to the aspect ratio of the plate.
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Figure 17 presents the effect of the lamination angle and temperature for the three
distribution patterns. Compared with Figures 15 and 16, we find that the angle that
maximizes the buckling load is approximately the same for the three distribution patterns,
and it is not affected by the temperature.

In order to have a better understanding of the interaction of the lamination angle
and other influencing factors, 3D plots are presented to compare the buckling loads of
the laminated plates with different aspect ratios, load ratios and temperature differences.
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Figure 18 shows the buckling load versus the lamination angle and aspect ratio, which
shows that the aspect ratio is more sensitive to the buckling load than the lamination
angle. In Figure 19, we find that the maximum buckling load reaches θ = 45◦, which is
independent of the load ratio. In addition, the lamination angle and compressive load
coupling effects have a significant effect. With the temperature difference ranging from
0 ◦C to 80 ◦C, the strong dependence of the buckling load on the lamination angle is visible
in Figure 20. In the considered temperature difference range, the buckling load increases
with the lamination angle increase, then decreases.
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5. Conclusions

The buckling load of functionally graded CFRP composite plates was investigated
based on the classical laminate plate theory. The governing equations were derived based
on the principle of virtual work and then solved by the Navier method. The results on the
critical buckling load and the temperature effect of simply supported plates subjected to
in-plane loading were obtained and discussed. The influence of the factors on the critical
buckling of composite laminated plates was investigated in detail through parametric
studies, such as the effect of the CF volume fraction, total number of layers, temperature,
CF distribution pattern, geometrical dimension and lamination angle on the buckling
properties of plates. Based on the results of those investigations, the following conclusions
can be obtained:

(1) A larger V∗F corresponds to higher critical buckling loads; the buckling load decreases
rapidly with the increase of the length-to-thickness ratio k2, then tends to become zero.
The buckling loads are also significantly influenced by the lamination angle.

(2) X-shaped FG distribution is more effective than the other two distributions for rein-
forcing the plate for a higher buckling load, and compared to uniform distribution,
the buckling load increased by 47%.

(3) A functionally graded composited plate with 10~15 individual layers stacked up can
achieve a sufficient in-plane load.

(4) Critical buckling loads decrease with a temperature increase ranging from 0 ◦C to 80 ◦C.
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