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Abstract: Corn starch was plasticized by glycerol suspension in a twin-screw extruder, in which
the glycerol suspension was the pre-dispersion mixture of glycerol with nano-SiO2. Polylactide
(PLA)/thermoplastic starch/SiO2 composites were obtained through melt-blending of PLA with
thermoplastic starch/SiO2 in a twin-screw extruder. The nonisothermal crystallization behavior
of PLA in the composites was investigated by differential scanning calorimetry. An interface of
PLA with thermoplastic starch was proven to exist in the composites, and its interfacial bonding
characteristics were analyzed. The interfacial binding energy stemming from PLA with thermoplastic
starch exerts a significant influence on the segmental mobility of PLA at the interface. The segmental
mobility of PLA is gradually improved by increasing interfacial binding energy, and consequently,
the relative crystallinity on the interface exhibits progressive promotion. The Jeziorny model could
well describe the primary crystallization of PLA in the composites. The extracted Avrami exponents
based on the Jeziorny model indicate that the primary crystallization of PLA follows heterogeneous
nucleation and three-dimensional growth. This study has revealed the intrinsic effect of the interfacial
segmental mobility on the nonisothermal crystallization behavior of PLA in composites, which is of
technological significance for its blow molding.

Keywords: polylactide; composites; interfacial binding energy; nonisothermal crystallization kinetics

1. Introduction

PLA is an eco-friendly material due to its renewability and biodegradability. Dispos-
able film prepared by PLA is suitable as a sustainable alternative to petrochemical-based
film, which is beneficial for the alleviation of the consumption of oil, as well as the erad-
ication of the environmental pollution induced by the petrochemical-based film [1–5].
However, the production costs of disposable PLA film are much higher than those of
polyethylene and polypropylene, which limits its extensive application. Except for the
cost of PLA, the low melt strength and poor viscoelastic behavior of PLA due to its high
critical entanglement molecular weight also seriously limit its processing using extrusion
blow [6–10].

To produce PLA-based composites with a lower cost and high melt strength, PLA/starch/
SiO2 composites were prepared in our previous work [11,12]. Starch is commonly considered
as an available bio-based material due to its lower cost and its biodegradability and renewabil-
ity. The incorporation of PLA with starch could distinctly reduce the cost of disposable PLA
film [11–15]. The microstructure of a sandbag of nano-SiO2 encapsulated by thermoplastic
starch and the interfacial characteristics of PLA with thermoplastic starch could account for its
enhanced rheological properties and tensile strength [11]. However, it still remains a specific
challenge to evaluate the nonisothermal crystallization behavior of PLA/starch/SiO2 com-
posites. Generally, the processing of polymers is commonly carried out under nonisothermal
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conditions. For crystalline polymers, the nonisothermal crystallization behavior of polymers
has a crucial effect on their tensile strength and microstructures [16–20]. Fine crystalline grains
formed during melt blow molding could act as chain junctions to increase their melt strength,
and consequently, their enhanced melt strength could maintain the stability of film bubble. In
addition, the tensile strength could be improved by crystalline grains of appropriate size. Thus,
it is necessary to obtain a fundamental understanding of how the interfacial characteristics of
PLA/thermoplastic starch dominate the crystallization behavior.

The crystallization kinetics of polymers is a widely accepted means to evaluate their
crystallization behavior. Many mathematical models are proposed to clarify the macro-
scopic evolution of crystallinity for polymers during their crystallization process [21–25].
One of the most frequently used models to describe crystallization kinetics is the Avrami
equation with the assumptions of nucleation and geometric growth occurring during the
crystallization process of the polymers [26–29]. For the analysis of nonisothermal crys-
tallization under linear heating conditions, Jeziorny developed the conventional Avrami
equation by adjusting the linear Avrami equation to linear heating conditions by introduc-
ing a constant heating rate into the rate constant [30–32]. The Jeziorny model is a widely
used method to study nonisothermal crystallization and is well suitable for the analysis of
the corresponding primary crystallization [17,25,33–36].

In this study, the nonisothermal crystallization behavior of PLA in the composites was
investigated by differential scanning calorimetry (DSC). The interfacial bonding energy
of PLA with thermoplastic starch was calculated by Materials Studio. The effect of the
interface of PLA with thermoplastic starch on the nonisothermal crystallization behavior of
PLA in the composites is discussed.

2. Materials and Methods
2.1. Materials

Nano-SiO2 with a specific surface area of 200 ± 25 m2·g−1 was purchased from
Shanghai Yizhu Industrial Co., Ltd. (Shanghai, China). PLA with
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of 8.0 × 104 g/mol
and polydispersity of 2.1 was purchased from Shanghai Macklin Biochemical Co., Ltd.
(Shanghai, China). Corn starch of reagent grade was purchased from Shanghai Aladdin
Bio-Chem Technology Co., Ltd. (Shanghai, China). Nano-SiO2, PLA, and corn starch
were dried under a vacuum at 50 ◦C for 12 h before use. Glycerol of analytical grade was
purchased from Tianjin Fuyu Chemical Co., Ltd. (Tianjin, China) and used as received.

2.2. Preparation of Thermoplastic Starch/SiO2

The process was conducted as follows: 40 parts of glycerol and 2 parts of nano-SiO2
were first mixed and sonicated for 15 min and 100 parts of corn starch were mixed into the
suspension of nano-SiO2 with glycerol and strongly stirred for 1 h at a speed of 2000 rpm.
The obtained mixtures were kept for 3 h at room temperature, and subsequently, the
thermoplastic starch/SiO2 composites were prepared through melt plasticization using a
twin-screw extruder (czs-shj-20, Nanjing Yongjie Chemical Machinery Co., Ltd. (Nanjing,
China)). The temperature profile from zone 1 to zone 6 was as follows: 115 ◦C, 120 ◦C,
130 ◦C, 125 ◦C, 120 ◦C, and 120 ◦C in the extruder barrel, and 120 ◦C in the extruder head
die. The screw speed was 150 rpm. The obtained thermoplastic starch/SiO2 composites
were granules.

The same procedure was performed except that the mass fraction of nano-SiO2 was 4,
6, and 8 parts, respectively.

2.3. Preparation of PLA/Thermoplastic Starch/SiO2 Composites

One hundred parts of PLA and fifteen parts of thermoplastic starch/SiO2 were mixed
and then extruded using a twin-screw extruder. The mass fraction of nano-SiO2 in ther-
moplastic starch/SiO2 varied from 2 to 8 parts. The temperature profile from zone 1 to
zone 6 was as follows: 155 ◦C, 165 ◦C, 160 ◦C, 150 ◦C, 145 ◦C, and 140 ◦C in the extruder
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barrel, and 140 ◦C in the extruder head die. The screw speed was 150 rpm. The obtained
PLA/thermoplastic starch/SiO2 composites were granules.

The same procedure was performed except that the mass fraction of thermoplastic
starch/SiO2 was 10, 15, 20, 25, and 30 parts, respectively. Here, the mass fraction of
nano-SiO2 in thermoplastic starch/SiO2 was six parts.

2.4. Characterizations

All of the tested samples were dried under a vacuum at 50 ◦C for 12 h before the test.
All of the DSC measurements were conducted on a Perkin-Elmer DSC system under

N2 atmosphere and involved two heating processes. About 6 mg of the sample was
first heated from −50 to 200 ◦C at a heating rate of 10 ◦C·min−1 and kept at 200 ◦C for
3 min, then cooled to −50 ◦C at a cooling rate of −100 ◦C·min−1 and kept at −50 ◦C for
20 min. The second heating was from −50 to 200 ◦C at a heating rate of 10 ◦C·min−1. The
information on the thermal history obtained from the first heating process mainly involved
thermoplastic processing and was eliminated after thermostatic control at 200 ◦C. There
was no obvious exothermic peak observed during the cooling process at the cooling rate
of 100 ◦C·min−1, which suggested that the tested sample could not crystallize under this
cooling condition. The rapid cooling process allowed us to analyze the thermal behavior of
the tested sample from the amorphous state during the second heating process. The second
heating process could provide information about the behavior of the chain segment. The
nonisothermal crystallization kinetics were analyzed according to DSC curves obtained
from the second heating process.

The crystallinity of the composites was calculated according to Equation (1).

Xc =
∆H

∆H∗·wPLA
(1)

where wPLA is the mass fraction of PLA in the composites,∆H is the melting enthalpy of
the melting endotherms obtained from the DSC curves, and ∆H∗ is the melting enthalpy of
100% crystalline PLA and its value was 93 J·g−1 [17,37].

The relative crystallinity X(t) at an arbitrary time involved in the heating crystalliza-
tion process was calculated by Equation (2).

X(t) =
Qt

Qt∞
=

∫ t
t0

dH
dt

dt∫ t∞
t0

dH
dt

dt
(2)

where t0, t, and t∞ represent the onset, an arbitrary time, and the overall time when the
crystallization was finished, respectively, Qt is the crystallization enthalpy released during
an infinitesimal temperature range dT, and Qt∞ is the overall crystallization enthalpy for a
specific heating condition.

2.5. Simulation

The molecular dynamics simulation of the interface of PLA with thermoplastic starch
was conducted by Materials Studio 2020. The thermoplastic starch model and the PLA
model were established with MS visualizer. The interfacial model of PLA with thermoplas-
tic starch was constructed by an amorphous cell according to the mass fraction of PLA, AM,
and Gly. The geometric optimization and calculation of these models, as well as the results
analysis and output, were carried out by Forcite. In the molecular dynamics simulations
and the model optimization, the compass II force field was used for all force fields. The
molecular dynamics simulation of the geometrically optimized interface model was carried
out at 298 K and 1 fs of the time step in the NVT ensemble. The simulation involved two
stages of equilibrium and data collection. In the equilibrium stage, the initial velocity met
the Maxwell–Boltzmann distribution, and an Andersen thermostat was used for the control
of temperature. Subsequently, to achieve complete equilibrium, the cumulative calculation
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was 500 ps. In the data collection stage, another 500 PS was calculated on the basis of the
last frame configuration of the equilibrium stage, in which a Nose thermostat was used, and
a frame configuration was output every 5 PS. A total of 101 frame configurations (including
the frame at time 0) were collected for the data analysis.

3. Results
3.1. The Elucidation of the Interface of PLA with Thermoplastic Starch Existing in the Composites

Amorphous thermoplastic starch could be obtained through the incorporation of na-
tive starch with polyol plasticizers under a thermomechanical process, in which the hydro-
gen bonds in native starch are partially substituted by the hydrogen bonds of polyol [13–15].
In this research, to achieve the uniform dispersion of nano-SiO2 in starch, nano-SiO2 was dis-
persed in glycerol by ultrasonic dispersion. Then, the plasticization process of starch with
glycerol was conducted by melt extrusion. Subsequently, PLA/thermoplastic starch/SiO2
composites were obtained by melt extrusion of PLA with thermoplastic starch/SiO2.

To evaluate the effect of SiO2 on the segmental mobility of PLA, the mass fraction of
PLA and thermoplastic starch/SiO2 is in 100 parts and 15 parts, respectively, while the
mass fraction of SiO2 in thermoplastic starch/SiO2 varies from 2 to 8 parts. DSC curves
of these composites obtained from the second heating process are shown in Figure 1. For
thermoplastic starch available via melt extrusion, it has been reported that its crystalline
structure is destroyed and it exhibits an amorphous state [14,15]. The DSC curves in Figure 1
have no obvious heat flow signal of crystallization or melting t thermoplastic starch, which
suggests that the crystallization and melting peaks are attributed to PLA. For Tg of neat
thermoplastic starch plasticized by glycerol, its value is about 28 ◦C [13,16]. There is only
one Tg in the DSC curve, which indirectly indicates that PLA has good compatibility with
thermoplastic starch. The thermal transition temperatures mainly reflect the segmental
mobility of PLA. When the mass fraction of PLA and thermoplastic starch are the same in
the composites, the Tg, Tc, Tm1, and Tm2 of the composites do not change significantly with
the mass fraction of SiO2 in thermoplastic starch. It is inferred that SiO2 is mainly wrapped
in starch, and thus fails to form an effective interface of PLA/SiO2. SiO2 wrapped in starch
has no obvious effect on the segmental mobility of PLA.
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Figure 1. DSC curves of neat PLA and the PLA/thermoplastic starch/SiO2 composite without a
thermal history. Curve (a) is for two parts, (b) is for four parts, (c) is for six parts, and (d) is for eight
parts of SiO2 in thermoplastic starch.

Quite contrary to SiO2, an interface of PLA with thermoplastic starch could probably
be formed in the composites. The Tg, Tc, Tm1, and Tm2 of the composites sharply decreased
as compared with those of neat PLA, suggesting that thermoplastic starch might exert an
influence on the segmental mobility of PLA. When the mass fraction of PLA and thermo-
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plastic starch are the same, the composites exhibit similar thermal transition temperatures
and crystallization temperatures due to their similar interface of PLA with thermoplastic
starch. This is consistent with the rheology and mechanical properties of the composites
reported earlier. Nano-SiO2, mainly wrapped by thermoplastic starch, forms a “sand-
bag” microstructure [11]. It is dispersed in the PLA matrix, which prevents the formation
of cracks and continuous development in the matrix and thus effectively improves the
mechanical strength of the composites.

3.2. The Effect of the Interface of PLA with Thermoplastic Starch on the Thermal Transition
Temperature of the Composites

To evaluate the effect of the interface of PLA with thermoplastic starch on the crys-
tallization of PLA in the composites, the mass fraction of components of the composites
is 100 parts of PLA, and for thermoplastic starch/SiO2, it is 10, 15, 20, 25 and 30 parts,
respectively. In this part, the thermoplastic starch comprises 100 parts of starch, 40 parts of
glycerol, and 6 parts of SiO2.

The interchain free volume of PLA is decreased due to the pressure in the barrel during
the melt extrusion process. The segmental mobility of PLA needs a higher temperature,
which leads to a higher Tg for the composite with a thermal history. Thus, for the same
mass fraction of thermoplastic starch in the composite, the Tg of the composites with a
thermal history is higher than that without a thermal history, as shown in Table 1. Besides
the effect of the pressure on Tg, the hydrogen bonds between thermoplastic starch and
PLA also exert an effect on the segmental mobility of PLA. The Tg of the composite with a
thermal history increased slightly with the increasing mass fraction of thermoplastic starch
due to its increasing number of hydrogen bonds, and for the composites without a thermal
history, the Tg varied obviously. It is well accepted that interchain hydrogen bonds could
improve the Tg of the polymer [17,38].

Table 1. The thermal transition temperatures of PLA/thermoplastic starch/SiO2 composites.

Mass Fraction of
Thermoplastic Starch

Prehistoric Elimination of Thermal History

Tg/◦C Tm/◦C Tg/◦C Tm/◦C

0 64.1 - 167.3 60.4 - 165.8
10 50.6 139.2 153.7 42.9 143.7 155.6
15 50.2 139.3 152.7 46.8 144.9 155.6
20 51.6 139.5 152.8 49.4 145.1 155.7
25 52.6 140.6 152.5 51.4 145.3 155.1
30 52.5 142.0 152.1 51.7 146.1 155.5

As shown in Figure 2, the Tg of the composite is much lower than that of neat PLA
because of the plasticizing effect of thermoplastic starch on PLA. Compared with neat
PLA, the Tm of the composites decreased significantly. The main melting peak (Tm2) is
accompanied by a shoulder peak (Tm1), suggesting that thermoplastic starch could act as
the crystallization nucleator during the heating process of the composites and stimulate
PLA to crystallize on the interface of PLA with thermoplastic starch at a lower temperature.
The shoulder peak is ascribed to the contribution of the melting of the interfacial crystal,
and the main peak is ascribed to the contribution of the melting of the crystal in the PLA
matrix. Tm1 increases with the increasing mass fraction of thermoplastic starch due to the
increasing interfacial area. Unlike Tm1, Tm2 undergoes almost no change with the mass
fraction of thermoplastic starch, suggesting that the crystal in the matrix exhibits similar
crystalline perfection.
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Figure 2. DSC curves of neat PLA and the PLA/thermoplastic starch/SiO2 composite. (A) The
composites with a thermal history; (B) the composites without a thermal history. Curve (a) is for
10 parts, (b) is for 15 parts, (c) is for 20 parts, (d) is for 25 parts, and (e) is for 30 parts of thermoplastic
starch.

3.3. The Crystallizability of PLA in the Composites

The considered composites are also composed of 100 parts of PLA and variable
thermoplastic starch/SiO2 with 10, 15, 20 25, and 30 parts, in which the thermoplastic
starch is 100 parts of starch, 40 parts of glycerol, and 6 parts of SiO2. Compared with neat
PLA, the crystallization of PLA in the composites during its second heating process happens
at a lower temperature. Just as shown in Table 2, the Tc,onset and Tc of the composites are
obviously lower than that of the PLA. At the same time, the crystallinity is significantly
improved with the increasing mass fraction of thermoplastic starch. This suggests that the
heterogeneous nucleation exerted by thermoplastic starch has an appreciable effect on the
crystallization of PLA in the composites.

Table 2. The relative crystallization of PLA on its interface with thermoplastic starch and in its matrix.

Mass Fraction of
Thermoplastic Starch

Tc,onset
/◦C

Tc
/◦C

Crystallinity
/%

Relative Proportion of Crystallization

Xc,interf/% Xc,m/% R2

0 104.5 134.1 13.3 0 100 —
10 86.7 92.2 28.1 5.8 94.2 0.9667
15 91.5 97.6 30.0 11.1 88.9 0.9686
20 92.2 98.9 31.2 13.8 86.2 0.9757
25 92.8 99.8 38.3 17.7 82.3 0.9812
30 93.2 102.6 42.1 19.2 80.8 0.9808

PLA would crystallize at its interface with thermoplastic starch and in its matrix,
in which heterogeneous nucleation and growth of PLA occur on the interface at a lower
temperature. This crystallization behavior could be furtherly clarified by the main melting
peak and the shoulder peak derived from the melting endotherms on the DSC curves. The
curve-fitting of the melting endotherms is shown in Figure 3. The main melting peak is
assessed as the melting peak of the PLA crystal in the matrix, and the shoulder peak is
related to the PLA crystal on the interface. ∆Hp,m and ∆Hp,s are the melting enthalpy of
the main melting peak and the shoulder peak, respectively. The relative proportion of
crystallization on the interface (Xc,inter f ) or in the PLA matrix (Xc,m) is calculated according
to the following Equations (3) and (4), respectively.

Xc,inter f =
∆Hp,s

∆H
(3)

Xc,m =
∆Hp,m

∆H
(4)
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With the increasing mass fraction of thermoplastic starch, Xc,inter f increases, but Xc,m
decreases. This illustrates that the interfacial area of PLA with thermoplastic starch gradu-
ally increases due to the increasing mass fraction of thermoplastic starch. Consequently,
at their interface, the number of hydrogen bonds between PLA and thermoplastic starch
chains increased, as well as their interchain forces.

3.4. Nonisothermal Crystallization Kinetics Analysis

The Jeziorny model extended directly the Avrami equation from the isothermal crys-
tallization to the nonisothermal crystallization in the following form:

log[−ln(1− X(t))] = logZ + nlogt (5)

where X(t) is the relative crystallinity, n is the Avrami exponent related to the growth
geometry of the crystals, and Z is the crystallization rate constant depending on nucleation
and growth rate.

Considering the nonisothermal character of the crystallization in a constant heating
rate, the crystallization rate constant is adjusted by introducing a constant heating rate, and
the corrected crystallization rate constant (Zc) is shown as follows:

logZc =
logZ

φ
(6)

where φ is the heating rate.
Generally, the Jeziorny model cannot simultaneously describe the primary crystal-

lization and the secondary crystallization of the composites well. Still, it has a practical
implication for the primary crystallization behavior at a nonisothermal crystallization
condition [17,25,33].

Here, the Jeziorny model is adopted to evaluate the primary crystallization behavior
of the PLA in the composites. Figure 4 is the plots of log[−ln(1− X(t))] versus logt, as
well as the fitted lines of the primary crystallization period. The curves in Figure 4 contain
the linear parts from the beginning to about 50–60% of the crystallization range and the
non-linear part of the deviation from the linear relation. These two parts are ascribed to
the primary crystallization period and the secondary crystallization period, respectively.
Obviously, there is a satisfactory fitting for every curve because of the linear correlation



Polymers 2023, 15, 1579 8 of 11

coefficient (R2 > 0.99) indicating the linearity of the main crystallization. The crystallization
rate constant and the Avrami exponent extracted from the fitted lines are listed in Table 3.

Table 3. The kinetics parameters of the fitting of the primary crystallization.

Mass Fraction of Thermoplastic Starch n logZ Zc R2

10 3.57 −1.43 0.72 0.9957
15 3.47 −1.26 0.75 0.9994
20 3.46 −1.15 0.77 0.9988
25 3.59 −1.05 0.79 0.9968
30 3.55 −0.83 0.83 0.9974
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Figure 4. Plots of log[−ln(1− X(t))] versus logt for the nonisothermal crystallization. The symbols
represent the experimental data, and the solid lines represent the fitting lines of the primary crystal-
lization. The symbol � is for 10 parts, # is for 15 parts,4 is for 20 parts, 3 is for 25 parts, and I is
for 30 parts of thermoplastic starch.

It is accepted that the Avrami exponent of 3 suggests heterogeneous nucleation and
three-dimensional growth of the crystals, and the value of 4 indicates homogeneous nucle-
ation and three-dimensional growth of the crystals [39]. The Avrami exponents of these
composites are around 3.5, suggesting that the nonisothermal crystallization of PLA on
the interface might involve heterogeneous nucleation and three-dimensional growth. The
primary crystallization of the PLA chain occurs in the PLA matrix and at the interface of
PLA/thermoplastic starch, as discussed in the part on the crystallizability of the PLA in
the composites. The thermoplastic starch as a plasticizer could enhance the segmental
mobility of PLA, subsequently promoting the crystallization rate due to the reduction in the
energy required for the chain folding process during crystallization. This is consistent with
the discussion of PLA plasticized with jojoba oil [17]. The Avrami exponents are almost
unchangeable with the varied mass fraction of thermoplastic starch, which suggests that
the composites have a similar nucleation mechanism. The crystallization rate constant
increases slightly with the increasing mass fraction of thermoplastic starch, suggesting that
the thermoplastic starch exerted some effects on the crystallization of PLA.

3.5. The Interfacial Binding Energy of PLA with Thermoplastic Starch

The interchain forces of PLA with thermoplastic starch on their interface are assumed
to be the root reason for the nucleation mechanism of PLA in the composites. In order to
investigate these interfacial interchain forces, the MD simulation is employed to construct
an interfacial molecular structure model and calculate its interfacial binding energy (Eint).
The interfacial binding energy of PLA with thermoplastic starch exhibits a steady increase
with the increasing mass fraction of thermoplastic starch, suggesting that a composite
with a higher mass fraction of thermoplastic starch would have a higher interfacial area
of interaction. The increasing interfacial area of interaction would not only stabilize the
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crystal nucleus but also speed up the segmental mobility of the PLA. Consequently, the
crystallization of PLA is promoted to a certain extent. This is well consistent with the
experimental phenomenon in that the relative proportion of crystallinity on the interface
increases with the increase in the fraction of thermoplastic starch.

The interfacial binding energy consists of electrostatic force and van der Waals force,
in which the two forces account for almost the same contributions (~50% vs. ~50%) for
each mass fraction of thermoplastic starch in the composites, as shown in Figure 5. For the
electrostatic force, the hydrogen bond (H-bond) energy of PLA with thermoplastic starch
has a dominant proportion. The relative H-bond proportion of PLA with AM is around
70%, and 30% for PLA with glycerol, just as shown in Figure 6. It can be inferred that the
H-bond energy of PLA with AM has an essential effect on the crystallization of the PLA on
the interface.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 12 
 

 

It is accepted that the Avrami exponent of 3 suggests heterogeneous nucleation and 

three-dimensional growth of the crystals, and the value of 4 indicates homogeneous 

nucleation and three-dimensional growth of the crystals [39]. The Avrami exponents of 

these composites are around 3.5, suggesting that the nonisothermal crystallization of PLA 

on the interface might involve heterogeneous nucleation and three-dimensional growth. 

The primary crystallization of the PLA chain occurs in the PLA matrix and at the interface 

of PLA/thermoplastic starch, as discussed in the part on the crystallizability of the PLA in 

the composites. The thermoplastic starch as a plasticizer could enhance the segmental 

mobility of PLA, subsequently promoting the crystallization rate due to the reduction in 

the energy required for the chain folding process during crystallization. This is consistent 

with the discussion of PLA plasticized with jojoba oil [17]. The Avrami exponents are 

almost unchangeable with the varied mass fraction of thermoplastic starch, which 

suggests that the composites have a similar nucleation mechanism. The crystallization rate 

constant increases slightly with the increasing mass fraction of thermoplastic starch, 

suggesting that the thermoplastic starch exerted some effects on the crystallization of PLA. 

3.5. The Interfacial Binding Energy of PLA with Thermoplastic Starch 

The interchain forces of PLA with thermoplastic starch on their interface are assumed 

to be the root reason for the nucleation mechanism of PLA in the composites. In order to 

investigate these interfacial interchain forces, the MD simulation is employed to construct 

an interfacial molecular structure model and calculate its interfacial binding energy (𝐸𝑖𝑛𝑡). 

The interfacial binding energy of PLA with thermoplastic starch exhibits a steady increase 

with the increasing mass fraction of thermoplastic starch, suggesting that a composite 

with a higher mass fraction of thermoplastic starch would have a higher interfacial area 

of interaction. The increasing interfacial area of interaction would not only stabilize the 

crystal nucleus but also speed up the segmental mobility of the PLA. Consequently, the 

crystallization of PLA is promoted to a certain extent. This is well consistent with the 

experimental phenomenon in that the relative proportion of crystallinity on the interface 

increases with the increase in the fraction of thermoplastic starch. 

The interfacial binding energy consists of electrostatic force and van der Waals force, 

in which the two forces account for almost the same contributions (~50% vs. ~50%) for 

each mass fraction of thermoplastic starch in the composites, as shown in Figure 5. For the 

electrostatic force, the hydrogen bond (H-bond) energy of PLA with thermoplastic starch 

has a dominant proportion. The relative H-bond proportion of PLA with AM is around 

70%, and 30% for PLA with glycerol, just as shown in Figure 6. It can be inferred that the 

H-bond energy of PLA with AM has an essential effect on the crystallization of the PLA 

on the interface. 

9 12 15 18 21 24 27 30

 

 EINT

 Electrostatic force

 van der Waals force

Mass fraction  

E
IN

T
(k

ca
l/

m
o
l) -80

-160

-240

-320

-400

0

36

40

44

48

52

P
ro

p
o
rt

io
n
(%

)

 

Figure 5. The relationship between the interfacial binding energy, the electrostatic force, and van 

der Waals force with the mass fraction of thermoplastic starch. 

Figure 5. The relationship between the interfacial binding energy, the electrostatic force, and van der
Waals force with the mass fraction of thermoplastic starch.
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4. Conclusions

There is almost no interface of PLA/SiO2 formed in the PLA/thermoplastic starch/SiO2
composites. Nano-SiO2 wrapped by thermoplastic starch has little effect on the nonisother-
mal crystallization of PLA. The interface of PLA with thermoplastic starch is effective in
the composites, and its interfacial area increases with the increasing mass fraction of ther-
moplastic starch. The interface of PLA with thermoplastic starch exerted a remarkable
effect on the segmental mobility of PLA on the interface. The Tg and Tm of the composites
are much lower than those of pure PLA. The relative proportion of crystallization on the
interface increases with the mass fraction of thermoplastic starch. Still, the varied trend for
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the crystallization of PLA in the matrix is on the contrary. The Jeziorny model could describe
well the primary crystallization of PLA in the composites. The extracted Avrami exponents
based on the Jeziorny model indicate that the crystallization of PLA on the interface follows
heterogeneous nucleation and three-dimensional growth. The relative proportion of crys-
tallinity on the interface increases with the increasing the fraction of thermoplastic starch,
which could be well explained by the interfacial binding energy of PLA with thermoplastic
starch. The composite with a higher mass fraction of thermoplastic starch would have a
higher interfacial area of interaction and, consequently, have a higher relative proportion of
crystallinity on the interface.
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