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Verification of Chain Uncrossibility 

The dissipative particle dynamics (DPD) method is used in this study and the polymer chain is 

constructed by connected DPD beads. The original DPD parameters proposed by Groot and Warren 

[1] are too soft and provide no specific restrictions for steric interactions. Chain crossings may occur, 

resulting in partially phantom chains. The lack of chain entanglement greatly influences the 

dynamic properties of the polymer systems. Thus, the original DPD chains exhibit the Rouse 

dynamics [2,3] instead of the reputational dynamics as should be seen in polymer melts. When 

studying the microstructure dynamics of polymer melts during stretching and relaxation, 

entanglements between chains due to steric interactions should be explicitly present. Some methods 

were exploited to prevent the bond crossings in coarse-grained models [4-8]. Among them, Nikunen 

et al. [8] presented an easy and computationally efficient criterion to impose topological constraints 

leading to the uncrossability of polymeric chains for the DPD method. No additional forces are 

needed, and reputational dynamics can be reproduced, indicating the existence of proper chain 

entanglement behavior [8-11]. This concept has also been successfully employed to study the 

crystallization of semiflexible polymers in melts and solutions [12].  

The criterion proposed by Nikunen et al. [8] is based on geometrical constraints. As shown in 

Figure S1, 𝑙 is the bond length and 𝑙𝑚𝑎𝑥 is the maximum value of 𝑙. 𝑟 represents the distance 

between any two non-bonded beads (nonbonded length), and 𝑟𝑚𝑖𝑛 denotes the minimum value of 

𝑟. Although DPD beads are soft, they still possess an apparent excluded volume because of their 

repulsive potential. Since 𝑟 ≥ 𝑟𝑚𝑖𝑛 , all beads effectively have an excluded volume with radius 

𝑟𝑚𝑖𝑛/2. Therefore, if √2𝑟𝑚𝑖𝑛 > 𝑙𝑚𝑎𝑥 is fulfilled throughout the simulation, chain crossings will not 

take place. The condition can be satisfied by choosing the appropriate DPD parameters to maintain 

the uncrossability of polymeric chains, and at the same time, the large integration step can still be 

employed. Therefore, the repulsive interaction parameter is generally chosen to be large, such as 



𝑎𝑖𝑗 = 150, to increase 𝑟𝑚𝑖𝑛  [12]. However, since the bead density within the system is kept the 

same as ρ = 3, it was found that a large value of the repulsive interaction parameter will not affect 

𝑟𝑚𝑖𝑛 significantly, but increase the value of 𝑙𝑚𝑎𝑥 instead. In this study, we used the equilibrium 

bond length 𝑟𝑒𝑞 = 0.4  and stiff spring potential 𝑘𝑠 = 100  to reduce 𝑙𝑚𝑎𝑥 , while the repulsive 

interaction parameter is still set as 𝑎𝑖𝑗 = 25. The criterion of the uncrossability of polymeric chains 

is then proved to be satisfied as follows.  

The bond length and the nonbonded length distributions of our simulation system can be 

acquired as P(l) and P(r). The comparison between 𝑙𝑚𝑎𝑥 and √2𝑟𝑚𝑖𝑛 is then performed by plotting 

the two normalized distributions P(l) and P(√2𝑟) together as shown in Figure S2. If the former is 

always on the left-hand side of the latter, the criterion of the uncrossability is inherently fulfilled. 

As one can see from Figure S2, the overlap between the two distributions is not evident at all and 

thus the criterion is essentially satisfied. Nontheless, as the region between the upper bound of P(l) 

and the lower bound of the P(√2𝑟) is greatly enlarged, the overlap is observed as shown in the inset 

of Figure S2. Fortunately, the total probability of √2𝑟 < 𝑙𝑚𝑎𝑥 is about 2 × 10−7, which is negligibly 

small. Consequently, the uncrossability of polymer chains is effectively realized in our system. 

According to the previous study by Chang and Yethiraj, when chain-crossing incidents are rare, 

entanglements still persevere in polymer melts [13]. To verify our argument further, the evolution 

of two entangled polymer chains are simulated to examine the crossability. Videos S1 and S2 

demonstrate that our choice of DPD parameters can indeed prevent chain-crossing events.  

 

Figure S1. Schematics of two chains to check bond crossing conditions where 𝑟 represents the 

distance between any two nonbonded beads, 𝑙  denotes the bond length. 𝑟𝑚𝑖𝑛  denotes the 

minimum value of 𝑟 and 𝑙𝑚𝑎𝑥 is the maximum value of 𝑙. 



 

Figure S2. The bond length and the nonbonded length distribution of our simulation system. 
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Figure S1. (a) The representative evolution of the radial size of the polymer, and (b) the variation of 

the polymer conformation with time during the stretching process for N=130 at ε̇H=5×10-2. Polymers 

A, B, C, and D are chosen to represent small deformations at εH=2. Their radial sizes are located in 

the neighborhood of the peak with smaller radial sizes.  

(i) Rg of polymer A decreases gradually with time because of compression along the direction 

perpendicular to the stretching direction. 

(ii) Rg of polymer B declines first but grows eventually because of compression in one direction 

but stretching in the other direction. 

(iii) Rg of polymer C is elongated initially but then arrested in a specific stretched state. 

(iv) Rg  of polymer D is elongated initially but returns to the weakly stretched state via local 

relaxation. 
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Figure S2. (a) The representative evolution of the radial size of the polymer, and (b) the variation of 

the polymer conformation with time during the stretching process for N=130 at ε̇H=5×10-2. Polymers 

E, F, G, and H are chosen to represent large deformations at εH=2. Their radial sizes are located in 

the neighborhood of the peak with larger radial sizes. Although those polymers have different 

initial values of Rg, they are continuously stretched along the stretching direction. While polymer 

E is still partially stretched, the rests are close to the fully stretched state. 
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