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Abstract: The crystallization of polyethylene (PE) blends is a highly complex process, owing to the
significant differences in crystallizability of the various PE components and the varying PE sequence
distributions resulting from short- or long-chain branching. In this study, we examined both the
resins and their blends through crystallization analysis fractionation (CRYSTAF) to understand
the PE sequence distribution and differential scanning calorimetry (DSC) to investigate the non-
isothermal crystallization behavior of the bulk materials. Small-angle X-ray scattering (SAXS) was
utilized to study the crystal packing structure. The results showed that the PE molecules in the
blends crystallize at different rates during cooling, resulting in a complicated crystallization behavior
characterized by nucleation, co-crystallization, and fractionation. We compared these behaviors
to those of reference immiscible blends and found that the extent of the differences is related to
the disparity in crystallizability between components. Furthermore, the lamellar packing of the
blends is closely associated with their crystallization behaviors, and the crystalline structure varies
significantly depending on the components’ compositions. Specifically, the lamellar packing of the
HDPE/LLDPE and HDPE/LDPE blends is similar to that of the HDPE component owing to its strong
crystallizability, while the lamellar packing of the LLDPE/LDPE blend is approximately an average
of the two neat components.

Keywords: PE blends; co-crystallization; fractionation; structure; CRYSTAF; SAXS

1. Introduction

Polyethylene (PE) is the most popular plastic in the world and one of the most widely
used polymers because of its superior properties and relatively low cost. Different types of
PE with different molecular architectures have been commercialized over the past 80 years
from different polymerization processes and catalysts [1]. The three main types of PE are
high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and low-
density polyethylene (LDPE). HDPE is almost linear with no branching or small amounts
of short-chain branching to improve the environmental stress crack resistance. LLDPE
resins made by incorporating higher levels of alpha-olefin comonomer have higher levels
of short-chain branching. The LDPE resins have both long-chain branching and short-chain
branching resulting from the free radical polymerization process [1,2].

In practice, many commercial PE resins are mixtures of polyethylene with varying
branch types and distributions [2–5]. To achieve the desired properties, dual reactors are
often used in the polyethylene industry to obtain a blend of different polyethylenes [1].
Additionally, liquid–liquid phase separation has been reported for certain LLDPEs [6–9]
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because of their broad branch content distribution. Even for LLDPEs with the same
comonomer content, the branch distribution can vary significantly. For example, the se-
quence distribution of LLDPE made with a metallocene catalyst is typically more uniform
than those made with a Ziegler–Natta catalyst [10]. Characterization techniques such as
crystallization analysis fractionation (CRYSTAF) [4,11–14] and temperature rising elution
fractionation (TREF) [4,15–17] have been developed to demonstrate the varying composi-
tion distributions of polyethylene and other semi-crystalline polymers [18,19], based on the
relative crystallizability of their molecules.

On the other hand, for industrial applications, over 70% of PE is used as a blend
composition to maximize its overall properties [20,21]. Examples of such blends in-
clude HDPE/LDPE blends [22–24], HDPE/LLDPE blends [23–26], and LLDPE/LDPE
blends [27–29]. Therefore, studying the miscibility, crystallization, and morphology of PE
blends is crucial for PE industrial applications [30]. Various experimental methods have
been utilized to study PE blends, including small-angle neutron scattering (SANS) [31–33],
small-angle light scattering (SALS) [34–36], rheology investigations [37–39], differential
scanning calorimetry (DSC) studies [40–47], small-angle X-ray scattering (SAXS) [33,35,48],
transmission electron microscopy (TEM) [49–51], crystallization analysis fractionation
(CRYSTAF) [52,53], temperature rising elution fractionation (TREF) [52,54], and others. With
the development of investigation methods and diversification of polyethylene blend species,
scientists have deepened their understanding of polyethylene blends [30–55]. Combining
various methods can enable a more comprehensive research of PE blends [33,34,56,57].

In PE blends, the interaction between components during crystallization is crucial
not just for determining the final crystalline structure, but also for the strength of inter-
crystalline connections. This is important for resistance to low temperature impacts, creep,
slow crack growth, tear, and puncture [58–63]. The crystallization process and resulting
crystalline structures of PE blends heavily depend on the difference in crystallizability of
the components and their miscibility [30–57]. Co-crystallization between components of
PE blends during the crystallization process was discussed early on by RG Alamo [40,41],
MJ Hill [42], and others. It is generally accepted that co-crystallization occurs more easily
when the structure of the components is more similar and happens more readily under
a fast cooling rate. Previous publications have only touched on the nucleation effect in
PE blends, including LDPE/HDPE [64,65], HDPE/very low-density polyethylene [51],
and LLDPE/LDPE blends [66,67]. A more comprehensive discussion of the crystallization
kinetics of PE blends is needed.

In the present work, different bulk PE materials containing HDPE, LLDPE, and LDPE
were first studied by differential scanning calorimetry (DSC), crystallization analysis frac-
tionation (CRYSTAF), and small-angle X-ray scattering (SAXS). The goal was to understand
the non-isothermal crystallization behavior, the sequences distribution based on crystalline
ability, and the crystal packing structure for each material. Selected types of PE blends,
including HDPE/LDPE, HDPE/LLDPE, and LLDPE/LDPE blends, were then further
investigated to better understand the crystallization behaviors and how one component af-
fects the crystallization of another. CRYSTAF and DSC were used to study these effects, and
SAXS was employed to analyze the lamellar structures. This research attempted to draw a
complete picture of the crystallization behaviors and lamellar structures of the PE blends of
different types, while also making inferences about the miscibility between components.

2. Materials and Methods
2.1. Preparation of PE Blends with Different Types of PE

Different types of PE consisting of HDPE, LLDPE and LDPE were used for blending.
Information on the resins is listed in Table 1. The mass-average molecular weight (Mw)
and the molecular weight dispersity (ÐM = Mw /Mn, Mn is the number-average molecular
weight) [68] of the resins were obtained by gel permeation chromatography (Model PL-
GPC 220, Agilent Technologies, Santa Clara, CA, USA) using 1,2,4-trichlorobenzene as
a solvent at 150 ◦C. A narrow distribution polystyrene standard sample was used for
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universal calibration. The branching content was determined by solution 13C nuclear
magnetic resonance experiments performed on an AVANCEIII-400 MHz spectrometer
(Bruker, Billerica, MA, USA) with a 10 mm probe at 125 ◦C. All sample solutions were
prepared with 200 mg of the polymer material dissolved in 2.5 mL of d4-o-dichrolobenzene
in a 10 mm tube at 130 ◦C. Occasional stirring was necessary to achieve a homogeneous
solution. Two HDPE and two LLDPE resins with different compositions were used in the
present work, as listed in Table 1. “HDPE-1” is a resin for blow molding, while “HDPE-2”
is for pipe applications with a relatively high ÐM. The “LLDPE-1” resin was made with a
metallocene catalyst while the “LLDPE-2” resin was produced by a Ziegler–Natta catalyst.
The density data at 23 ◦C were obtained from the producers together with the products.

Table 1. Material information of different polyethylene resins.

Type Manufacture Grade Comonomer Density (a)

/(g/cm3)
Mw

(×104) ÐM
(b) Branching

Content (/1000C)

HDPE-1 Sinopec B5703 Propylene 0.960 19.9 10.71 0.4
HDPE-2 Sinopec YEM-4902T Butene 0.951 24.4 26.99 3
LLDPE-1 ExxonMobil Enable 2010HA Hexene 0.920 10.1 3.67 12.2
LLDPE-2 DOW Dowlex 2045G Octene 0.920 12.7 3.85 11.1

LDPE Sinopec LD607 —— 0.921 8.6 5.23 13.6 (c)

(a) 23 ◦C, data obtained from the producers; (b) the molecular weight dispersity ÐM = Mw/Mn; (c) short-chain
branching: 11.2/1000C; long-chain branching with the carbon number greater than 6: 2.4/1000C).

PE blends were prepared in a Haake twin-screw extruder (Thermo Fisher Scientific,
Waltham, MA, USA) with a melting temperature of 240 ◦C, including the HDPE-2/LDPE
50/50 blend, the HDPE-2/LLDPE-2 50/50 blend, and the LLDPE-2/LDPE 50/50 blend in
a ratio of weight percent. The screw diameter was 16 mm and the screw ratio was 40:1.
The screw speed was set as 150 r/min. Different types of neat PE also underwent the same
twin-screw melt extruding process for comparison. The PE blends and neat PE after pro-
cessing were hot-pressed into sheets of 1 mm thickness for subsequent differential scanning
calorimetry (DSC) experiments. The samples were molded at 160 ◦C and subsequently
quenched to room temperature within 30 s.

2.2. Differential Scanning Calorimetry (DSC)

The crystallization behaviors of the neat PEs and the blends in bulk were studied by
DSC (Model Q100, TA Instruments, New Castle, DE, USA). The DSC instrument calibrated
with indium was employed under a high purity nitrogen atmosphere and samples weighed
about 10 mg. Each sample was first heated from 25 ◦C to 180 ◦C at 10 ◦C/min and held at
180 ◦C for 5 min to eliminate the thermal history, and then cooled at 10 ◦C/min to 25 ◦C,
held at 25 ◦C for 0.5 min, and again heated to 180 ◦C at 10 ◦C/min. Cooling and second
heating curves of the neat PEs and the blends were recorded. In addition, as reference
blends, hypothesized totally immiscible blends of the neat components were introduced for
comparison, the DSC curves of which were calculated by taking the average DSC profiles
of the neat polymers [47]. The heat of fusion (∆Hm) of the samples was obtained from
the second scan of the DSC thermogram. The degree of crystallinity X was calculated
by the formula X = ∆Hm

∆H0
·100%, where ∆H0 is the enthalpy of melting of the completely

crystallized PE (293 J/g [69]).

2.3. Crystallization Analysis Fractionation (CRYSTAF)

Crystallization kinetics of the neat PEs and three binary PE blends in dilute solution
were studied by crystallization analysis fractionation (CRYSTAF) [11–14]. A CRYSTAF
model 200 (Polymer Char, Valencia, Spain) was used for fractionation. The studied sample
(30 mg) was dissolved in 1,2,4-trichlorobenzene (40 mL) at 160 ◦C for 60 min and then kept
at 95 ◦C for 45 min to ensure complete dissolution. To collect data during the solution
crystallization, the solution was gradually cooled to 35 ◦C at a rate of 0.1 ◦C/min. The
crystallization at each temperature was measured by monitoring the PE concentration in
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the solution with an online IR5 detector. Additionally, reference blends consisting of com-
pletely immiscible combinations of the neat components were introduced for comparison.
CRYSTAF curves for these blends were calculated by averaging the CRYSTAF profiles of
the neat polymers.

2.4. Small-Angle X-ray Scattering (SAXS)

The crystalline structures of the neat PEs and the blends were investigated by SAXS [70,71].
Small pieces of about 10 mg were cut from the 1 mm sheets of the neat PEs and the three
binary PE blends. These pieces were treated with the DSC instruments having the same
thermal profile as the DSC non-isothermal crystallization study. Specifically, the pieces were
heated to 180 ◦C and kept at 180 ◦C for 5 min, and then cooled to 25 ◦C at a cooling rate of
10 ◦C/min. After treatment with the DSC instruments, the pieces were used for crystalline
structure study by small-angle X-ray scattering (SAXS) at room temperature. The SAXS
measurements were carried out using a NANOSTAR U SAXS instrument (Bruker, Billerica,
MA, USA) equipped with a heating unit. The X-ray source was an IµS-type generator
operated at 40 kV and 650 µA. The wavelength was 0.1542 nm (CuKα). The scattering
intensity was detected by a two-dimensional detector with 1024 × 1024 pixels and 100 µm
pixel size. The distance between the detector and the sample was 1059 mm. Some X-ray
experiments were conducted using synchrotron radiation with λ = 0.154 nm at Beamline
1W2A of the Beijing Synchrotron Radiation Facility (Beijing, China). Mar165-CCD was
used for data collection. All data were corrected for air background before any analysis.

3. Results and Discussion
3.1. Crystallization-Driven Phase Separation of PE Molecules Due to Large Difference in
Branching Degree

The non-isothermal crystallization of the five different PEs was studied first by the
DSC technique. As shown in Figure 1a, during a cooling process at a rate of 10 ◦C/min, the
crystallization occurred at very different temperatures for the different types of PE. As seen
from Figure 1a and listed in Table 2, all the PE resins showed a main crystallization peak at
a high temperature and a small crystallization peak at a much lower temperature below
90 ◦C, although the small peak of the HDPE-1 was very weak.
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Table 2. Characterization of the neat PEs during DSC cooling and subsequent heating at a given rate
of 10 ◦C /min.

Sample Higher Tc/Lower Tc (◦C) Tm (◦C) Crystallinity (%)

HDPE-1 119.3/86.1 135.5 76.4
HDPE-2 115.5/79.8 130.7 69.0
LLDPE-1 102.4/66.4 115.3 41.8
LLDPE-2 107.2/61.7 123.9/122.4/109.4 40.9

LDPE 93.3/57.8 107.5 39.9

Among the PE resins, HDPE-1 with a lower branching content of 0.4 per 1000C (as
shown in Table 1) exhibited the highest crystallization temperature during the same cooling
process (Figure 1a and Table 2). In contrast, HDPE-2 with 7.5 times higher branching
content than HDPE-1 (Table 1) showed a broader main crystallization peak at a lower
temperature (115.5 ◦C) than HDPE-1 because of the impact of the significantly higher
branching degree, which slowed down the nucleation and crystallization of the HDPE.
The two LLDPE resins, made with hexene and octene comonomer, respectively, had an
approximately 4 times larger branching degree than HDPE-2 (Table 1), resulting in much
lower major crystallization temperatures (102.4 ◦C and 107.2 ◦C for LLDPE-1 and LLDPE-2,
respectively). LDPE molecules typically have both short-chain and long-chain branches
owing to the radical polymerization reactions (Table 1). As a result, LDPE resins exhibited
much weaker crystalline ability than LLDPE and crystallized at a much lower temperature
(93.3 ◦C) during the same cooling process (Figure 1a).

The weak crystallization peaks observed in all the PE resins could be the result of
a small fraction of the highly branched PE molecules unable to participate fully in the
main crystallization process at high temperatures. Instead, these molecules were relegated
to the interlamellar or inter-spherulite regions where they crystallized at a much lower
temperature [3,65]. That is, the crystallization of the PE resins led to the phase separation
of the small fraction of highly branched PE molecules from the major PE content and
crystallized separately at a significantly lower temperature. In general, the temperature
of the small peak of polyethylene resin with high branching content was relatively low.
The temperatures of the small crystallization peaks in the two HDPE resins were higher
than those in the LLDPE and LDPE resins. Moreover, the small crystallization peak in the
HDPE-1 resin was quite weak because of the low branching content and limited amounts
of highly branched PE molecules in the resin. For the two LLDPEs, the location of the
small crystallization peak was also related to the catalyst and the comonomer distribution.
Although the total branching content of LLDPE-2 was slightly lower than that of LLDPE-1,
PE molecules with higher branching content were expected to exist in the LLDPE-2 resin
owing to the much broader branch distribution of LLDPE-2 made by the Ziegler–Natta
catalyst than the LLDPE-1 prepared by the metallocene catalyst. As a result, the temperature
of the small crystallization peak in LLDPE-2 (61.7 ◦C) was lower than LLDPE-1 (66.4 ◦C)
while the temperature of the main crystallization peak in LLDPE-2 (107.2 ◦C) was higher
than LLDPE-1 (102.4 ◦C).

Figure 1b represents the melting thermograms obtained from subsequent heating
(10 ◦C/min) of the neat PE materials studied in this work. It can be seen from this figure
that the melting behaviors of the PE materials were very different. The HDPE samples
displayed a significantly narrower melting peak with the highest melting temperature
(135.5 ◦C for HDPE-1 and 130.7 ◦C for HDPE-2) compared to the other samples, indicating
the thicker and more uniform lamellar stacks formed in these HDPE samples. The LLDPE
demonstrated a broader melting peak with the presence of a melting shoulder than other
samples, because of a broad distribution of short-chain branching. The temperatures at
which extreme values occurred in the melting curve are listed in Table 2 as the melting
point (Tm). The melting curve of LLDPE-2 made with the Ziegler–Natta catalyst was
even broader than that of LLDPE-1 made with the metallocene catalyst. Three extreme
temperatures appeared in the melting curve of LLDPE-2, as listed in Table 2. The melting
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point of the LDPE resin was the lowest (107.5 ◦C). The calculated crystallinity is listed in
Table 2 for all the materials. The two HDPE resins showed much higher crystallinity than
the LLDPE resins and the LDPE resin owing to much lower branching content (Table 1).

3.2. Correlation of PE Sequence Distribution from CRYSTAF and Lamellar Packing from SAXS for
HDPE, LLDPE, and LDPE

It is well known that CRYSTAF (crystallization analysis fraction) and TREF (tempera-
ture rising elution fractionation) are separation techniques based on the crystalline ability
of polyethylene. Both techniques can fractionate PE resins based on different crystalline
abilities by cooling the polymer solution slowly, though temperature rising elution frac-
tionation requires a subsequent heating process (elution step) to obtain the information
on polymer composition [4]. In this work, the distribution of the PE sequence was first
analyzed by CRYSTAF for each resin used. As shown in Figure 2, both the neat HDPE resins
had the strongest crystallizability and crystallized at a relatively high temperature range
under identical experiment conditions. The resin HDPE-1 crystallized even more strongly
because of a narrower composition distribution and less branching than HDPE-2 (Table 1).
Compared with the HDPE resins, the two LLDPE resins crystallized at a lower temperature
owing to much higher branching content (Figure 2). In fact, the crystalline ability of LLDPE
could also be very different, as shown in Figure 2, where the LLDPE-1 resin made with the
metallocene catalyst showed a narrow crystalline peak while the LLDPE-2 exhibited a very
broad crystalline peak. In fact, the LLDPE-2 had a bi-model composition that showed a
crystalline peak at the same high temperature as the HDPE-2 and a broad crystalline peak
at a low temperature, covering the crystallization temperature range of both the LDPE
and LLDPE-1, as shown in Figure 2. The neat LDPE studied in this work had the weakest
crystalline ability and crystallized at the lowest temperature because of long-chain and
short-chain branching.
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Figure 2. CRYSTAF profiles of the neat HDPE, LLDPE, and LDPE.

It is seen in Figures 1 and 2 that a stronger crystalline ability represented by the peak at
the higher temperature from CRYSTAF corresponded to a higher melting point for the bulk
crystallization observed by DSC. This difference was evident between HDPE-1 and LDPE. A
broader distribution in crystalline ability seen from CRYSTAF led to a broader melting peak
for the bulk crystallization from DSC, such as LLDPE-2 in Figures 1 and 2. However, the
crystalline ability distribution from CRYSTAF did not always have a good correlation with
DSC melting for the bulk crystallization, such as a well-defined peak was observed from
CRYSTAF for both LLDPE-1 and the LDPE, but a broad melting tail at low temperature
range was observed for both materials. In the present work, the correlation between
crystalline ability analysis from CRYSTAF and lamellar packing from bulk crystallization
was also investigated.

The lamella structures of various types of PE were studied by small-angle X-ray
scattering (SAXS). The linear and Lorentz-corrected SAXS profiles of different PEs are
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shown in Figure 3. The scattering peaks of the two HDPE resins were much narrower, and
the scattering peaks of the two LLDPE resins and the LDPE resin were much broader. The
broader SAXS peaks of the LLDPE resins were due to broader composition distributions,
while the broader SAXS peak of the LDPE resin was due to the long-chain and short-chain
branching of the PE molecules. The peak position (qmax) is related to the long spacing (L)
corresponding to the average distance between neighboring crystalline lamellae via the
Bragg equation [70,71].

L =
2π

qmax
, (1)
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As seen in Figure 3, the qmax value of the two HDPE resins was the smallest, while that
of LDPE was the largest. It was suggested that the two HDPE resins had the largest long
spacing, while LDPE had the smallest long spacing. The Lorentz-corrected SAXS profiles
of the two HDPE resins exhibited a discernible shoulder peak, which may be attributed to
the second-order scattering of the lamellae [43]. At the same time, it was found that the
SAXS peak of the HDPE-1 was more well-defined and narrower than the HDPE-2.

The respective average thickness of the crystalline and non-crystalline regions can be
calculated from the one-dimension correlation function K (z) as follows [46,57,70].

K(z) = (1/K(0))
∫ ∞

0
q2 I(q) cos(qz)dq, (2)

where z is the correlation distance along the direction from which the electron density
distribution is measured. The average long spacing (L), the average crystalline phase
thickness (Lc) and the average non-crystalline phase thickness (La) can be calculated from
the correction function. The correlation functions of different types of PE are shown in
Figure 4, and the obtained structural parameters are listed in Table 3. The Lc of the HDPE
resins (20.1 nm for HDPE-1 and 16.5 nm for HDPE-2) were much higher than that for the
neat LLDPE (5.3 nm for LLDPE-1 and 5.7 nm for LLDPE-2) and LDPE (4.9 nm), as the linear
PE molecules in HDPE formed a thicker lamella than the branched ones in LLDPE and
LDPE, resulting in a significantly higher melting temperature.
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Table 3. Data of the long period (L), crystalline phase thickness (Lc), and amorphous phase thickness
(La) obtained from the one-dimension correlation function.

Sample L (nm) Lc (nm) La (nm)

HDPE-1 27.5 20.1 7.4
HDPE-2 23.2 16.5 6.7
LLDPE-1 14.6 5.3 9.3
LLDPE-2 17.1 5.7 11.4

LDPE 13.2 4.9 8.3

In fact, Figures 1 and 4 exhibit a strong correlation between the CRYSTAF profiles of
different polyethylenes, which represent the distribution of their macro-molecular crys-
talline ability, and their corresponding correlation function profiles that indicate the lamellar
packing order in these samples. As shown in Figure 1, HDPE-1 exhibited a narrower dis-
tribution of crystalline ability than HDPE-2; a better lamellar packing structure (a better
defined peak for correlation function), a larger long period, and thicker crystalline lamellae
were observed for HDPE-1 in Figure 4. Similarly, the linear PE sequence in LLDPE-1 had a
much narrower distribution than LLDPE-2 based on the CRYSTAF study (Figure 1); thus,
a better correlation peak of lamellar packing was observed in LLDPE-1 than LLDPE-2
(Figure 4). LDPE had a narrower distribution in the linear PE sequence compared to the
two LLDPEs, as observed from crystalline ability data obtained by CRYSTAF (Figure 1).
Hence, the LDPE also exhibited a more ordered lamellar packing structure with a better de-
fined correlation peak compared to the LLDPEs (Figure 4). That is, a narrower distribution
of linear PE sequence was observed from CRYSTAF, thus a more ordered lamellar packing
can be formed in the PE.

3.3. Crystallization of Different PE Component in a Mixture of Different Types of PE and Its
Lamellar Packing

According to a report [4], co-crystallization between different types of PE is almost
non-existent during CRYSTAF analysis of dilute PE solutions. However, the bulk crystal-
lization of polyethylene is different; co-crystallization can occur among different types of
polyethene [40–42]. In the present work, three different binary blends made with HDPE-2,
LLDPE-2, and LDPE were studied. The DSC data in Table 2 indicated that the difference
in the crystalline ability between HDPE-2 and the LDPE (∆Tc = 22.2 ◦C) in the HDPE-
2/LDPE blend was much larger than the two components in the LLDPE-2/LDPE blend
(∆Tc = 13.9 ◦C) and in the HDPE-2/LLDPE-2 blend (∆Tc = 8.3 ◦C), as shown in Scheme 1.
The three blends were studied by CRYSTAF, DSC, and SAXS techniques to investigate how
the bulk crystallization and lamellar packing were associated with the overall PE sequence
distribution observed by CRYSTAF.
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Scheme 1. Illustration of the difference in crystallization temperature between the two PE components
in the three different PE blends.

In the following discussion of the CRYSTAF and DSC results of all three PE blends,
hypothesized totally immiscible reference blends of the neat components were introduced
for comparison. The curves of the reference blends were calculated by taking the average
of the profiles of the neat components, as the components in these reference blends were
assumed to have no interaction at all.

3.3.1. Crystallization of PE with Different Composition and Crystal Packing Structure in
the HDPE-2/LDPE 50/50 Blend

The HDPE-2/LDPE 50/50 blend was first studied by CRYSTAF, as illustrated in
Figure 5a, alongside CRYSTAF profiles of HDPE-2 and LDPE components. It is evident
from Figure 5a that the CRYSTAF curve of the 50/50 HDPE-2/LDPE blend is almost
identical to the calculated reference blend curve, suggesting that crystallization of the
crystallizable PE sequence in such a dilute solution occurred independently based on its
crystalline ability, and no co-crystallization could occur.
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Figure 5. CRYSTAF profiles of the neat HDPE-2, the neat LDPE, and the HDPE-2/LDPE 50/50
blend (a), DSC cooling curve (b) and second heating curve (c) of the HDPE-2/LDPE 50/50 blend
compared with neat component curves (dotted line) and calculated reference blend curves (dashed
line). “A”–“G” in the figures indicates the area between the HDPE-2/LDPE 50/50 blend curve (solid
line) and the reference blend curve (dashed line) at the corresponding locations.
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However, both the DSC cooling and heating thermograms for the bulk crystallization
of the HDPE-2/LDPE blend were quite different from the calculated reference curve based
on the individual components (Figure 5b,c). Compared with the calculated reference blend
curve, the crystallization temperature of HDPE-2 in real HDPE-2/LDPE 50/50 blends was
almost the same as the reference blend and neat HDPE-2, indicating that the presence of
LDPE in the blend did not affect the crystallization kinetics of HDPE-2. However, the heat
of the crystallization peak of HDPE-2 was noticeably greater than that of the reference blend
(depicted by region “A” in Figure 5b). It is suggested that more PE molecules—probably
LDPE with low branching content—crystallized at this temperature. These LDPE molecules
can possibly co-crystallize with HDPE-2 or just crystallize at a higher temperature with the
nucleation effect of HDPE-2. Additionally, it was also found that the melting temperature
of HDPE-2 in the blend was 2.6 ◦C lower than that of neat HDPE-2 and the reference
blend (Figure 5c and Table 4). This finding suggested that co-crystallization occurred
between the HDPE-2 and LDPE components in the actual HDPE-2/LDPE 50/50 blend.
Otherwise, the melting temperature of HDPE-2 in the blend would not change if the LDPE
only crystallized with the nucleation effect of HDPE-2 without co-crystallization.

Table 4. DSC data of the HDPE-2/LDPE 50/50 blend compared with the neat components.

Sample Higher Tc/Lower Tc
(◦C)

Tm
(◦C)

Crystallinity
(%)

HDPE-2 115.5/79.8 130.7 72
LDPE 93.3/57.8 107.5 42

HDPE-2/LDPE 50/50 blend 115.2/96.9/61.6 128.1/108.4 58

At the same time, a significant portion of LDPE in the actual blend was observed to
crystallize at higher temperatures (region “B” to “C” in Figure 5b) than in the reference
blend. It indicated that the crystallization of HDPE-2 had a nucleation effect on the
crystallization of the LDPE with medium branching content. Accordingly, in the melting
curve of the blend (Figure 5c), a significant portion of the LDPE crystals melted at a higher
temperature (region “E” to “F”). It can be easily understood that the LDPE crystals formed
at a higher temperature were more perfect, resulting a higher melting temperature.

In the low temperature range of the DSC cooling curve of the HDPE-2/LDPE blend,
which was from 55 ◦C to 75 ◦C (region “D” in Figure 5b), there was a non-ignorable increase
in the real blend compared with the reference blend. It can be easily understood that, apart
from those portions of LDPE with low and medium branching content crystallizing at
a higher temperature with the co-crystallization and nucleation effect of HDPE-2, LDPE
molecules with high branching content were left and could only crystallize at a low tem-
perature. There was also a slight increase in the low melting temperature range (region “G”
in Figure 5c) in the DSC melting curve of the real blend compared with the reference blend
because of the melting of the crystals formed at a low temperature.

Based on the discussion above, the crystallization process of LDPE in its blend with
HDPE-2 was fractionated by the behavior of its components and spread over different
temperatures. Those LDPE molecules with low branching content could co-crystallize
with HDPE-2 at the crystallization temperature of HDPE-2, while the LDPE molecules
with medium branching content could crystallize at a higher temperature than neat LDPE
with the nucleation effect of HDPE-2, and those LDPE molecules with high branching
content were excluded and could only crystallize at a low temperature. In other words, the
co-crystallization and the nucleation effect of HDPE-2 in the HDPE-2/LDPE 50/50 blend
had a fractionation effect on the crystallization of LDPE. The existence of co-crystallization,
the nucleation effect, and the fractionation effect of HDPE-2 on the crystallization of
LDPE in the blend indirectly proved some extent of miscibility of the blend, as in the
reference totally immiscible blend components will not influence each other. The crystalline
structure of the HDPE-2/LDPE blend was further studied by SAXS and compared with
the two neat components. The linear and Lorentz-corrected SAXS profiles are shown in
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Figure 6. The linear and the Lorentz-corrected SAXS profiles of the blend were similar
to that of HDPE-2, rather than the average of the two neat components. This suggested
that the HDPE-2 dominated the crystallization process in the blend. However, the peak
of the blend in the linear or Lorentz-corrected SAXS profiles was obviously less well-
defined than the neat HDPE-2. The one-dimension function of the blend is shown in
Figure 7, and the average long spacing, the average thicknesses of the crystalline and non-
crystalline phase were calculated and are listed in Table 5. The peak in the one-dimension
function of the blend appeared much worse than in the neat HDPE-2 because of the broader
composition distribution in the blend than the neat HDPE-2. The difference between the
crystalline abilities of the neat HDPE-2 and the neat LDPE was large, as the crystallization
temperature of the neat LDPE was 93.3 ◦C, which was 22.2 ◦C lower than that of the neat
HDPE-2 (115.5 ◦C) (Table 2). Because of its branching, the neat LDPE formed very thin
crystal lamellae (4.9 nm), while HDPE-2 formed much thicker lamellae (16.5 nm) (Table 5).
Therefore, the lamellar stacks formed by the co-crystallization of HDPE-2 with LDPE
would not be as regular or well-organized in terms of uniformity of the crystalline lamellar
thickness. That was likely the reason for the absence of a well-defined SAXS peak for the
HDPE-2/LDPE blend. The average Lc of the blend (15.9 nm) was slightly smaller than that
of the neat HDPE-2 (16.5 nm), which was consistent with the lower melting temperature of
the blend.
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Table 5. Data of the long period (L), crystalline phase thickness (Lc), and amorphous phase thickness
(La) obtained from the one-dimension correlation function.

Sample L (nm) Lc (nm) La (nm)

HDPE-2 23.2 16.5 6.7
LDPE 13.2 4.9 8.3

HDPE-2/LDPE 50/50 blend 21.6 15.9 5.7

3.3.2. Crystallization of PE with Different Composition and Crystal Packing Structure in
the LLDPE-2/LDPE 50/50 Blend

LLDPE/LDPE blends are very important for industrial applications since most polyethy-
lene films are made of LLDPE/LDPE blends. In this work, the interaction between com-
ponents in the crystallization of the LLDPE-2/LDPE blend was also first investigated by
CRYSTAF (Figure 8a). The CRYSTAF curve of the 50/50 LLDPE-2/LDPE blend was almost
identical to the calculated reference blend curve, again suggesting that crystallization in
the dilute solution for each molecule was almost isolated.
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Figure 8. CRYSTAF profiles of LLDPE-2, LDPE, and LLDPE-2/LDPE 50/50 blend (a), DSC cool-
ing curves (b) and subsequent heating curves (c) of the LLDPE-2/LDPE 50/50 blend compared
with calculated reference blend curves. “A”–“G” in the figures indicates the area between the
LLDPE-2/LDPE 50/50 blend curve (solid line) and the reference blend curve (dashed line) at the
corresponding locations.

However, both the DSC cooling and heating thermograms for the bulk crystallization
of the LLDPE-2/LDPE blend were quite different from the calculated reference blend
curves based the individual components (Figure 8b,c). The DSC data are listed in Table 6.
The crystallization temperature of LLDPE-2 in the blend was almost the same as neat
LLDPE-2 and the reference blend, indicating that LDPE did not significantly affect the
crystallization kinetics of LLDPE-2. This finding was similar to that of the HDPE-2/LDPE
blend. As the difference in Tc between the components was large enough, the component
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with weaker crystallizability could not significantly influence the crystallization kinetics of
the component with higher crystallizability. The area of the crystallization peak of LLDPE-2
(region “A” in Figure 8b) was larger than that of the reference blend, which was similar to
what occurred in the HDPE-2/LDPE 50/50 blend above. This result suggested that more
PE molecules, probably low branching LDPE, crystallized at this temperature because of
the nucleation effect of LLDPE-2 or co-crystallization with LLDPE-2. In the melting curves
(Figure 8c), the melting temperature of LLDPE-2 in the blend was 0.8 ◦C lower than that in
neat LLDPE-2 and the reference blend, indicating that co-crystallization between LLDPE-2
and LDPE components still occurred to some extent.

Table 6. DSC data of the LLDPE-2/LDPE 50/50 blend compared with the neat components.

Sample Higher Tc/Lower Tc
(◦C)

Tm
(◦C)

Crystallinity
(%)

LLDPE-2 107.2/61.7 123.9/122.4/109.4 45
LDPE 93.3/57.8 107.5 42

LLDPE-2/LDPE 50/50 blend 106.9/95.2/59.5 123.1/120.9/106.4 44

Compared with the calculated reference blend curve, a remarkable portion of the
LDPE in the actual blend crystallized at a higher temperature together with the LLDPE-2
component (from region “B” to “C” in Figure 8b). This can be attributed to the nucleation
effect of LLDPE-2 on LDPE with medium branching content, similar to the effect of HDPE-2
on LDPE in the HDPE-2/LDPE blends discussed earlier. Correspondingly, in the melting
curves (Figure 8c), a significant part of LDPE melted at a higher temperature than the
reference blend (from region “E” to “F”).

In the cooling curve of the blend, there was also slightly enhanced crystallization at
a low temperature range of 60~88 ◦C (region “D” in Figure 8b). It is easy to understand
that LDPE with low and medium branching content crystallized at higher temperatures
with the nucleation effect of LLDPE-2 crystals or co-crystallization, while LDPE with high
branching content was not crystallized at a low temperature. There was also an increase
in the area of the melting curves at a low temperature range of 82~103 ◦C (region “G” in
Figure 8c) compared with the reference blend, referring to the melting of the imperfect
crystals forming at low temperature.

In a word, the LDPE component in the LLDPE-2/LDPE blend showed fractionation-
based crystallization with the co-crystallization and nucleation effect of LLDPE-2. LDPE
molecules with low branching content can co-crystallize with LLDPE-2 at the crystallization
temperature of LLDPE-2. LDPE with medium branching content can crystallize at a higher
temperature than neat LDPE with the nucleation of LLDPE-2, and the LDPE molecules
with high branching content can crystallize at a lower temperature. The influence between
the components in the LLDPE-2/LDPE 50/50 blend again demonstrated the miscibility
in the blend. The interaction between the components in the LLDPE-2/LDPE blend was
similar to that of HDPE-2/LDPE, which consisted of co-crystallization, nucleation, and
fractionation. The crystalline structure of the LLDPE-2/LDPE 50/50 blend was studied
by SAXS. It was found in both the linear and Lorentz-corrected scattering intensity curves
in Figure 9 that the LLDPE-2/LDPE blend showed a good scattering peak, indicating
that well-packed lamellar stacks formed, which were also confirmed from the correlation
function analysis in Figure 10 by the presence of a reasonably defined peak corresponding
to the long spacing. Interestingly, the linear and the Lorentz-corrected SAXS profiles of the
blend were approximately the same as the profiles of the neat LLDPE-2 and the neat LDPE
samples (Figure 9). In addition, the peak of the linear or the Lorentz-corrected SAXS profiles
was well-defined for the blend. The extent of co-crystallization between the LLDPE-2 and
LDPE component was not expected to be large enough to form a regular co-lamella. If the
lamellae of LLDPE-2 and LDPE were to mix together thoroughly, the peak of the SAXS
profiles would not be well-defined. Therefore, it is likely that several periods of LLDPE-2
lamella and several periods of LDPE lamella components coexisted in the LLDPE-2/LDPE
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blend. The long spacing (L) and the average thickness of the crystalline phase (Lc) were
calculated by the one-dimension correlation functions in Figure 10 and are listed in Table 7.
The L and the Lc of the LLDPE-2/LDPE blend were exactly the average of those of the
two neat components.
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Table 7. Data of the long spacing (L), crystalline phase thickness (Lc), and amorphous phase thickness
(La) obtained from the one-dimension correlation function.

Sample L (nm) Lc (nm) La (nm)

LLDPE-2 17.1 5.7 11.4
LDPE 13.2 4.9 8.3

LLDPE-2/LDPE 50/50 blend 15.1 5.3 9.8

3.3.3. Crystallization of PE with Different Composition and Crystal Packing Structure in
the HDPE-2/LLDPE-2 50/50 Blend

In this section of the study, we focused on the HDPE-2/LLDPE-2 50/50 blend. The
difference in the crystallizability between components of the HDPE-2/LLDPE-2 blend
(8.3 ◦C) was much smaller than the HDPE-2/LDPE blend (22.2 ◦C). The crystallization
behaviors and crystalline structures and the interaction between components were expected
to be different in the HDPE-2/LLDPE-2 blend compared with the HDPE-2/LDPE blend.

The CRYSTAF curves of the neat HDPE-2, LLDPE-2, and the HDPE-2/LLDPE-2 50/50
blends are given in Figure 11a. The CRYSTAF curve of the 50/50 HDPE-2/LLDPE-2 blend
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was almost coincident with the calculated reference blend curve, again suggesting that
crystallization of the components in the solution was almost isolated.
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with calculated reference blend curves. “A”/“B”/“D” in the figures indicates the area between the
HDPE-2/LLDPE-2 50/50 blend curve (solid line) and the reference blend curve (dashed line) at the
corresponding locations.

However, both the DSC cooling and heating thermograms for the bulk crystalliza-
tion of the HDPE-2/LLDPE-2 blend were quite different from the calculated reference
blend curves (Figure 11b,c). As there were differences between both the crystallization
temperatures and the melting temperatures of the two components (dotted lines), the
calculated cooling and heating curves of the reference blend had two peaks, as shown
with dashed lines in Figure 11b. However, the cooling curve and the melting curve of
the real HDPE-2/LLDPE-2 50/50 blend showed only one main peak. It is noticed from
Figure 11b,c and Table 8 that the blend’s crystallization temperature was 1.4 ◦C lower than
that of the neat HDPE-2, and its melting point was 3.5 ◦C lower than that of neat HDPE-2.
Additionally, the area of the main melting peak in the blend was notably larger than the
HDPE-2 part in the reference blend. The lowered melting temperature and significantly
higher crystallinity of HDPE-2 in the blend indicated co-crystallization of HDPE-2 and
LLDPE-2 components because of the relatively smaller difference in crystalline ability of the
LLDPE-2 with the HDPE-2. The melting temperature of the blend was almost the average
of the melting temperature of neat HDPE-2 and neat LLDPE-2, indicating a large extent
of co-crystallization between the HDPE-2 and LLDPE-2 components. As compared to the
calculated reference blend curve, a significant portion of LLDPE-2 crystallized at higher
temperature (from region “B” to region “A” in Figure 11b). This was mainly due to the
co-crystallization effect between HDPE-2 and LLDPE-2.
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Table 8. DSC data of the HDPE-2/LLDPE-2 50/50 blend compared with the neat components.

Sample Higher Tc/Lower Tc
(◦C)

Tm
(◦C)

Crystallinity
(%)

HDPE-2 115.5/79.8 130.7 72
LLDPE-2 107.2/61.7 123.9/122.4/109.4 45

HDPE-2/LLDPE-2 50/50 114.1/67.0 127.2 56

In study of the 50/50/HDPE-2/LLDPE-2 blend, it was observed that the crystalline
peak around 65 ◦C during cooling was noticeably larger than that of the reference blend
(region “D” in Figure 11b). This can be interpreted as follows: while most of the LLDPE-2
could co-crystallize with HDPE-2, the small fraction of highly branched LLDPE-2 with
low crystalline ability could not participate in the co-crystallization process at higher
temperatures with HDPE-2. During further cooling to low temperature range, there
was much less LLDPE-2 crystallization going on for this small fraction of LLDPE-2 to
participate. As a result, this fraction crystallized at a much lower temperature near 65 ◦C.
In other words, co-crystallization with HDPE-2 caused fractionation of the crystallization
of LLDPE-2. The crystallization structure of the HDPE-2/LLDPE-2 blend was studied by
SAXS in comparison with the two neat components. The linear and Lorentz-corrected
SAXS profiles of the blend were similar to those of HDPE-2, respectively, as shown in
Figure 12, rather than an average of the two neat components. This suggested that the
crystalline structure of the HDPE-2/LLDPE-2 blend was similar to that of HDPE-1. It can
be understood from the crystallization study by DSC that HDPE-2 in the blend crystallized
first in the blend, and most of the LLDPE-2 in the blend co-crystallized with HDPE-2 at
a temperature near the crystallization temperature of the neat HDPE-2 (Figure 11a). In
other words, the co-crystallization made the blend more like HDPE-2. The normalized
one-dimension function of the HDPE-2/LLDPE-2 blend shown in Figure 13 was also similar
to neat HDPE-2. The blend had a slightly smaller thickness of the crystalline phase (Lc)
and long spacing (L) than the neat HDPE-2, as shown in Table 9. This was consistent with
the fact that the melting temperature of the blend (127.2 ◦C) was a little lower than that
of the neat HDPE-2 (130.7 ◦C) owing to co-crystallization between HDPE-2 and LLDPE-2.
However, the regularity of the lamella in the blend was not as good as in the neat HDPE-2,
as evidenced by a less well-defined scattering peak in the linear SAXS profile, a broader
scattering peak in the Lorentz-corrected SAXS profile, and a less well-defined peak in the
one-dimensional correlation function. The results can be explained by the co-crystallization
effect and a broader composition distribution of the blend than the neat HDPE-2, as shown
in Figure 11a.
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Table 9. Data of the long period (L), crystalline phase thickness (Lc), and amorphous phase thickness
(La) obtained from the one-dimension correlation function.

Sample L (nm) Lc (nm) La (nm)

HDPE-2 23.2 16.5 6.7
LLDPE-2 17.1 5.7 11.4

HDPE-2/LLDPE-2 50/50 21.6 15.4 6.2

In summary, it can be seen from CRYSTAF in Figure 8a that the blend was a typical
bimodal system with HDPE-2 and the fraction of high crystalline ability from the LLDPE-2
as one component, and a broad weaker crystalline ability of LLDPE-2 as another component.
DSC and X-ray studies revealed that the HDPE-2 dominated the crystallization process
and the structure formation with the participation of co-crystallization from the higher
crystalline ability portion of the LLDPE-2. The weaker crystalline ability portion of the
LLDPE-2 may need to crystallize within the main structure formed at a lower temperature.

Compared to the HDPE-2/LDPE blend, the difference in crystalline abilities between
the components was much less in the HDPE-2/LLDPE-2 blend. The crystallization tem-
perature of the neat LLDPE-2 was 107.2 ◦C, which was 8.3 ◦C lower than that of the neat
HDPE-2. As a result, the HDPE-2/LLDPE-2 blend exhibited a more well-defined lamellar
structure than the HDPE-2/LDPE blend. Considering both blends as a PE mixture, the
composition of the HDPE-2/LDPE was much broader and bimodal (see Figure 5a), while
the composition of the HDPE-2/LLDPE-2 blend was narrower (see Figure 11a). It can also
be easily understood that the lamella that formed in the HDPE-2/LDPE blend was much
less organized that that in the HDPE-2/LLDPE-2 blend.

As discussed in Sections 3.1–3.3 above, all three blends showed a certain degree of
miscibility between the components. Interactions containing co-crystallization, nucleation,
and fractionation occurred during crystallization processes, as evidenced by the DSC
results. In the HDPE-2/LLDPE-2 50/50 blend, the difference in the crystallization tem-
perature (Tc) between the two components was the smallest among the three blends, at
8.3 ◦C. The miscibility between components in the HDPE-2/LLDPE-2 50/50 blend was the
strongest, with co-crystallization mainly occurring in the blend and almost no separate
stacks of LLDPE-2. In the HDPE-2/LDPE 50/50 blend, the difference in Tc between the
two components (22.2 ◦C) was much greater than the HDPE-2/LLDPE-2 50/50 blend, and
some extent of co-crystallization still occurred in the blend. The crystallization of HDPE-2
also had a nucleation and fractionation effect on the crystallization of LDPE. The lamella
packing of the HDPE-2/LDPE blend was more similar to that of neat HDPE-2 owing to
HDPE-2’s stronger crystallizability compared to LDPE. In the LLDPE-2/LDPE blend, the
difference in Tc (13.9 ◦C) was between that of the HDPE-2/LDPE 50/50 blend (22.2 ◦C)
and the HDPE-2/LLDPE-2 blend (8.3 ◦C), as shown in Scheme 1. Co-crystallization, nucle-
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ation, and fractionation all occurred in the LLDPE-2/LDPE blend, as in the HDPE-2/LDPE
blend. However, the crystallization structure of the LLDPE-2/LDPE blend was different
from that of the HDPE-2/LDPE blend. In the HDPE-2/LDPE blend, the lamellar packing
was more similar to that of the HDPE-2 component with its much stronger crystallizabil-
ity. In the LLDPE-2/LDPE blend, however, the difference in crystallizability was not as
large, and the lamellar packing was an average of the two neat components. Addition-
ally, the extent of co-crystallization in the LLDPE-2/LDPE blend was less than that in the
HDPE-2/LLDPE-2 blend.

4. Conclusions

A narrower distribution seen from CRYSTAF led to a more uniform thickness of
crystal lamellae, resulting in a more ordered lamellar packing. It is understandable that
a stronger crystalline ability represented the higher temperature peak from CRYSTAF
corresponding to a higher melting point for the bulk crystallization from DSC, and a
broader distribution in crystalline ability seen from CRYSTAF led to a broader melting peak
for the bulk crystallization from DSC, such as in LLDPE-2 in Figures 1 and 2. However, the
crystalline ability distribution from CRYSTAF did not always have a good correlation with
non-isothermal crystallization, which can be easily changed by the nucleation behavior of
the PE resins.

The composition distribution of the neat PE and the binary blend were studied by
CRYSTAF, and crystallization of the components in the dilute solution of blends for each
molecule was almost isolated. Systematic and semi-quantitative analyses of the crystal-
lization behaviors of three binary PE blends were carried out by DSC with hypothesized
immiscible blends introduced for comparison. The PE molecules in the PE blends succes-
sively crystallized according to different crystalline abilities when the blends were cooled.
Interactions including co-crystallization, nucleation, and fractionation between components
in the blends were investigated by the difference in the crystallization behaviors of the
blends compared with the reference immiscible blends, the extent of which was related to
the difference in the crystallizability between components. The mutual influence during
crystallization also indicated the miscibility between the components. The lamellar packing
of the blends was related to the crystallization behaviors, and the crystalline structure
strongly depended on the compositions. In the blend of HDPE with LLDPE or LDPE,
the lamellar packing was more like that of the HDPE component with a much stronger
crystallizability. In the LLDPE/LDPE blend, the lamellar packing was almost the average
of the two neat components.

With the progress in catalyst technology and polymerization processes, the develop-
ment of new high performance LLDPEs with multi-peak compositions is a trend. The
results presented in this work aid in our understanding of the structure–property rela-
tionship of these resins. Furthermore, research on the interactions among components
during crystallization and the final crystalline structures in these PE mixtures will remain
an important and fundamental issue.
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HDPE high-density polyethylene
LLDPE linear low-density polyethylene
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