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Abstract: Microcarriers (MCs) are adaptable therapeutic instruments that may be adjusted to specific
therapeutic uses, making them an appealing alternative for regenerative medicine and drug delivery.
MCs can be employed to expand therapeutic cells. MCs can be used as scaffolds for tissue engineering,
as well as providing a 3D milieu that replicates the original extracellular matrix, facilitating cell
proliferation and differentiation. Drugs, peptides, and other therapeutic compounds can be carried
by MCs. The surface of the MCs can be altered, to improve medication loading and release, and to
target specific tissues or cells. Allogeneic cell therapies in clinical trials require enormous volumes
of stem cells, to assure adequate coverage for several recruitment locations, eliminate batch to
batch variability, and reduce production costs. Commercially available microcarriers necessitate
additional harvesting steps to extract cells and dissociation reagents, which reduces cell yield and
quality. To circumvent such production challenges, biodegradable microcarriers have been developed.
In this review, we have compiled key information relating to biodegradable MC platforms, for
generating clinical-grade cells, that permit cell delivery at the target site without compromising
quality or cell yields. Biodegradable MCs could also be employed as injectable scaffolds for defect
filling, supplying biochemical signals for tissue repair and regeneration. Bioinks, coupled with
biodegradable microcarriers with controlled rheological properties, might improve bioactive profiles,
while also providing mechanical stability to 3D bioprinted tissue structures. Biodegradable materials
used for microcarriers have the ability to solve in vitro disease modeling, and are advantageous to the
biopharmaceutical drug industries, because they widen the spectrum of controllable biodegradation
and may be employed in a variety of applications.

Keywords: microcarriers; biodegradable; mesenchymal stem cells; cell manufacturing; cell therapy;
stem cells; regenerative medicine

1. Introduction

Microcarriers are small particles, with sizes ranging between 50 and 400 µm, that have
been extensively explored for cell manufacturing and used as drug carriers [1]. Micro-
carriers with customizable design, materials, and size have been of huge interest in the
biomedical field for broader application in tissue engineering, 3D bioprinting, and in vitro
disease modeling platforms [2–4]. Attempts have been made to fabricate microcarriers with
different biomaterials such as cellulose, chitosan, collagen, dextran, gelatin, biopolymers,
and many others [5,6], see Table 1. The biomaterial’s properties are primarily responsible
for the physical features, such as size, geometry, topography, stiffness, and porosity, of
microcarriers [7]. Various microcarrier fabrication methods have been implemented to
achieve the desired, controllable physical attributes, among which, emulsification and
microfluidics-based methods are the most promising [8].

Microcarriers are becoming a more popular method for scaling up cells towards cell
therapy applications. As cell treatments become more widely used in clinics, more stream-
lined scale-up, process robustness, cost efficiency, and regulatory compliance are required.
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Obtaining several billion cells per batch is a requirement at the large scale, however, it is la-
borious to achieve such cell quantities using traditional tissue culture flasks [9]. Monolayer
cultures have been shown to lead to loss of ECM proteins, and abnormal cell morphology
and phenotype [10]. During the harvesting and expansion, additional modifications at ge-
netic and epigenetic levels can occur [11,12]. Three-dimensional (3D) cultures are expected
to provide, and better mimic, the native physiological tissue architecture, thus retaining the
cells’ morphological and functional attributes. Manufacturing of cells via microcarriers and
bioreactor platforms has shown promising results, without hampering the cells’ healthy
state [13,14]. Additionally, liquid–liquid phase separation (LLPS) is a new method for
creating microcarriers for biological purposes. The phase separation of LLPS microcarriers
in an aqueous solution, results in the production of discrete liquid phases, with differing
compositions. This enables the encapsulation of various bioactive compounds, such as
proteins and growth factors, in various phases of the microcarrier [15,16]. Cell harvesting
from substrates is challenging in conventional microcarrier systems, because it requires
enzymatic treatment, which is frequently paired with agitation. Authors of a recent study
investigated a two-phase system for hMSC expansion and non-enzymatic cell harvest-
ing. Perfluorocarbon droplets were disseminated in a protein-rich growth medium, and
employed as temporary liquid microcarriers for hMSC culture [17].

LLPS microcarriers have shown promise in drug delivery, tissue engineering, and cell
therapy applications. Furthermore, these microcarriers are biocompatible, biodegradable,
and adjustable in terms of their physical and chemical properties [18].

Extensive research has been reported on the use of biocompatible and biodegradable ma-
terials in numerous applications including drug delivery [19–21], tissue engineering [22–25],
cell manufacturing, and bioprinting [26–29]. In such applications, biodegradable microcarriers,
combined with bioreactors, play a key role in meeting the demand for cell expansion. For
example, traditional methods of cell seeding and harvesting from microcarriers require the
use of dissociation chemicals or enzymes to separate cells, potentially affecting cell yield and
risking a greater apoptotic cell population. Studies highlighting the aspects of biodegradable
microcarriers that are advantageous for enhancing their therapeutic value to cells, are pre-
sented in Table 1; and a quantified data set of different types of coating materials used on
microcarriers, and their impact towards cell growth, expansion, and nutrition perfusion is
presented in Table 2.

Overall, many promising reports on the design and optimization of microcarriers
that are adaptable for xeno-free, scalable, and implantable systems, with the capacity to
modulate cell responses, show that their use is an ever-growing trend in the biomedical
and cell therapy space.

2. Key Features of Microcarriers for Therapeutic Applications

Mesenchymal stem cells (MSCs) are among the most extensively investigated cell-
based therapeutic products that have reported significant applications in tissue repair,
immune modulation, and regeneration [30,31]. The ability of manufacturing platforms to
enable the growth of living cells for a broad patient pool, as well as to achieve a robust,
efficient, and scalable process, to fulfill commercial demand, is a major challenge [32–35].
Scale-up manufacturing platforms that include the use of microcarriers, could be tailored
for cell-specific expansion and formulation, to enhance the vital functional properties of
cells. Here, the fabrication of microcarriers should consider cell-specific requirements,
to achieve high cell yield and a lower population of apoptotic cells, so that ultimately
the clinical effectiveness of the cells is enhanced [36,37]. The most critical feature of
microcarriers is the ratio of surface area to volume, offering the growth of large populations
of cells in a relatively small culture vessel, consuming less growth medium [38]. The
matrix materials used for microcarrier fabrication are critical for cell growth and harvesting.
For example, surface coatings such as polylysine, poly(N-vinylguanidine), and poly(N-
isopropylacrylamide) (PNIPAAm), on microcarriers, could facilitate MSC cell attachment,
bead-to-bead transfer of cells, nutrient perfusion, as well as promoting differentiation into
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a variety of mature cells of interest [39,40]. The spectrum of stiff to soft substrates has
also enhanced the properties of cells to differentiate, and affected marker expression, the
cell secretome, and immunomodulatory features. Cells respond to a Young’s modulus
ranging from 10 to 1000 kPa, depending on whether they differentiate to neural, fat,
cartilage, or bone. Surface-coated microcarriers with ECM proteins (collagen, fibronectin,
and vitronectin), or derivative motifs, can enhance the cytoskeletal organization, and
change cellular morphology, activate intercellular signaling pathways, or control gene
expression [41–43]. During cell amplification, an appropriate biomimetic microenvironment
could therefore support cell proliferation and help retain biological functions. Along with
mechanical stability and stiffness profiles, biophysical cues such as porosity (between 60%
to 90%), hydrophilicity, or nanopatterns (e.g., 10–50 µm star-shaped design), could promote
cell yields, by modulating cell behavior and differentiation abilities [44].

Along with scale-up considerations, attempts have been made to understand cell
biology, such as the secretome, fate upon clinical infusion, integration with tissues, proan-
giogenic properties, and crosstalk with immune cells, and what soluble factors could
amplify the clinical effectiveness, as depicted in Figure 1. The intended biological proper-
ties of the cell should provide guidance for process development, by understanding how
to optimally design and fabricate microcarriers or scaffolding support structures for the
respective cell types. Shedding light on biodegradable materials would aid in choosing the
appropriate materials for tissue regeneration [45].

Polymers 2023, 15, x FOR PEER REVIEW 3 of 16 
 

 

in a relatively small culture vessel, consuming less growth medium [38]. The matrix ma-
terials used for microcarrier fabrication are critical for cell growth and harvesting. For ex-
ample, surface coatings such as polylysine, poly(N-vinylguanidine), and poly(N-isoprop-
ylacrylamide) (PNIPAAm), on microcarriers, could facilitate MSC cell attachment, bead-
to-bead transfer of cells, nutrient perfusion, as well as promoting differentiation into a 
variety of mature cells of interest [39,40]. The spectrum of stiff to soft substrates has also 
enhanced the properties of cells to differentiate, and affected marker expression, the cell 
secretome, and immunomodulatory features. Cells respond to a Young’s modulus rang-
ing from 10 to 1000 kPa, depending on whether they differentiate to neural, fat, cartilage, 
or bone. Surface-coated microcarriers with ECM proteins (collagen, fibronectin, and vit-
ronectin), or derivative motifs, can enhance the cytoskeletal organization, and change cel-
lular morphology, activate intercellular signaling pathways, or control gene expression 
[41–43]. During cell amplification, an appropriate biomimetic microenvironment could 
therefore support cell proliferation and help retain biological functions. Along with me-
chanical stability and stiffness profiles, biophysical cues such as porosity (between 60% to 
90%), hydrophilicity, or nanopatterns (e.g., 10–50 µm star-shaped design), could promote 
cell yields, by modulating cell behavior and differentiation abilities [44]. 

Along with scale-up considerations, attempts have been made to understand cell bi-
ology, such as the secretome, fate upon clinical infusion, integration with tissues, proan-
giogenic properties, and crosstalk with immune cells, and what soluble factors could am-
plify the clinical effectiveness, as depicted in Figure 1. The intended biological properties 
of the cell should provide guidance for process development, by understanding how to 
optimally design and fabricate microcarriers or scaffolding support structures for the re-
spective cell types. Shedding light on biodegradable materials would aid in choosing the 
appropriate materials for tissue regeneration [45]. 

 
Figure 1. Schematic illustration highlighting the considerable features of biodegradable microcarri-
ers, for their applications in cell manufacturing and regenerative medicine. Created with Bioren-
der.com (accessed on 28 Sep 2021). 

Figure 1. Schematic illustration highlighting the considerable features of biodegradable microcarriers,
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3. Biodegradable Microcarriers for Cell Manufacturing

Due to the limited amount of adult stem cells that can be retrieved from patients, it is
necessary to generate large amounts of stem cells outside the human body, with a cost-effective
approach. The use of microcarriers is an established technology in the biopharmaceutical
industry, which, in combination with stirred-tank bioreactors, can provide the necessary
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environment for large-scale production of adherent cells. However, conventional microcar-
riers have been regarded as a potential safety risk to the patient, because particulates may
remain in the final product. As such, traditional microcarriers have not been classified as
cGMP compliant, which has hindered their widespread use in clinical trials or production
processes for previously authorized autologous stem cell products [31]. As a result, adult stem
cells such as MSCs, even in clinical settings, are often still cultured in poorly controlled and
labor-intensive two-dimensional tissue flasks. The development of microcarriers that can be
dissolved in vitro, or degraded in vivo, could represent a major step forward in overcoming
the existing challenges in stem cell expansion, and open opportunities for the use of volumet-
rically scalable bioreactors [32,46]. In the case of dissolvable microcarriers, the cells could be
harvested without the use of the traditional enzymatic dissociation method, by pH, temper-
ature, biochemical changes in adherent molecules, changes in protein chemistry of surface
receptors, and other biochemical changes that do not hamper the cells’ adherence features. De-
pending on the speed of degradation, cells growing on biodegradable microcarriers could be
harvested by dissolving the microcarriers within the bioreactor, or both cells and microcarriers
could directly be implanted into the site of injury [47]. A recent report, showcased the use of
porous PLGA microcarriers for the culturing of human adipose stem cells, which remained
undifferentiated in dynamic culture conditions [34]. Microcarriers were evaluated for stability
at 37 ◦C, to cultivate cells, and found to be stable with no signs of degradation for up to
two months in water, at 4 ◦C. The biodegradability and other bioengineering confirmation
studies were reported in Muoio et al., which demonstrated the gradual degradability of the
microcarriers under stirred conditions at 37 ◦C, when cultured for up to nine days [33].

Likewise, for large-scale expansion of therapeutic cells, dispersible and dissolvable
porous microcarrier material (3D TableTrixTM) has been developed, and identified for use
in stirred bioreactors [35]. Briefly, 3D TableTrixTM has been designed with a dispersible
and dissolvable feature, that aids in avoiding the need for time-consuming microcarrier
separation from cells, and its soluble property offers a higher rate of cell recovery. Authors
have reported the potential use of this application in cell manufacturing, by showing
500-fold multiplication of adipose-derived mesenchymal stem cells (AdMSCs) in a 1 L
bioreactor system, with a final cell yield of 1.05 ± 0.11 × 109 hMSCs, with 98.6% recovery
rate in 11 days, cultured under serum-free conditions. Furthermore, cells maintained their
differentiation abilities to trilineage, stable genomic profiles, as well as immunophenotypic
profile, while exhibiting negligible signs of senescence.

Cultispher G, a cross-linked porous microcarrier, is commonly employed as a cell
carrier in cell therapy applications. In stirred tank bioreactor culture, such gelatin-based
microcarriers support a wide range of adherent cell types, and are scalable to hundreds
of liters. Cultispher G is particularly beneficial, since it can be enzymatically dissolved,
making cell harvesting easier, without the need for cell-bead filtering [36]. The delayed
destruction of deposited ECM, by enzymatic reagents, on the other hand, inhibits the
cell recovery rate, decreasing cellular viability. The invention of the stimuli-triggered
breakdown of cross-linked microcarriers for cell harvesting, has addressed these issues. In
comparison to conventional beads, newly produced redox-sensitive beads (RS beads) have
exhibited faster disintegration, allowing for greater hMSC dissociation, with significant cell
yield after culturing for eight days [37]. The concept has been tested and demonstrated in
spinner flasks, as well as bioreactors. In comparison to Cultispher G beads, studies were
conducted to ensure that surface modification of the microcarriers (RS beads) did not affect
cell adhesion. After cell adhesion and growth in spinner flasks, the redox dissolving time
for RS beads was found to be faster than the enzymatic dissociation time for conventional
beads. MSCs grown on the RS beads did not show any significant difference in the growth
curve, compared to the control regular beads. Interestingly, the cell harvest time in 3 L
bioreactors, for cells cultured on RS beads, was at least 15 times more rapid than the
control [37]. RS beads show great potential as cell carriers in manufacturing applications,
as they allow for cell proliferation with higher recovery yield.
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Porous microcarriers are commonly used to grow, expand, and harvest stem cells.
In most cases, the cells are harvested using proteolytic enzymes, which can result in
cell damage. One of the studies developed a variety of alginate/PEG (AL/PEG) semi-
interpenetrating network of microcarriers, to overcome such limitations. The interaction
between the carboxylic acid group of alginate and the di-terminated amine groups of
cystamine, was applied, to chemically cross-link alginate and PEG, to form networks. PEG
was added to regulate the degradation of the microcarriers, and actively interact with the
alginate network. Furthermore, the mechanical stability of the AL/PEG complex, was
enhanced by the electrostatic characteristics of chitosan coated on the surface. Non-coated
AL/PEG microcarriers exhibit poor mechanical stability, and this is worse when non-cross-
linked PEG molecules are discharged into the culture medium. A chitosan coating was
used to boost the mechanical stability of AL/PEG, and, as the authors expected, AL/PEG
microcarriers with the chitosan coating had a greater cell proliferation rate, and after
5–7 days of culture, a 12-fold increase in cell yield was observed [38]. The results revealed
that PEG size and molecular weight modulated the microcarriers’ properties. Furthermore,
the microcarriers were engineered to degrade when disulfide links were cleaved. The rate
of microcarrier degradation was tuned, depending on changes in the AL to PEG ratio, the
amount of chitosan coating, and the type and concentration of reductant utilized. AL/PEG
microcarriers have also been developed to aid in the attachment and proliferation of MSCs.
Therefore, a reductant overcame the constraints of cell harvesting from microcarriers, while
also decreasing the cell damage induced by proteolytic enzyme treatment, and enhanced
the cell yield.

Yan et al. (2020) demonstrated the use of porous microcarriers for the culturing of
adipose-derived hMSCs, with a final cell yield of 109 cells and recovery rate of ~99%, upon
microcarrier dissolution [35]. The stem cell immunophenotypic features, such as trilineage
differentiation abilities and genome stability, were all preserved. Lastly, dissolvable gelatin-
based microcarriers, have been recently developed by Xien Ng et al., who successfully
grew MSCs in stirred-tank bioreactors at the three-liter scale, with significantly improved
harvesting efficiency and speed, compared to conventional microcarriers [48]. Like previous
reports, the multipotency of MSCs was retained post-harvesting. Since gelatin is a safe
material for human contact, the authors suggested that rapid and safe cell release from
the microcarriers would be feasible in larger-scale cell therapy manufacturing settings.
However, the challenge is obtaining a recombinant source of gelatin, as current sources
come from animal derived materials.

4. Biodegradable Microcarriers for Tissue Engineering Applications

Scaffolds are a stable framework, that are made of polymeric biomaterials, which
enable cells to bind onto the scaffold, to secrete ECM proteins that imitate the support of
structures (the biophysical and biochemical indices of indigenous tissue in which cells can
grow), to migrate, and eventually to transform into tissues [39,40]. Substantial progress,
and the development of advanced-engineered scaffold platforms, is needed for tissue
repair applications, but growing large quantities of cells, ranging from millions to billions,
with clinically amenable quality for therapies, remains a challenge to achieve [41,43].
Due to a paucity of cells in cell banks for clinical infusion, an effective platform for the
biomanufacturing of cellular products is needed, to meet clinical demand [42,44].

Traditional tissue engineering approaches typically integrate three-dimensional (3D)
scaffolds with cell sources and growth factors, to generate in vitro tissues. However, such
tissue constructs have a history of failing to fill and heal irregularly shaped defects, such as
cartilage replacement, thus restricting the clinical significance of tissue engineered prod-
ucts [45]. To address such technical constraints, engineered microtissues, with cell-laden
microcarriers, have been designed to precisely match defect areas, as building blocks for
implantable/injectable treatment. After implantation, microcarriers embedded in tailored
microtissues provide a critical frame for establishing functional tissue growth and anasto-
mosis (i.e., connection between adjacent tissue structures). In a recent study, dialdehyde
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bacterial cellulose (DBC), a natural material with nanofibrous characteristics, was used to
develop ECM-mimicking microcarriers, which could simulate the matrix complexity of
collagen, hydroxylysine, and chitosan. Thus, replicating cartilage ECM, and potentially
enhancing tissue repair and regeneration. The effects of several parameters, on the nanofi-
brous microcarriers, such as chitosan concentration, porosity, as well as biomechanical
profile and degradation properties, have also been evaluated. The cytocompatibility was
confirmed in vitro, by examining cell proliferation and viability. Furthermore, these mi-
crocarriers were successfully used to create functional microtissues under microgravity
culture conditions, and the cultured microtissues were applied in implantation experi-
ments in Sprague–Dawley rats with a knee articular cartilage defect, in which effective
cell proliferation, differentiation, and tissue recovery for cartilage repair was shown by im-
planted nanofibrous microcarriers, thus assessing the potential of microcarriers for cartilage
regeneration [49].

The lack of biocompatible materials has hindered the advancement of biodegradable
implants for bone tissue engineering. As a result, strengthening bioactivity through surface
modification of the composite is critical for bone regeneration. BMP-2, a key component
in initiating osteogenesis and facilitating bone repair, has been used extensively in clin-
ical trials. Previous studies have found that the greater biodegradability of PLGA/HA
nanocomposites, gives them higher biocompatibility and osteoconductivity properties for
bone grafts. However, due to the polymers’ weak hydrophilicity and absence of functional
groups, the growth factor loading efficiency is frequently reduced. Attempts were made
to immobilize BMP-2 on graphene oxide (GO)-incorporated PLGA/HA (GO-PLGA/HA)
biodegradable microcarriers. These biodegradable microcarriers also have the advantage
of offering a substantial percentage of anchoring sites, which promotes cell adhesion.
Chuan Fu et al. reported graphene oxide (GO)-promoted immobilization of peptides on
PLGA/HA microcarriers, in less than 120 min; the cytocompatibility of MC3T3-E1 cells
(murine cell line) cultivated on these microcarriers, resulted in significantly better cell adhe-
sion and proliferation, via GO and HA [46]. Furthermore, the π-electron clouds of GO are
capable of interacting with the inner hydrophobic cores of BMP-2 protein, improving the
protein adsorption capacity and efficiently increasing BMP-2 binding on the microcarrier
surface, allowing microcarriers to perform long-term osteoconductivity. Immobilization of
BMP-2 on GO-PLGA/HA microcarriers, enhanced osteogenic differentiation to a greater
extent, which was confirmed by alkaline phosphate activity, qRT-PCR, immunofluorescence
staining, and mineralization on the deposited substrates. GO-PLGA/HA microcarriers de-
livered sustained BMP-2 activity, contributing to an improved osteogenic profile. Chitosan,
conjugated with a lactose derivative containing non-toxic β-galactose moieties, increased
chondrocyte aggregation, while also stimulating the creation of chondro-specific extracellu-
lar matrix (ECM) [50]. As a result, the microcarriers integrated with the chitosan-grafted
lactose molecules were able to stimulate chondrogenesis, resulting in improved biological
performance for cartilage repair.

Bioprinting is the process of printing scaffolds with embedded cells, to fabricate tissue
constructs for regenerative medicine applications. Although bioinks with cells improve
biomimetic features, issues still exist with ECM formation, cell activity, proliferation, and
the ability to change into functional tissue constructs that resemble native tissue [51,52].
Although, bioprinting microcarriers seems a simple process, challenges, such as nozzle
blockage, can arise when printing high cell densities. Microcarriers enable cells to self-
assemble to high cell density within bioinks, and thus represent a favorable milieu for
enhanced cell interaction, and fabrication of stable tissue constructs with more functional
properties [53]. Bioinks with porous biodegradable microcarriers embedded within hy-
drogels, have generated functional osteochondral tissue structures with high cell density,
at 8 × 106/mL [54]. Levato R. et al., reported 3D printing of MSCs in PLA microcarriers,
which exhibited significantly greater inter-cellular interaction and differentiation potential
compared to hydrogels with only cells, and no microcarrier controls [53]. PLA microcarriers
were pre-seeded with gelatin-methylacrylate and gellan gum (GelMA-GG) solution in one
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condition, whereas other PLA microcarriers were embedded with MSCs in GelMA-GG
hydrogels for bioprinting. Cell viabilities of more than 90% have been reported after 3 days
of culturing. Surprisingly, MSCs suspended with microcarriers in GelMA-GG hydrogels,
attached to the surface of the microcarriers without the need for a pre-seeding step. The
MSCs were observed to be at an early stage of adhesion onto the microcarriers after 4 h,
in the presence of GelMA, whereas if seeded directly onto the microcarriers, they already
expressed structured actin fibers [53]. Thus, cell-laden biodegradable microcarriers for
bioprinting and tissue engineering, could serve as essential modular components for 3D
printing functional tissue structures.

In the pursuit for a reliable and compliant cell expansion strategy, microcarriers with
diverse physicochemical features have been designed. The shape and topographical fea-
tures of microcarriers, such as interconnected pores, provide an expansive tissue-like
microenvironment, that significantly improves cell growth and differentiation profiles [55]
as illustrated in Figure 2. Engineered microcarriers can be configured to promote cell attach-
ment and differentiation, and to be degradable at a controlled rate [56]. Optimization across
a wide range of cell densities is needed, to achieve implantable microcarrier populations
for injection. Although their handling can be described as straight-forward, hydrogel-only
injectable systems often have poor mechanical stability and are not sufficiently durable to
support proliferation and differentiation of anchorage-dependent cells, before formation of
new tissue [57].
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5. Biodegradable Microcarriers for Drug Delivery

Microcarriers have sparked a surge of interest in drug delivery, as the production
of functional carriers utilizes simple procedures with new, but accessible, materials. The
development of smart, bioactive and biodegradable microcarriers, is important for enhanc-
ing drug delivery and promoting tissue repair, and personalized medicine as a clinical
norm [59,60]. Han Zhang et al., reported novel soybean protein microcarriers, using a
microfluidic strategy for drug delivery, the technology was inspired by the tofu production
mechanism, of combining soymilk and brine for cross-linking soybean proteins. Since
soybean protein droplets are synthesized via a microfluidic emulsification method, tofu
microcarriers are relatively monodispersed and have homogeneous morphologies [61]. The
impact of heating temperatures ranging from 20 ◦C to 90 ◦C, and brine concentrations rang-
ing from 0.1% to 10%, on the optimal conditions for producing tofu, were explored. When
the brine concentration was around 6%, the tofu had excellent morphologies, however, the
texture of the tofu became tougher as the heating temperature increased. As a result, in
subsequent studies, 6% brine and an 80 ◦C heating temperature was used.

Therapeutic cells can be delivered as living drugs by microcarriers, ideally in a spa-
tiotemporally controlled manner. The ability to control the release of cells is important,
because direct cell injection has been shown to result in greatly increased cell mortality,
rendering the treatment ineffective [62,63]. Another promising application of injectable
cell-laden microcarriers, is their use in the development of tissue models for targeted drug
delivery research [64,65]. The use of advanced methods for delivering cells, to maximize
the tissue repair potential, as well as to regenerate by stimulating angiogenic factors, has
been demonstrated. Chara Simitzi et al. reported different surface topographies of hierar-
chically structured, porous biodegradable PLGA microcarriers, used for growing AdMSCs,
and influence of microcarriers towards secretion of proangiogenic factors. Three differ-
ent PLGA-based polymers, were used to fabricate microcarriers via thermally induced
phase separation (TIPS) [57]. Briefly, AdMSCs were grown on all three compositions of
PLGA-TIPS microcarriers, under xeno-free conditions, for 11 days, LDH assay confirmed
the cell viability of around 95%, and the results were compared with cells grown on tissue
culture (TC) plates. The ability of trilineage differentiation has also been demonstrated for
cells grown on PLGA-TIPS microcarriers. Multiple proangiogenic factors, including VEGF,
were also amplified in the secretome of AdMSCs grown on microcarriers, indicating their
ability to trigger angiogenesis. By day 7 of the culture period, VEGF values (~5000 pg/mL)
were almost 2–3 fold higher in PLGA-TIPS microcarriers, compared to the TC control. The
functional properties of hierarchically organized, porous biodegradable microcarriers have
been found to elevate the angiogenic potency of AdMSCs, to induce vascularization events,
such as tubule formation and formation of branch points. Thus, PLGA-TIPS biodegradable
porous microcarriers promote the secretion of proangiogenic factors towards inducing
angiogenesis, offering a promising tool for neovascularization in ischemic tissue, when
delivered in vivo.

As per the Figure 3 illustrations taken together, injectable biomaterials are promising
candidates for fabricating a new class of biodegradable and injectable microcarriers that
can generate and guide specific drug/cell responses, that match the biological environment
towards defect filling, tissue repair and regeneration using 3D culture and bioprinting
platforms [66,67].
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Figure 3. Schematic illustration to highlight: (A) use of microcarrier in bioreactors for mass expansion
and differentiation of cells. (B) The microcarriers can be modified and injected into irregularly
shaped defects, to effectively repair and enhance tissue recovery. (C) Microcarriers in multicellular
aggregates, as structural supports, to promote cell growth and differentiation in the 3D system.
(D) Advanced modular bioinks, that can accommodate (i) microcarriers tightly packed in the form
of printable granular inks/gels; and (ii) microcarriers enabling the surrounding hydrogel matrix to
mimic in vivo-like tissue architecture. Adapted with permission from [58].

6. Future Scope and Challenges

Therapeutic cells, potentially offer long-term cures for diseases and disorders that
are not currently curable by conventional drugs and biological molecules [68,69]. This
change in paradigm in modern medicine, can be achieved only if appropriate clinical-grade
techniques can be developed for the large, cost-effective, and reproducible manufacturing
of high-quality cells. A range of different natural and synthetic polymeric microcarriers
have already been used for cell manufacturing. Most current research focuses on cell



Polymers 2023, 15, 1487 10 of 15

attachment and expansion [70]. Despite this potential, the sector is being held back by
the range of challenges around the large-scale harvesting of cells from microcarriers, non-
degradable materials used for microcarrier fabrication, as well as large-scale (kilogram level)
manufacturability of microcarriers. Microcarriers must also be suitable for dehydration for
dry storage, reconstitution in buffer, sterilization by autoclaving, and have a long shelf life
(Figure 1).

Synthetic and natural biodegradable polymers such as the β-galactose moieties,
oligosaccharides, sugars, and peptides are being considered for cell expansion, as well as
effective cell recovery from microcarriers. Additionally, microcarriers are being explored to
enhance tissue repair and regeneration [71].

Alternatively, nature inspired biodegradable materials such as coral reefs [50], novel
chitosan–cellulose nanofiber [72], and plant inspired lignin-based cell adhesive hydro-
gels [73], are also being explored as microcarrier materials for cell manufacturing. Biodegrad-
able microcarriers require fewer chemical reactants that need to be eliminated after implan-
tation for tissue repair in a clinical setting, making them less expensive and ideal for in vivo
application. In some cases of tissue repair and regeneration applications, cells must be
seeded/embedded in a substrate that can provide a temporary matrix, to boost tissue regen-
eration [74,75]. Likewise, bio-inspired silk- and sericin-based microcarriers, in conjugation
with bio-additives such as cellulose, dextran, pullulan, and many others which satisfy
manufacturability, and bioactive and non-immunogenic properties for cell manufacturing
applications, are being studied. In addition to natural polymers, inorganic complexes, such
as calcium phosphates, have been used as well, to fabricate silk-based microcarriers [76].
Therefore, biodegradable microcarriers offer a broad and versatile platform for stem cell
expansion, tissue regeneration, and drug delivery.

Table 1. Biodegradable materials used for microcarrier fabrication and applied for stem cell manufac-
turing, tissue engineering, and drug delivery applications.

Biodegradable Materials Fabrication Technique Microcarrier Characteristics Cell Type and Use Case Reference

Cell expansion for therapy

PLGA + porcine gelatin
coating

Emulsification of gelatin in
PLGA/dichloromethane solution, followed

by an emulsion-solvent evaporation
method (25)

Porous
360 cm2/g

d50 = 166 µm
Human adipose stem cells [34]

PLGA + bovine gelatin
or PLL coating

Single-emulsion solvent evaporation
method followed by lyophilization

Porous
d = 165–260 µm Human umbilical vein endothelial cells [74]

Gelatin

Droplet microfluidics (gelatin solution +
fluorocarbon oil), followed by solidification

in ice box

Non-porous
d = 55–180 µm Human mesenchymal stem cells [48]

Cross-linking commercial gelatin beads
(CultiSpher G) using

1,2-bis(2-isocyanatoethyl) disulfide

Porous (pore size: 5–15 µm)
d = 130–380 µm (hydrated) Human mesenchymal stem cells [72]

PEG/alginate + chitosan
coating

Emulsification of sodium alginate and PEG
(water phase) and Tween80/peanut oil (oil

phase) peanut oil (oil phase)

Porous (pore size: 20–200 µm)
d = 700–1900 µm

Human umbilical cord blood
mesenchymal stem cells [38]

Poly-e-caprolactone
(PCL) + poly-l-lysine or

fibronectin coating
Droplet microfluidics Non-porous

d = 150–170 µm

Stem cell expansion (WJ-MSC, hESCs)
Tissue engineering (in vivo osteogenic

differentiation)
[30,77–79]
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Table 1. Cont.

Biodegradable Materials Fabrication Technique Microcarrier Characteristics Cell Type and Use Case Reference

Chitosan

Micro-emulsification of chitosan solution in
oil phase followed by low-temperature

thermally induced phase separation
technique

Porous (pore size: 20–50 µm)
d = 150 µm

Cell expansion (human fetal
hepatocytes) [80,81]

Zein

Zein ground in glycerin at 120 ◦C, 5 min,
followed by the removal of glycerin by
suction filtration. Finally, particles are
repeatedly washed with pure water

Low porosity
d = 150–230 µm

350 cm2/g
1.045 g/cm3

Cell expansion (vero cells) [82]

Cell expansion for tissue engineering

PLGA/hydroxyapatite +
incorporated graphene

Emulsion-solvent evaporation, followed by
surface immobilization of BMP-2

Non-porous
d50 = 520 µm Osteogenesis [46,83]

PLGA + poly-l-lysine
coating

Emulsion-solvent evaporation method,
followed by surface immobilization of

BMP-7 and ponericin G1

Non-porous
d50 = 560 µm Osteogenesis [83]

Poly-lactic acid (PLA) +
human recombinant

collagen type I coating

Emulsion/solvent (ethyl-lactate)
evaporation technique

Non-porous
d = 82 ± 23 µm Rat bone marrow MSCs [32]

Cellulose/chitosan
(cross-linked)

Water phase consisting of cellulose and
chitosan solution emulsified into

microspheres in liquid paraffin (oil phase)
under stirring, followed by phase

separation through liquid nitrogen
quenching and petroleum ether

Porous (pore size: 30–60 µm)
d = 450 um

Bone marrow derived MSCs for
cartilage regeneration [72]

Drug delivery

Tofu/soybean protein

Capillary microfluidic (emulsification)
device, followed by thorough ethyl alcohol

wash to get rid of soybean oil from the
bead’s surface

Porous
d = 640–740 µm Drug delivery [61]

Pectin

Electrospraying pectin solution into
solution of cross-linking mixture

(CaCl2/oligochitosan), followed by rinsing
with DI water

Porous
d = 150–600 µm Drug delivery [47]

Table 2. Quantified data set highlighting the different surface coatings used on microcarriers for
enhanced cell attachment, bead-to-bead transfer, and applications in cell differentiation or expansion.

Surface Coating Type of
Microcarrier

Surface Coverage
(%)

Cell Attachment
Efficiency (%)

Bead-to-Bead
Transfer Efficiency

(%)
Differentiation Potential Reference

Polylysine Chitosan 95 85 80 Adipose derived stem cells;
nerve guide conduits [84]

Poly(N-
vinylguanidine) Polystyrene 80 75 85 Expansion of human

mesenchymal stem cells [85]

Poly(N-
isopropylacrylamide)

(PNIPAAm)

Polycaprolactone
(PCL) 70 80 90

Fibroblasts and
mesenchymal stem cell

expansion
[86]

Genipin Chitosan/Alginate 60 70 75 Expansion of
mesenchymal stem cells [87]

PNIPAAm Alginate 50 60 70
Expansion of umbilical

cord derived mesenchymal
stem cells

[38,88]

PLL PLGA 90 80 90
Expansion of HUVEC cells
and umbilical cord derived

mesenchymal stem cells
[89,90]

Gelatin Polystyrene 95 90 95 Expansion of
mesenchymal stem cells [37]

PEG PLGA 80 75 80 Expansion of
mesenchymal stem cells [91]

Chitosan Alginate 60 70 80 Expansion of L929 and
Mesenchymal stem cells [92]
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