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Abstract: The transient elongational viscosity ηe(t) of the polymer melt is known to exhibit strain
hardening, which depends on the strain rate .

ε. This phenomenon was elucidated by the difference
of chain stretching in the entanglement network between extension and shear. However, to date,
the microscopic evolution of polymer melt has not been fully statistically analyzed. In this work,
the radial size distributions P(Rg, t) of linear polymers are explored by dissipative particle dynamics
during the stretching processes. In uniaxial extensional flow, it is observed that the mean radius of
gyration Rg(t) and standard deviation σ(t) remain unchanged until the onset of strain hardening,
corresponding to linear viscoelasticity. Both Rg and σ rise rapidly in the non‑linear regime, and
bimodal size distribution can emerge. Moreover, the onset of strain hardening is found to be insen‑
sitive to the Hencky strain ( .

εHt) and chain length (N).

Keywords: microstructural dynamics; elongational viscosity; strain hardening; radial size distribution;
dissipative particle dynamics

1. Introduction
The mechanical responses to the extension of entangled polymer melts are crucial in

rheology for guiding polymer processing [1]. For example, in the processes of film man‑
ufacturing, fiber spinning, and blow molding, extensional deformation is the dominant
mode. Moreover, as the melt flows through a sudden contraction, it accelerates, and the
extensional flow becomes predominant. Since those processes are often conducted under
highly non‑linear conditions, the extensional rheology cannot be derived from the shear
rheological behavior. The extensional viscosity describing the resistance of a fluid to the ex‑
tensional flow is frequently used to characterize the molten polymer, which is viscoelastic.
The elongational viscosity (η e

)
associated with the uniaxial extension is defined as the ra‑

tio of normal stress difference (τ) to the rate of strain ( .
ε), and the ratio between the elongation

and shear viscosities, known as Trouton’s ratio, is equal to three for Newtonian fluids.
A lot of experimental set‑ups have been developed for measuring extensional viscos‑

ity, such as Göttfert rheotens tester [2] and CaBER [3–7]. However, it is still a challenge
to acquire ηe accurately. The factors limiting the improved characterization of ηe include
flow instabilities and the rupture of the sample [8]. Moreover, spatial uniformity is dif‑
ficult to achieve in producing purely uniaxial extension, and the steady‑state elongation
flow is seldom reached [9]. Measurements at a constant elongational rate ( .

ε) correspond‑
ing to stressing experiments are easier to perform. As a result, the stress has to increase
with time τ(t) in order to maintain constant .

ε in uniaxial extensional flow, leading to the
transient elongational viscosity ηe(t). It is known that the elongational viscosity ascends
with the time of deformation and follows the linear viscoelastic response in the zero‑strain
rate limit, η0(t). However, at finite strain rates, an exciting feature of the elongational flow
occurs, named strain hardening. During the stretching process, the non‑linear response
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emerges, and the transient extensional viscosity starts to deviate upward from η0(t), rec‑
ognized as the onset of strain hardening [1,10]. The behavior of ηe(t) has been reported to
be greatly affected by the strain rate, which is mainly manifested in strain hardening. As .

ε

is increased in stressing experiments, the onset of strain hardening takes place in a shorter
stretching time. That is, the non‑linear viscoelasticity appears earlier.

It was thought that strain hardeningwas a feature indicative of specific polymer archi‑
tecture and closely associatedwith long‑chain branching [11]. However, evenηe(t) of fairly
monodisperse melts was found to display an upward deviation at sufficiently high strain
rates [8]. In elongational flows, chain stretching is commonly believed to be responsible for
strain hardening. Recently, the origin of strain hardening has been elucidated based on the
comparison of the responses between uniaxial extension and simple shear [1]. Regardless
of polymer architectures, well‑entangled polymer melts tend to exhibit strain hardening
because the chain disentanglement effect is partially suppressed in extension. Moreover,
the geometric condensation of the load‑bearing chains accompanied by the shrinking cross‑
sectional area strengthens the entanglement network effectively [1]. In general, the effect
of the strain rate on the onset of strain hardening is simply manifested by the onset time.
Nonetheless, some experimental studies from a few decades ago reported that the onset of
the rapid stress growth took place at an approximately constant value of the total Hencky
strain [12,13].

The dynamics of entangled polymer melts have been extensively studied by the rep‑
tation (or tube) model [14] and the molecular stress function (MSF) model [15,16]. In the
former, the dynamical behavior of a chain due to its interactions with surrounding chains
is accounted for by the imposed topological constraints. To estimate ηe quantitatively, the
MSF model is introduced by incorporating the interchain tube pressure effect into the rep‑
tation model, and it contains certain input parameters that are typically acquired from
experiments [16,17]. Indeed, the molecular mechanism responsible for the elongational
behavior of entangled polymers can be scrutinized via microscopic simulations, such as
the primitive chain network (PCN) model [18,19] and molecular dynamics (MD) simula‑
tion [20,21]. In the PCN model, the rubber‑like network is constructed by a sequence of
subchains connecting consecutive entanglements (nodes) [18]. Network rearrangement
in real space is facilitated by various chain dynamical mechanisms, including reptation,
contour length fluctuation, and constraint release, based on the force balance on entangle‑
ments [19]. However, to agree with the experiments, appropriate molecular mechanisms
such as stretch/orientation‑dependentmonomeric friction [18] have to be incorporated into
the PCN model. In contrast, MD can provide direct information about chain dynamics in
polymer processing [22,23] without prior knowledge of molecular mechanisms. Nonethe‑
less, the high computational costs make MD difficult to simulate larger systems for longer
time scales. As a result, the MD approach is seldom employed to study the elongational
flow of polymer melt [20].

Coarse‑grained molecular dynamics is able to offer microscopic information about
stress, chain conformation, and dynamics [24] while requiring a more reasonable compu‑
tational cost. Complications in experiments, including molecular weight distribution, can
be eliminated simply in simulations. By representing a polymer as beads and springs, the
steady‑state elongational viscosity of weakly entangled polymer melt has been observed
after strain hardening [25]. By mimicking the behavior of extensional flows in entangled
polymer melts, observed patterns in extensional viscosity regarding time, rate, and molec‑
ular weight are replicated and chain conformations are related to extensional stress [26].
Recently, the viscosity overshoot of a blend of the ring and linear polymers has been
reported for biaxial extensional flows [27]. In addition, in this paper, a new simulation
methodology that uses a hierarchical triple scale approach is demonstrated to predict the
dynamic and rheological characteristics of entangled polymer melts with a highmolecular
weight [28]. However, until now, the microstructural dynamics of polymer melts during
stretching have not been analyzed directly. Particularly, polymer conformations associ‑
ated with strain hardening have not been microscopically examined. In this work, the
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elongational flow of linear polymer melts is explored by coarse‑grained dissipative parti‑
cle dynamics (DPD). Bothweakly and strongly entangled polymermelts are considered by
varying the chain length. The transient elongational viscosity is acquired for various strain
rates, and strain hardening is identified. Themicrostructural dynamics are investigated by
monitoring the evolution of the radial size distribution of polymers. The relationship be‑
tween strain hardening and the mean radius of gyration (and standard deviation) is then
established. The influences of the strain rate and molecular weight on the onset of strain
hardening are studied.

2. Methods
Similar to coarse‑grainedMD,DPD is a particle‑basedmesoscale simulationmethod [29]

that can be used to investigate larger length and time scales than conventional molecular
dynamics (MD) [29–31]. The DPD bead with mass m is comprised of a few molecules
or atoms, and the time evolution of the beads is governed by Newton’s equation of mo‑
tion [32,33]. The forces acting on the DPD bead are generally classified into three types:
conservative force (fCij ), dissipative force (f

D
ij ), and random force (fRij ). These forces are soft

and repulsive, in addition to being short‑ranged and pairwise‑additive [33]. As the dis‑
tance between any two beads (rij) is larger than the cut‑off radius (rc), these forces vanish.
The total force exerting on bead i is then Fi = ∑j( ̸=i)(f

C
ij+f

D
ij +f

R
ij

)
. The conservative force

decreases linearly with interparticle distance, fCij = aij(1 − rij/rc)r̂ij, where the interaction
parameter aij denotes the interaction strength between two beads and r̂ij is the unit vector
of the inter‑particle distance. Because the polymer melt is made of the same type of DPD
bead, the interaction parameter between all pairs of beads is always set as amm = 25 [34].
fDij is proportional to the relative velocity between two DPD beads and fRij is introduced
to satisfy the fluctuation–dissipation theorem [35–38]. The conservation of momentum in
DPD simulations is automatically fulfilled by all pairwise interacting forces between every
two DPD particles [31,39]. As a result, the hydrodynamic behavior of the system can be
observedmore easily compared toMDwith too many details of the molecular motion [31].
All the units in our simulations are scaled by the bead mass (m), cut‑off distance (rc), and
thermal energy (kBT). Therefore, the time (t) is nondimensionalized by (mr 2

c/kBT)
1/2

and
stress (τij) by kBT/r3

c . In this work, the open software Large‑scale Atomic/Molecular Mas‑
sively Parallel Simulator (LAMMPS) [40] was used for all simulations.

A linear polymer consists of repeating units linked only to two others [41]. It is made
of a string of DPD beads, and each polymer chain possesses N beads. For simplicity, the
molecular weight or chain length is represented by N. The string of DPD beads is con‑
nected with the harmonic spring (bond), FSij = ks(r ij − req)r̂ij, where the spring constant
ks = 100 and equilibrium length req = 0.4. Note that the original DPD parameters pro‑
posed by Groot and Warren [33] are too soft and provide no specific restrictions for steric
interactions. Thus, chain crossings may occur. However, our choice of the DPD parame‑
ters (req,ks, and aij) can effectively maintain the uncrossability of polymeric chains, and at
the same time, the large integration step can still be employed. The verification of chain
uncrossability is illustrated in the SupplementaryMaterials. Videos S1 and S2 also demon‑
strate that our choice of DPD parameters can indeed prevent chain‑crossing events. The
chain stiffness can be tuned by implementing additional bending forces between two con‑
secutive bonds. The bending force, Fθ = −∇Uθ, is obtained by the bending potential,
Uθ = kθ (θ − θeq

)2. Here, the bending constant is kθ = 2, and the equilibrium angle is
θeq = π. In this work, the number density of the linear polymer system is set as ρ = 3.
There are about 6 × 105 DPD beads in the cuboid with a periodic boundary in all three spa‑
tial directions. Initially, the system is a cubic box with approximately 58.5 × 58.5 × 58.5.
The time step is chosen as ∆t = 0.01 to avoid the divergence in simulations. Before con‑
ducting the elongation study, it is necessary for the simulation to reach equilibrium. At
equilibrium, the properties of the system, such as the internal energy and radius of gyra‑
tion, should remain constant over time.
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In the uniaxial extension experiment, melts are stretched uniaxially at a constant strain
rate ( .

ε) and then the extensional stress (τ) is measured. To maintain the constant deformation
rate, the uniaxial stress has to be adjusted with time, leading to the time‑varying elongational
viscosity ηe(t) = τ(t)/ .

ε. The extensional stress is τ = τxx− (τyy+τzz)/2 [42], where the aver‑
age virial stress ταα is the negative value of the diagonal component Pαα of pressure tensor in
theαdirection [43]. Pαα can be computed by Pαα = (∑imiviαviα /V) + 0.5(∑(j ̸=i) F

ij
αr

ij
α /V),

where V is the volume of the simulation box. The first term relates to the components of
the kinetic energy tensor, where mi and viα represent the mass and α‑component of the
velocity of bead i, respectively. The second term uses the components of the virial ten‑
sor, where Fijα and rijα denote the α‑component of the force and distance between beads
i and j, respectively [44]. It is calculated for all pairwise interactions. In this work, the
simulation cubic box (l03) is stretched at a constant “true” strain rate (i.e., Hencky strain
rate, .

εH) in the x‑direction; thus, the x‑dimension box size grows non‑linearly with time,
l(t) = l0exp

( .
εH∆ t). Note that it is different from the elongational process based on the

constant “engineering” strain rate ( .
εe). In order to keep the box volume constant, both of

the box sizes in the y‑ and z‑dimensions shrink equally over time.
The polymer melt has a lot of polymer conformations which can be simply described by

the radial size distribution P(Rg), where the radial size of a chain is represented by the radius of
gyration (Rg). The polymer size along the x‑axis is depicted by Rgxx = [∑i (x i − xcm

)2 /N]1/2,
where xcm is the center‑of‑mass position. The radius of gyration of the polymer is

Rg = (Rgxx
2+Rgyy2+Rgzz2

)1/2
. The aspect ratio of the polymer is defined as

s = Rgxx/((R gyy+Rgzz)/2). Certainly, the mean value of s at equilibrium is unity. Dur‑
ing the stretching process, both the Rg and s of each chain can vary with time and the
radial size distribution of the polymer melt P(Rg, t) also changes as a function of time. The
first moment of P(Rg, t) is Rg(t), which combines the second moment to give the standard
deviation σ of the distribution.

3. Results
The elongational viscosity (ηe) is commonly determined by extensional flow experi‑

ments, such as filament‑stretching via an extensional rheometer [45] and capillary break‑
up via an extensional rheometer [4–7]. In those experiments, melts are stretched uniaxi‑
ally at a constant strain rate ( .

εH), and then the extensional stress τ = τxx − (τyy+τzz)/2
is measured. To maintain the constant deformation rate, the uniaxial stress has to be ad‑
justed with time, leading to the time‑varying elongational viscosity ηe(t) = τ(t)/ .

εH. The
transient elongational viscosity depends on the strain rate ηe(t,

.
εH), and the characteristic

stretching time corresponding to the onset of strain hardening decreases with increasing
.
εH [1,46]. It is important to note that stretching and shearing are two distinct types of de‑
formation processes, and the trends observed in our results for the stretching process may
not necessarily apply to the shearing process.

3.1. Evolution of Radial Size Distribution of Polymers during Stretching
Figure 1a shows the simulation results of the time‑varying elongational viscosities

for linear polymers with N = 130 subject to various strain rates. For the purpose of
comparison, the elongational viscosity is non‑dimensionalized by the shear viscosity of
monomers (µ = 0.85) [47]. For sufficiently low strain rates (e.g., .

εH = 5 × 10−4 and 10−3),
their curves of ηe(t) coincide with each other essentially. This consequence of the strain
rate‑independent behavior seems to imply that these two curves can represent the linear
viscoelastic response η0(t) = ηe

(
t, .
εH → 0) . Evidently, other curves of ηe(t) at different

.
εH ( .

εH ≥ 5 × 10−3) overlap with η0(t) initially but deviate at different stretching times,
indicating the occurrence of strain hardening. The stress in the non‑linear regime associ‑
ated with strain hardening increases with time faster than that in the linear regime. More‑
over, the onset point of strain hardening decreases with increasing strain rate. Obviously,
the qualitative characteristics of the transient elongational viscosity acquired from DPD
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simulations agree well with those observed in elongational rheology experiments. The
general explanation for the effect of the strain rate on strain hardening is that, as the strain
rate is increased, the polymer chains will be stretched more rapidly and reach the non‑
linear viscoelastic regime earlier.
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Figure 1. The time‑varying elongational viscosities (ηe) for linear polymers with N = 130 (a) and
N = 10 (b) subject to various strain rates ( .

εH). For the purpose of comparison, the elongational vis‑
cosity is non‑dimensionalized by the shear viscosity of monomers. In the inset, the transient elonga‑
tional viscosity is plotted against the Hencky strain (εH).

It is imperative to realize the strain rate effect in terms of the onset time (abscissa) of
strain hardening. To further understand the influence of the strain rate on the elongational
viscosity, the data of ηe(t,

.
εH) can be transformed into ηe(εH,

.
εH) based on the Hencky

strain εH = ln(l/l0), where l and l0 denote the instantaneous and initial length of the sam‑
ple [10]. That is, the transient elongational viscosity is plotted against the elongational
deformation, as shown in the inset of Figure 1a. It can be observed that the elongational
viscosity decreases with the strain rate subject to the same εH. The simulation outcome
is qualitatively consistent with the experimental result [48,49]. It is known that, at very
small strain rates, the polymer deformation is allowed to relax back to the shape close
to equilibrium. As a result, the resistance to further deformation is weak, and the stress
τ increases slowly. However, for larger strain rates, the relaxation process is relatively
slow compared to the deformation rate [50]. Therefore, the nonequilibrium entanglement
structure is strengthened to impede further deformation, leading to an increment of τ to
maintain the constant strain rate. Although τ growswith .

εH, their ratio ηe(εH,
.
εH) = τ/

.
εH

actually decreases with increasing .
εH at a fixed εH, indicating that the increasing rate of

τ is less than that of .
εH. However, as the polymer melt is stretched to a specified length,

more work is still required for higher strain rates based on the plot of τ versus εH.
Obviously, the steady state elongational viscosity, which is independent of time

ηe(t) = η
∗ [48], is not attained for N = 130, as shown in Figure 1a. Presumably, a very

large simulation box is required to sustain the long‑time extension for reaching the steady
state ηe [25]. To demonstrate the possibility of obtaining η∗, the polymer melt with short
chains N = 10 is considered. Figure 1b shows the evolution of the elongational viscosity
with time at different strain rates. The comparison between Figure 1a,b reveals signifi‑
cant differences between short and long chains. Although the initial values of ηe of both
N = 10 and 130 have small differences, the latter becomesmuch greater than the former af‑
ter stretching the polymer melts at the same .

εH. This is not surprising because of the fewer
entanglements in polymer melts and lower resistances to stretching for N = 10. Moreover,
for sufficiently low strain rates ( .

εH = 10−2 and 5 × 10−3), ηe of N = 10 grows with time
initially but reaches a plateau eventually. The time‑invariant characteristic of ηe of N = 10
is also revealed by the εH‑independent feature illustrated in the inset of Figure 1b. Similar
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to N = 130, ηe(εH,
.
εH

)
decreases with increasing .

εH at a given εH. Note that the steady
state ηe is also observed for N = 20, but a longer time period is required.

Although the stress and viscosity can be obtained in experiments, the microstructure
evolution of polymer melts is difficult to observe. In contrast, the time‑varying microstruc‑
ture, such as polymer conformations subjected to stretching, can be captured by coarse‑
grained molecular simulations. To understand the microscopic evolution of polymer con‑
formations during extension, the changes in the distribution of the radius of gyration with
time P(Rg, t) are demonstrated in Figure 2. The average radius of gyration at equilibrium
is Rg0. Under stretching for N = 130, the distribution becomes widened and shifts toward
larger values of Rg, as shown in Figure 2a at the strain rate

.
εH = 5 × 10−2. Evidently, the

increment of Rg parallel to stretching (x‑direction) is significantlymore than the decrement
of Rg perpendicular to stretching (y‑ and z‑direction). That is, the polymer conformation is
elongated from a spherical shape. Two interesting findings are observed from P(Rg, t). It
is found that the distribution P(t = 0.16) before the onset of strain hardening is essentially
the same as that at equilibrium. The deviation of P(Rg, t) from the equilibrium distribution
becomes significant after strain hardening. Moreover, a bimodal distribution emerges af‑
ter stretching for a long time (e.g., t = 38.4 and 40), corresponding to large Hencky strains.
One peak is close to 1.5Rg0, while the other peak is located at about 3.5 Rg0. In addition to
the Hencky strain, the bimodal distribution also depends on the strain rate. As depicted
in the inset of Figure 2a for εH = 2, the bimodal feature is more prominent for lower strain
rates. The peak close to 2.5 Rg0 is significantly higher than that close to 1.5 Rg0. The ap‑
pearance of the peak with a smaller radial size can be realized by the representative evolu‑
tions of polymer conformations shown in Figure S1 of the SupplementaryMaterials. Some
polymers are reoriented to the stretching direction with small elongation, some polymers
are extended but then arrested in a specific stretched state, and some polymers return to
the weakly stretched state via local relaxation. Figure S2 of the Supplementary Materi‑
als depicts the typical evolutions of polymer conformations near the peak with a larger
radial size. However, as the strain rate increases, the distribution of Rg becomes more non‑
uniform because easily stretched polymers can be elongated further, and the number of
polymers in a weakly stretched state decreases slightly.
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In contrast to the unsteady stretching of long chains (N = 130), steady stretching is
reached for short chains (N = 10). Figure 2b shows the time evolution of the distribution
of Rg for N = 10 at .

εH = 5 × 10−2. By comparing Figure 2b with Figure 2a, it is found that
the polymer size distributions of N = 10 and 130 are distinctly different during stretch‑
ing. While the bimodal distribution appears for long chains, the size distribution of the
short chains is weakly perturbed by the equilibrium distribution. Moreover, P(Rg, t) even‑
tually becomes time‑invariant for N = 10, but it still evolves toward the bimodal shape
for N = 130. The consequence of this is that subject to the same strain rate, the relaxation
allows short chains to recover their shapes close to the equilibrium structure, but it fails to
reduce the significant elongation of long chains. Furthermore, the effect of the strain rate
on the size distribution of short chains at εH = 2 is demonstrated in the inset of Figure 2b.
At relatively low strain rates ( .

εH= 10−2, 5 × 10−3, and 5 × 10−4), it is found that their poly‑
mer size distributions are essentially the same as the equilibrium distribution. This result
indicates that the relaxation is fast enough compared to the stretching for N = 10. Their
stretching dynamics always follow the linear viscoelastic response and ultimately reach
the steady state. On the contrary, for high strain rates ( .

εH = 10−1 and 5 × 10−2), the devia‑
tion from the equilibriumdistribution is observed, revealingweak strain hardening, which
cannot be clearly identified from ηe(t).

3.2. Polymer Conformations Associated with Strain Hardening
The onset of strain hardening is generally identified as the point at which the elonga‑

tional viscosity deviates from the linear viscoelastic response. However, η0(t) is difficult
to acquire accurately because the strain rate needs to be as small as possible. At .

εH → 0 ,
the thermal noise causes significant fluctuations of stress and ηe(t) [25], as illustrated in
Figure 1. It is desirable to understand the change in the microstructure of polymers near
the onset point of strain hardening. Instead of the radial size distribution, the mean radius
of gyration of polymers Rg is easier to use for the monitoring of the microstructural evolu‑
tion during stretching. Figure 3a shows the variation of Rg/Rg0 with time at various strain
rates for N = 130. It is found that, regardless of .

εH, all curves of Rg/Rg0 remain at unity
for a while and then upturn rapidly at some points. The turning point occurs earlier when
the strain rate is higher. The comparison of the onset points between Figures 1a and 3a
indicates that they coincided with each other for a given strain rate. This reveals that the
upturn of the elongational viscosity is actually accompanied by the drastic change in the
microstructure of the polymer melt. That is, strain hardening takes place as the average
radial size of polymers starts to grow from the equilibrium state. Although the stretching
process stops at εH = 2 for all strain rates, the radial size of polymers is larger for higher .

εH.
Tomaintain a higher .

εH, higher stress is required, which causes larger polymer deformation.
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ε for N = 130. The representative polymer
conformations at different times are shown in the inset at .

εH = 5 × 10−3. (c) The variation of the
mean radius of gyration with the elongation deformation (Rg/Rg0 vs. εH) for N = 130 at different .

εH.
For comparison, the plot of the standard deviation against εH is depicted in the inset.

According to Rg/Rg0, themicrostructure of the polymermelt is essentially the same as
that at the equilibrium state before strain hardening. This result can be further illustrated
by the plot of the standard deviation of Rg/Rg0 against time, as depicted in the inset of
Figure 3a for N = 130. Again, before the occurrence of strain hardening, the standard
deviation is a constant and the same as that at equilibrium, σ = 0.235. Similar to Rg/Rg0,
the onset of strain hardening can be recognized at the point of the uprising of σ. The
equilibrium state can be maintained for longer at lower strain rates. σ grows rapidly after
the onset of strain hardening, signifying the incremental increase in the width of the radial
size distribution. This occurs simply because the upper bound is elevated due to stretching.
Since the higher stress for maintaining the higher .

εH yields more polymers with strong
deformation, the distribution of Rg/Rg0 is wider for the larger strain rate at εH = 2.
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According to P(Rg, t) and Rg(t), the linear viscoelastic response is observed as they are
maintained at those of the equilibrium state. The onset of strain hardening corresponds to
their deviation from the equilibrium state. Apparently, the initial elongational perturba‑
tion to the polymer conformation is not clearly displayed in Rg. To capture the response of
the conformation to the stretching process, the aspect ratio (s) of the polymer is calculated.
It is defined as the ratio of Rgxx (parallel to the stretching direction) to

(
Rgyy + Rgzz)/2

(perpendicular to the stretching direction) of the chain. Figure 3b shows the variation of
the aspect ratio with time at different .

εH for N = 130. Obviously, the aspect ratio is unity
(s = 1) at equilibrium, and it ascends rapidly at a certain point. At the end of the stretching
(εH = 2), Rgxx can be as large as approximately eight to ten times (Rgyy+Rgzz)/2. The rep‑
resentative polymer conformations at different times are shown in the inset of Figure 3b,
at .

εH = 5 × 10−3. Note that the significant deviation of the aspect ratio from unity can
be identified before the onset of strain hardening. For example, one has Rg/Rg0 = 1 but
s = 1.1 at t = 15.6 before strain hardening at .

εH = 5 × 10−3. This result reveals that the
initial elongation tends to align the deformed polymers at the equilibrium state (with an
aspect ratio greater than unity) with the stretching direction. That is, the equilibrium dis‑
tribution P(Rg, t) is not altered actually but the mean orientation emerges because of the
alignment induced by elongation.

It is imperative to realize the strain rate effect on strain hardening from the plot of
Rg against the stretching time in terms of the characteristic onset time t∗( .

εH). To under‑
stand the relationship between t∗ and .

εH, the plot of Rg (t,
.
εH) can be redrawn against a

dimensionless time .
εHt, which is theHencky strain εH. Figure 3c shows the variation of the

mean radius of gyration with the elongation deformation, i.e., Rg/Rg0 vs. εH for N = 130.
For comparison, the plot of the standard deviation against εH is depicted in the inset. It is
somewhat surprising to find that the deviation of Rg/Rg0 from unity occurs essentially at
the same Hencky strain, i.e., εH ≈ 0.1, regardless of the strain rate. That is, despite differ‑
ences in .

εH, the onset of strain hardening always takes place at an approximately constant
εH, which is consistent with the experiments [12,13]. In addition to the mean of the radial
size distribution, similar behavior is observed for the variation of the standard deviation
with εH. The upturn of σ from the equilibrium value σ0 takes place essentially at the same
point (εH ≈ 0.1) for all strain rates. This finding indicates that the linear viscoelasticity
is always obeyed by very small Hencky strains, but the non‑linear viscoelasticity emerges
beyond the critical value (εH> 0.1). Evidently, the radial size distribution P (Rg, t) of the
linear viscoelastic regime is independent of .

εH, but that of the non‑linear regime depends
on .

εH. Moreover, this finding also reveals that the characteristic onset time is inversely
proportional to the strain rate, t∗∼ .

εH
−1.

For long chains (N = 130), strain hardening is easy to observe, but the steady elon‑
gational viscosity is difficult to reach. On the contrary, for short chains (N = 10), the
steady ηe can be seen, but strain hardening cannot be recognized easily. Following the
concept of Figure 3 for N = 130, Figure 4 shows the time evolution of polymer confor‑
mations for N = 10 at different strain rates. As demonstrated in Figure 4a, strain hard‑
ening can be clearly identified by Rg(t) at

.
εH = 10−1 and 5 × 10−2. However, at lower

strain rates ( .
εH = 10−2 and 5 × 10−3), the curve of Rg(t) does upturn at some point (weak

strain hardening) but arrive at a plateau eventually (steady ηe). At the lowest strain rate
( .
εH = 5 × 10−4), the Rg(t) curve remains at unity all the time, indicating that the process
follows the linear viscoelastic response and finally reaches the steady ηe. Note that the
curve of ηe(t) at

.
εH = 5 × 10−4 is not shown in Figure 1b because it coincided closely with

ηe(t) at
.
εH = 5 × 10−3.
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εH = 5 × 10−3.

Another dynamic feature of the radial size distribution P(Rg/Rg0, t) is the standard
deviation σ(t), which is illustrated in the inset of Figure 4a for N = 10. It is found that
the behavior of σ(t) of N = 10 is distinctly different from that of N = 130. After the on‑
set of strain hardening for .

εH = 10−1 and 5 × 10−2, the standard deviation σ(t) starts to
grow fast because short chains are more easily stretched due to their weaker entanglement
effects. Unlike σ(t) of N = 130, the curves reach their peak and descend afterward, re‑
vealing that the relaxation of polymer conformations comes into play. Nonetheless, the
steady state has not been reached, and hence the standard deviation still decays toward
the equilibrium value. In contrast, at low strain rates ( .

εH ≤ 10−2), σ(t) always fluctuates
around the equilibrium value of 0.109 during the stretching process. This shows that the
relaxation of polymer conformations dominates over the stretching of short chains at low
strain rates.

The response of the polymer conformations along the stretching direction for N = 10
is also demonstrated in terms of the aspect ratio (s) in Figure 4b. Again, a significant rise in
the aspect ratio is accompanied by strain hardening at high strain rates. The value of s can
be as high as about three. However, at lower strain rates, the rising aspect ratio reaches a
plateau, which is consistent with the steady viscosity. The representative conformations at
different times are depicted in the inset of Figure 4b at .

εH = 5 × 10−3. At the lowest strain
rate, the value of s remains essentially at unity with a very slight deviation. This result dis‑
closes the fact that the equilibriummicrostructure (radial size distribution) of short chains
is always maintained at sufficiently low strain rates during the stretching process because
of their rapid relaxation. Although the radial size distributions P (Rg, t) are very similar at
εH= 2 for the lowest three strain rates (see the inset of Figure 2b), their aspect ratios can still
be distinguished because the orientation effect is not revealed in P(Rg, t). The incremental
increase in the elongational viscosity is attributed to the gradual alignment of deformed
chains associated with the equilibrium state, which is achieved during stretching.

3.3. Effects of Molecular Weight
In addition to the strain rate, it is well‑known that molecular weight is the property

that affects the resistance to unentangling under strain aswell [51]. That is, the elongational
viscosity is expected to depend on the chain length, ηe(N). In general, the melt strength of
elongational viscosity is enhanced as the molecular weight increases [52]. Figure 5a shows
the growth of ηe with time at .

εH = 5 × 10−3 for various chain lengths, from N = 30 to 390.
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The typical behavior of ηe(t) is observed for each N, and the steady state is not reached.
However, two regimes can be distinguished: the short and long time periods. At a short
stretching time, all the elongational viscosities behave similarly regardless of themolecular
weight. Moreover, they are essentially collapsed together even at different strain rates, as
illustrated in the inset of Figure 5a. In contrast, at a sufficiently long time, ηe(t) seems to
separate from the main curve (asymptotic behavior) represented by the very long chain
length, such as N = 390. Obviously, the extent of the deviation from the main curve is
more significant as the chain length is shorter. Because the linear viscoelastic response
η0(t) varies with the molecular weight, it is difficult to identify the onset point of strain
hardening for a given strain rate.

Figure 5. (a) Thegrowthofηewith timeat
.
εH= 5 × 10−3 for various chain lengths (N = 30 ∼ 390). In the

inset, .
εH = 5 × 10−2 is considered as well. The filled and hollow symbols represent .

εH = 5 × 10−2

and .
εH = 5 × 10−3, respectively. (b) The radial size distributions at t = 0 and 20 for N =

30, 60, and 260 at .
εH = 5 × 10−3. The black solid line represents the size distribution at equilibrium.

The radial size distributions at εH = 2 are demonstrated in the inset.

The characteristics of the two regimes displayed in ηe(t) can be further understood
by examining the radial size distribution. According to the identified onset point of strain
hardening at .

εH = 5 × 10−3 for N = 130, P(Rg, t) at t = 20 (close to the onset point) remains
the same as that at its equilibrium state. Figure 5b shows the radial size distributions at
t = 20 for N = 30, 60, and 260. Evidently, their P(Rg) at t = 20 still coincides with the cor‑
responding equilibrium distributions. This outcome reveals that P(Rg, t) is unchanged in
the short‑time regime, and the onset point of strain hardening is not sensitive to the molec‑
ular weight. On the contrary, the radial size distribution deviates from the equilibrium
distribution in the long‑time regime. As shown in the inset of Figure 5b, the bimodal dis‑
tribution appears at εH = 2 only forN = 60, but not forN = 30 and 260. Similar toN = 130
(see Figure 2a), the presence of the peak with a larger radial size implies that some poly‑
mers of N = 60 have already elongated to their strongly stretched state. On the contrary,
as the chain length becomes significantly longer than N = 130, most of the polymers of
N = 260 fail to be extended to the strongly stretched state; thus, the bimodal distribution is
not obvious. Certainly, for short chains (N = 30), the relaxation is much faster than that of
N = 130 and P(Rg, t) shifts simply toward larger radial sizes upon stretching.

To understand the effect of molecular weight, the microscopic evolution of polymer
conformations in terms of Rg(t) is illustrated in Figure 6a at

.
εH = 5 × 10−3. In the initial pe‑

riod, all Rg/Rg0 remain in unity regardless of the molecular weight, indicating the regime
of linear viscoelastic response. It is interesting to find that the upturn of all Rg/Rg0 curves
seem to take place essentially at the same moment, revealing that the onset point of strain
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hardening is insensitive to molecular weight. Nonetheless, the growth rate of Rg varies
with the chain length and ascends with increasing N. When N is large enough, the curve
of Rg/Rg0 reaches an asymptotic behavior, similar to the behavior of ηe/η0 (see Figure 5a).
In addition to themean (Rg), the characteristic of the radial size distribution can also be elu‑
cidated by the standard deviation σ. The inset of Figure 6a illustrates the variation of σ/σ0
over time for different molecular weights, where σ0 is the standard deviation of P(Rg, t) at
the equilibrium state. Again, the onset of strain hardening (upturn from unity) seems to
occur at about the same time. Amaximum is observed for short chains (N = 30 and 60) due
to their fast relaxation. The asymptotic behavior of σ(t) for long chains is observed as well.
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for various molecular weights. The inset illustrates the variation of σ/σ0 over time, where σ0 is the
standard deviation of P(Rg, t) at the equilibrium state. (b) The variation of the aspect ratio with time
at .

εH = 5 × 10−3 for different molecular weights. For comparison, the plot of the radius of gyration
along the stretching direction (Rgxx/Rgxx0) against time is depicted in the inset.

The influence of the molecular weight on polymer conformations upon stretching can
be illustrated by the aspect ratio (s) as well. The analysis of the strain rate effect indicates
that the aspect ratio is more sensitive to the stretching process than the radius of gyration.
In fact, the rapid growth of the aspect ratio occurs earlier than that of ηe and Rg, corre‑
sponding to the transition from the orientation to the stretching of polymers. Figure 6b
shows the variation of s over time at .

εH = 5 × 10−3 for different molecular weights. For
comparison, the plot of the radius of gyration along the stretching direction (Rgxx/Rgxx0)
against time is depicted in the inset. The rapid growth behavior of all of the curves seems
to happen at about the same time for both s(t) and Rgxx(t), regardless of the molecular
weight. Moreover, sufficiently long chains behave alike, and their curves coincide with
each other, revealing the asymptotic behavior of large N. According to Rg(t), σ(t), and s(t),
at a given strain rate, the onset of strain hardening is insensitive to the molecular weight
but very sensitive to the strain rate. For sufficiently long chains, the local environments (en‑
tanglement networks) look alike and cannot be distinguished easily. Therefore, the onset
of strain hardening (weakly stretched) and the non‑linear viscoelastic response (interme‑
diately stretched) are similar. However, the degree of stretching, which varies with the
molecular weight, is gradually revealed as the process continues. As a result, the onset of
strain hardening collapses at short times, while the deviation from the asymptotic behavior
of infinitely long chains appears at long times.
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4. Conclusions
In this work, the microstructural evolutions of the linear polymer melt during the

stretching processes are explored by dissipative particle dynamics. Consistent with ex‑
periments, the elongational viscosity ηe(t) at different

.
εH initially overlaps with the linear

response η0(t), but it upturns at a shorter stretching time for a higher .
εH. The onset of

strain hardening is microscopically examined by the radial size distribution P(Rg, t). It is
intuitively expected that P(Rg, t) grows widely and shifts toward larger values of Rg upon
stretching. However, it is interesting to find that P(Rg, t) remains essentially the same as
that at equilibrium before strain hardening but is strongly deformed after that. A bimodal
distribution can emerge after prolonged stretching, suggesting that not all the polymers are
elongated. Some polymers have relaxed back into a weakly stretched state, while some are
arrested in a specific stretched state. In contrast to the unsteady stretching of long chains,
the steady elongational viscosity can be acquired for short chains. The P(Rg, t) of short
chains is weakly perturbed from their equilibrium distribution, revealing that the relax‑
ation is fast enough to recover the near‑equilibrium conformations. Nonetheless, for a
sufficiently small .

εH, P(Rg, t) is always the same as the equilibrium distribution, indicating
the absence of strain hardening.

The dynamics of the size distribution can be handily captured by the mean Rg(t) and
standard deviation σ(t). The upturns of both Rg and σ from their equilibrium values sig‑
nify the onset of strain hardening. However, the deviation of the aspect ratio
Rgxx/

[(
R gyy+Rgzz)/2] from unity is observed before strain hardening, indicating that the

initial elongation tends to align the slightly stretched polymers with the stretching direc‑
tion without altering the equilibrium distribution. In other words, the increment of the
elongational viscosity associated with the linear response corresponds to the alignment of
stretched polymers by maintaining the equilibrium size distribution. The strain rate de‑
pendence of strain hardening can be realized as Rg/Rg0, and σ/σ0 are plotted against the
dimensionless time .

εHt. The close coincidence of the onset points suggests that the linear
viscoelasticity always takes place at a sufficiently small Hencky strain. In addition to .

εH,
the viscosity depends on the chain lengthN, but the ηe(t) of different N behave similarly in
the initial period. On the basis of Rg/Rg0 and σ/σ0, it is somewhat surprising to find that
the onset of strain hardening is insensitive to the chain length. This is because the local en‑
vironments (entanglement network) look alike for sufficiently long chains, and the weakly
stretched state associatedwith the onset of strain hardening cannot be distinguished easily.
Our study of the microstructure dynamics of polymer melt during stretching can serve as
a crucial guide for mastering the art of polymer processing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15092067/s1, References [33,53–64] are cited in the Supple‑
mentaryMaterial. Verification of Chain Uncrossability, Figure S1. Schematics of two chains to check
bond crossing conditions where r represents the distance between any two nonbonded beads, l de‑
notes the bond length. rmin denotes the minimum value of r and lmax is the maximum value of l.
Figure S2. The bond length and the nonbonded length distribution of our simulation system. Figure
S3. (a) The representative evolution of the radial size of the polymer, and (b) the variation of the
polymer conformation with time during the stretching process for N = 130 at .
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Video S2 demonstrate the chain uncrossability of our polymer model.
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