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1.     Introduction 
 
This Supporting Information file is closely aligned to the main text and is intended to enable 

the interested scientist to get a hold on every aspect of this article and to put the method to 

use. 

 

2.     Symbols, Abbreviations, Glossary 
 
A                            Acceptor. 

AD         Area under the kinetic trace of donor fluorescence deactivation in 

                                          the donor-only peptide (Figure. S3 e,f and eq. S4). 

ADA      Area under the kinetic trace of donor fluorescence deactivation in 

                                         the donor-acceptor peptide (Figure. S3 e,f and eq. S4). 

a                             The first of two parameters of a 3-D Gaussian distance 

                                          probability distribution (eq. 17, eq. 19). 

a0, a1, a2   Coefficients obtained for the HSJE that describe the dependence of X0 on 

  the ratio R0/rl (Table 2, Fig. 8). 

b                                       The second of two parameters of a 3-D Gaussian distance probability 

                                         distribution (eq. 17, eq. 19). 

b      The single parameter of the ideal-chain  or random-coil 

      distance distribution that determines its broadness (eq. 16, eq. 18) 

b0, b1, b2   Coefficients obtained for the HSJE that describe the dependence of M on 

  the ratio R0 / rL  (Table 2, Fig. 8). 

CAE      Closed Analytical Expression. 

D     Diffusion coefficient (Font italics) measured in units of Å2/ns in this ms. 

D      Donor (Font regular). 

D-peptide   Donor-only peptide that carries no acceptor. 

DA-peptide    Donor-acceptor peptide. 

DBO     2,3-diazabicyclo[2.2.2]oct-2-ene (Fig. S1). 

Dbo         2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) coupled to an asparagine. 

                                         residue;  FRET acceptor that enables sdFRET measurements (Fig. S1). 
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DI     The diffusion influence ranging from 0 to 100% (eq. 11). 

DI(X)-profile                  The dependency of the diffusion influence on the square root of the augmented 

diffusion coefficient, J1/2=X (eq. 12, eq. 13). 

E  The energy transfer efficiency ranging from 0 to 100% (eq. S3-5, eq. S6a, eq. S7, 

eq. S9a, Chapter 5a 

ES1-4 The equivalence statements developed in the main text and surveyed in the SI, 

Chapter 7. 

ES1       DI(X) profiles do not depend on the distance distribution 

ES2    DI(X) profiles coincide if the product of diffusion coefficient and donor 

   lifetime is the same for the compared profiles and nothing else has 

   changed. 

ES3                                    DI(X) profiles coincide if the ratio of Förster radius and left integration limit 

are the same for the chosen distribution and nothing else has changed. 

ES4 DI(X) profiles coincide if the ratio of Förster radius and left integration limit 

are the same for the chosen distributions. 

FRET       Förster resonance energy transfer. 

FTrp                              5-L-Fluorotryptophan; it is used as a donor and displays 

                                          monoexponential fluorescence kinetics after excitation (Fig. S1, Fig S2b). 

FTrp sdFRET                  A short-distance FRET method that employs the donor-acceptor pair,  

                                          5-L- Fluorotryptophan  and Dbo. The Förster radius, R0, is only about 10 Å 

                                          (Fig. S2b). 

HSE       Haas-Steinberg equation; a partial differential equation (PDE). 

HSJE                               Haas-Steinberg-Jacob equation; a closed analytical expression (CAE). 

ID                                       Intensity of the donor fluorescence in the donor-only peptide (eq. S3). 

IDA                                     Intensity of the donor fluorescence in the donor-acceptor peptide (eq. S3). 

The ideal-chain model    or random-coil model is a distance probability distribution with the single 

                                         parameter, b (eq. 16, eq.18 eq. S27, eq. S28) 

J                                        Augmented diffusion coefficient, dimensionless (eq. 12) 

k    Rate constant of fluorescence kinetics that are, in this work, usually 

  monoexponential but, generally, do not have to be. In this work all rate 

  constants are measured in units of 1/ns. 

kD                                      Rate constant of the donor fluorescence kinetics (not necessarily 

                                         monoexponential kinetics) after donor excitation and in the 

                                         absence of an acceptor.  
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kDA         Rate constant of the donor fluorescence kinetics (not necessarily 

                                         monoexponential kinetics) after donor excitation and in the 

                                         presence of an acceptor.  

knrad                                  Rate constant of donor fluorescence deactivation by external 

                  quenching. 

krad                                    Rate constant of donor fluorescence deactivation by fluorescence emission. 

kFRET                  Rate constant of donor fluorescence deactivation by FRET (eq. 2, eq. 3). 

kT (r)    The Förster transfer rate is the rate constant of donor fluorescence 

  deactivation by FRET at donor-acceptor distance, RDA or r (eq. 1). 

L          Effective distance in absence of diffusion measured in units of Å (eq. 9). 

M     Parameter that describes the steepness of a DI(X) profile (eq. 13). 

N                   Normalization constant that follows from the condition that the  

                                          integral of a probability distance distribution from the left 

                                          integration limit, rL, to the right integration limit, rR, has to equal 

                                          unity or 100% (eqs. 16-19, eq. S26). 

N(r,t)                                Time dependent distance distribution of the optically excited donor and the 

                                          acceptor in the donor-acceptor peptide after donor excitation.  

N0(r)                               Normalized initial distance distribution at t = 0. 

NAla                              Naphtylalanine: This donor usually displays 

                                          monoexponential fluorescence kinetics after excitation (Fig. S1, Fig. S2a). 

NAla sdFRET                 A short-distance FRET method that employs the donor-acceptor pair, 

                                          naphtylalanine and Dbo. The Förster radius, R0, is only about 10 Å (Fig. S2a). 

PDE                   Partial differential equation. 

p(r)                               Probability distance distribution measured in units of Å−1. 

peq(r)                               Equilibrium probability distance distribution measured in units of Å−1. 

r                                         Donor-acceptor distance in a flexible peptide or molecule measured in 

        units of Å. 

rL                                                             Left integration limit of a distance probability distribution (eqs. 9,10). 

rR                               Right integration limit of a distance probability distribution (eqs. 9,10). 

R                               Effective distance at limitless diffusion (eq. 10). 

RDA                                    Donor-acceptor distance in a molecule with a fixed donor- acceptor 

                                           distance (eq. 1, eqs. S6a,b) 

Reff                     Effective donor-acceptor distance (eq. S8, eqs. S9a-b) 
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RT         Critical Förster radius; the Förster radius when the donor   

                               quantum yield equals unity (eq. 1, eq. S5). 

R0        Förster radius at a specific donor quantum yield. 

s                               Donor-acceptor distance measured in units of r/R0 , dimensionless (eq. 25). 

sdFRET                   Short-distance FRET experiments can be based on steady-state as well as 

                                           time-resolved fluorescence measurements but always use the conjugate 

                                           (Dbo) of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) and asparagine as acceptor. 

                                           Dbo paired with donors such as NAla, Trp, FTrp or Tyr results in Förster  

                                           radii in the 10 Å domain. 

The “Skewed-Gaussian”   model is a 3-D Gaussian probability distance distribution with two 

                                           parameters (a and b) (eqs. 16,18). 

t                                Time after donor excitation measured in units of ns. 

X        Square root of the augmented diffusion coefficient J (eq. 12). 

X0       Value of the midpoint of a DI(X)-profile; DI = 50% at X=X0 (eq. 13). 

z                    Time after donor excitation measured in units of t/!D, dimensionless (eq. 21). 

ΦD                                       Donor quantum yield, ranging from 0 to 100% (eqs. S31-33). 

!D                                                  Donor lifetime in the absence of an acceptor, inverse of kD.,  measured in 

                               units of ns (eqs. 5,6). 

!DA                                 Donor lifetime in the presence of an acceptor; inverse of kDA, measured in 

                                            units of ns (comp. Chapter 8a). 

!rad                                 Radiative donor lifetime: the donor lifetime in the absence of an 

                                            acceptor or FRET, when  the donor quantum yield equals unity; 

                                            inverse of  krad, (Fig.1, (I), eq. S31). 

.  
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3.    How Experiments Lead to the Effective Distance 
 
In Figure S1, we show chemical structures of the donor-acceptor and acceptor-only peptides 

that we used for “NAla short-distance FRET” (NAla-sdFRET) and for “FTrp short-distance 

FRET” (FTrp-sdFRET) measurements.1-4 The corresponding donor fluorescence decay kinetics 

are shown in Figure S2 and provide kDA and kD  and, by that, kFRET (via equation 2 in the main 

text: kFRET = kDA-kD). The effective distance is then obtained from equations S1 and S2 

(equations 3 in the main text). 

		
kFRET = kD

R0
Reff
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Figure S1. Examplary structures of “donor-acceptor” peptides (left) and “donor-only” 
peptides (right) used in NAla-sdFRET (top row, the donor, D, and the acceptor, A, are 
marked by circles) and FTrp-sdFRET (bottom row). The donor-acceptor peptides are used to 
determine the donor fluorescence lifetime in presence of FRET, kDA. The donor-only peptides 
are used to determine this lifetime in absence of FRET, kD. The difference is the FRET rate 
constant or the effective FRET rate (eq. 2 in the main text). 
 

 

Figure S2. Experimental determination of kFRET and the effective distance by NAla-sdFRET 
and FTrp-sdFRET. (a) NAla-sdFRET: In the absence of acceptor, of FRET,  the fluorescence of 
the donor (Naphtylalanine, NAla) in the donor-only peptide  NAla−(GS)6−NH2 decreases 
after excitation with the rate constant kD (black trace). In the presence of acceptor, of FRET, 
the fluorescence of the donor in the donor-acceptor peptide NAla−(GS)6−Dbo−NH2 decreases 
with the rate constant kDA (red trace). kFRET equals kDA minus kD (eq. 1). The effective distance 
is obtained by equations S1 and S2 (eqs. 3 and 4 in the main text). (b) FTrp-sdFRET: Same 
measurements, but with 5-L-Fluorotryptophan (FTrp) as donor. 
 
 
4.    How Theory Leads to the Effective Distance 
 
In other words: “How Solving the HSE Leads to the Effective Distance”. In Figure S3 (a-i), we 

illustrate in detail how the solutions of the HSE look like under a variety of conditions. Our 

focus is then on the calculation of the effective distance serving as the interface between the 

theoretical and the experimental results, the data to be fitted. We have shown in the main 

text’s Introduction and here (SI, Chapter 3) how the effective distance is obtained in 

experiments and show here (SI, Chapter 4) how it is obtained from numerical solutions of the 

HSE.  
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Figure S3. (a) A distance distribution as it develops in time (curves from top to bottom) and 
in the presence of FRET, of a donor-acceptor pair. (b) Time course of the fluorescence 
intensity normalized to an initial value of 1. (c) The area, ADA, under the kinetic curve shown 
in (b). (d) The same distance distribution as it develops in time in the absence of FRET, that is, 
in the presence of the donor but in the absence of the acceptor. The shape of the distribution 
remains constant during its decrease. (e) Time course of the fluorescence intensity in the 
presence of donor and in the presence of acceptor (black trace), as well as in the absence of 
acceptor (blue curve). (f) The area AD minus ADA between the time courses shown in (e). (g) 
The same distance distribution as it develops in time, in the presence of the donor-acceptor 
pair but in the absence of diffusion. (h) The same distance distribution as it develops in time, 
in the presence of the donor acceptor pair but with extremely high diffusion. The shape of the 
distribution remains constant during its decrease, as in (d). (i) Time courses for four different 
cases. Blue trace: The donor is present, the acceptor absent. Green trace: The donor-acceptor 
pair is present, their mutual diffusion is absent. Black trace: The donor-acceptor pair is present, 
the diffusion coefficient is at an intermediate typical value. Red trace: The donor-acceptor pair 
is present, the diffusion coefficient is extremely high. 
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Figure S3a shows a solution of the HSE. It provides the time development of a distance 

distribution in a peptide equipped with a donor and acceptor (subscript: DA). The number of 

excited chains N* decreases with time. The distribution maximum shifts slightly to the right 

as the fluorescence of peptides with shorter donor-acceptor distances is more quickly 

quenched by FRET as that of peptides with longer donor-acceptor distances, as a consequence 

of Förster’s law (eq. 1 in the main text). In Figure S3b, we follow this development by 

following the decreasing fluorescence intensity that we obtain by integrating over space, that 

is, over the donor-acceptor distance, r.  

Figure S3c is identical to Figure 3b but emphasizes the area under the trace ADA. This area, 

ADA is proportional to the emitted steady-state fluorescence. When we do the same 

experiments with the donor-only peptide (Fig. S3d), we have no FRET as the acceptor is 

absent. Because of that, the statistical-weight distance distribution shrinks but retains its 

shape, the normalized probability distance distribution (not shown) does not change at all. 

There is no shift of the maximum to the right. The rate constant of deactivation is, of course, 

slower in the absence of FRET (blue curve) than in its presence (black curve, Fig. S3e.) The 

area under this kinetic trace AD is therefore larger. The difference of the areas is AD−ADA (Fig. 

S3f) and presents a measure of the fractional fluorescence intensity quenched by FRET. Figure 

S3g illustrates the HSE solutions for a donor-acceptor peptide in the presence of FRET and in 

the absence of diffusion. We observe a considerable shift of the maximum to the right. Figure 

S3h shows the same but in the presence of infinite diffusion. Peptides with short donor-

acceptor distance  are deactivated first but are instantly replenished. Such strong diffusion 

maintains the shape of the distance distribution. Figure S3i illustrates how fast the 

fluorescence decreases in each case: fastest at infinite diffusion (red), second fastest at 

intermediate diffusion (black), slow without diffusion (green), and slowest in the absence of 

FRET (blue).  

A central parameter in any FRET analysis is usually the energy transfer efficiency which is the 

answer to the question of how many donor deexcitation events are caused by FRET in 

comparison to all donor-deactivation events. It is usually given by equation S3 which 

compares the fluorescence intensities of the donor-acceptor and donor-only peptides in 

steady-state experiments. We also investigate this basic concept of the energy transfer 
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efficiency in the Supporting Information, Chapter 5. As the emitted fluorescence is, as stated, 

proportional to the area under the fluorescence decay curve, we can also write equation S4. 

Thus, the numerical solution of the HSE provides us with the predicted energy transfer 

efficiency.  

In a situation, where the distance of donor and acceptor doesn’t change in time, the transfer 

efficiency is also given by equation S5. In such a case Förster’s law is valid (eq. 1) and we 

obtain the donor-acceptor distance, provided we know R0, by equations S6a-b. In a situation 

where donor and acceptor can change their distance during the lifetime of the donor 

fluorescence, we simply use the analogous equations S7-9.1 Thus, if we know the fluorescence 

intensity from steady-state experiments or if we know the fluorescence kinetics from lifetime 

experiments we get the experimentally observed effective distance by equation 9b. In case we 

know ADA and AD by numerical solutions of the HSE we get the predicted or calculated 

effective distance from equations S4 and S9b.  

 

                                                                                                                                         (S3)  

                                                            
                                                                              (S4)

 

                                                                                                                                            (S5)
 

                                                                                                                                         (1)
 

                                                                                                                                        (S6a)

 
                                                                                                                              (S6b) 

                                                                                                                                        (S7) 
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6 +RDA
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RDA = R0

1
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                                                                                                                                   (S8)
 

                                                                                                                                        (S9a) 

                                                                                                                              (S9b) 

 

5.    Fundamental Concepts 
 
5a.   The Concept of the Energy Transfer Efficiency  
 
To prepare the derivations of the L- and R-equations (equations 8 and 9 in the main text), we 

shortly recall two basic concepts, the concept of the energy transfer efficiency and the concept 

of the average. 

A central observable in every FRET study is the energy transfer efficiency, E, the number of 

donor deactivation events caused by FRET divided by all donor deactivation events. 

Experimentally, it can be determined in steady-state experiments by measuring the 

fluorescence intensities, ID and IDA, of the donor in absence and in presence of the acceptor, 

that is, in the donor-only or D-peptide and in the donor-acceptor or DA-peptide. The 

intensity fraction quenched by FRET is then given by equation S10., 

E =
ID − IDA
ID

                                                                 (S10) 

In time resolved experiments, the initial amplitude at t=0 of a decay kinetic can be set to 

unity. The areas, AD and ADA under the kinetic traces of the donor-only and donor-acceptor 

peptide are then proportional to the emitted fluorescence, and the fraction of fluorescence 

quenched by FRET is given by equation S11.  

E =
AD − ADA
AD

                                                                 (S11) 

This experimentally determined transfer efficiency serves to define kFRET (eqs. S12a,b) and the 

effective distance (eqs. S9a,b). Thus, kFRET should not be mistaken for a rate constant that can 

only describe a purely monoexponential decay process.  

kFRET = kD
R0
Reff

⎛

⎝
⎜

⎞

⎠
⎟

6

		
E =

R0
6

R0
6 +Reff

6

Reff = R0
1
E
−1⎛

⎝⎜
⎞
⎠⎟

1/6
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E =

kFRET
kFRET +kD

→ kFRET = kD
E

1−E                                                      (S12a,b)                                                 

E =
R0
6

R0
6 + Reff

6 → Reff = R0
1
E
−1

⎛
⎝⎜

⎞
⎠⎟

1/6

                                              
(S9a,b)

 
Equation S9b will be our starting point to derive the analytical expression for L (Chapter 6a). 

We just need an expression for E that we can insert. 

When we eliminate E in equations S9a and S12a, we obtain equation S13a (eq. 3 in the main 

text), which we can again solve for the effective distance (eq. S13b, eq. 4 in the main text), in 

perfect analogy to Förster’s law (eq. 1 in the main text.) 

		
kFRET = kD

R0
Reff

⎛

⎝⎜
⎞

⎠⎟

6

→Reff = R0
kD
kFRET

⎛

⎝⎜
⎞

⎠⎟

1/6

                              (S13a,b) 

Equation S13b will be our starting point to derive the analytical expression for R (Chapter 6b). 

 

5b.   The Concept of the Average 
 
The second concept is the average and its definition is essential in both derivations. The 

discrete case is usually familiar: When we throw a dice, the numbers N=1,2,…,6 can appear, 

each with a probability of 1/6, that is,  p(i=1)=p(case 1)=1/6, p(i=2)=p (case 2) =1/6 and so 

forth. It is a characteristic of a perfect dice that the probability of each possible outcome or 

case is the same and is 1/6 but usually p(i) varies. The average in this simple example is 

obviously 3.5 but in more complicated cases a generally valid formalism should be applied: 

		
N = Ni ⋅p i( )( ) =

i=1

i=6

∑ N ⋅1/6( ) =
i=1

i=6

∑ 1/6 N =
i=1

i=6

∑ 1/6 1+2+ ...+6( ) =3.5   

In the continuous case, the summation over all possible outcomes has to be replaced by 

integration: If we have a dependent variable A, which changes continuously with the variable 

x as described by the probability density distribution p(x), the average of A(x) equals: 

            		
A x( ) = A x( )

xL

xR

∫ p x( )dx
                                                  

(S14) 
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We will use this definition to obtain the average energy transfer efficiency in the L-derivation 

and to obtain the FRET rate, kFRET, as the distance average of the Förster transfer rate, kT, in 

the R-derivation.  

 

6.    Extreme Effective Distances 
 
6a.   The Effective Distance, L, in Absence of Diffusion 
 
The effective distance, L, in absence of diffusion is a function of the Förster radius and the 

distance distribution, L=f(R0,p(r)) (eq. S16). We derived this equation in the Supporting 

Information of reference [2]. (eq. S15, eq. 9 in the main text). 

		
L= Reff,	D→0 = R0 1− p(r) r6
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⎛

⎝
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⎜
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                            (S15) 

 

If we have a distance distribution p(r) and no diffusion and if we look only at a specific 

distance r, we have equation S16 (identical to equation S6a as r =RDA). 

                                                     
(S16) 

Thus, we obtain values close to unity at very short distances, r→0,  and values close to zero at 

large distances, r→∞. As the observed energy transfer efficiency accounts for the deactivation 

events at all distances it is equal to the  distance average of the distance-dependent energy 

transfer efficiency (eq. S17). 

                            (S17) 

We insert equation S16 and obtain 
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where we used in the second to last step that a constant does not depend on any variable; 

thus, the average of the constant taken over any variable can only be the constant itself. For 

instance:     

Thus, we now have:                                   E =1− r6

R0
6 + r6

⎛

⎝⎜
⎞

⎠⎟rL

rR

∫ p(r)dr                                             (S18) 

Finally, we insert equation S18 into equation S9b and obtain the expression for L (eq. S19, 

repeated eq. 15, eq. 9 in the main text). This derivation has firstly been published in the 

Supporting Information of reference S1 (ref. 12 in the main text) . 

		
L= Reff,	D→0 = R0 1− p(r) r6
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⎛
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⎞

⎠

⎟
⎟

1/6

                            (S19) 

6b.   The Effective Distance, R, at Infinite Diffusion 
 
The effective distance at infinite diffusion, R, is a function of only the distance distribution, 

R=f(p(r)), (eq. S20, eq. 10 in the main text). In contrast to L, the function R is independent of 

the donor quantum yield and the Förster radius. Thus, with growing diffusion, the effective 

distance depends more and more only on the distance distribution. 

R = Reff, D→∞ = r−6 −1/6
= 1/ r6( ) p(r)dr

rL

rR

∫
⎛

⎝
⎜

⎞

⎠
⎟

−1/6

                          (S20)
 

What characterizes the case of infinite diffusion is that the distance dependence of Förster’s 

law, that is, the distance-dependent intensity decay caused by FRET, is not able to distort the 

shape of the distance distribution. Due to limitless diffusion, the probability distribution of 

donor-acceptor distances becomes time-independent and remains unchanged. This is only 

possible if the same rate constant, kDA, is effective at every distance. Part of kDA is kD, the rate 

constant in absence of FRET, which is in any case time-independent. The other part is kFRET 

because kDA=kD+kFRET. Peptides with donor-acceptor distances at distance r become 

deactivated as governed by the rate constant kD+kT(r). However, in the case of limitless 

diffusion, the distance, at which any peptide molecule is deactivated by FRET, is only 

controlled by the distance distribution, p(r), and is otherwise completely random. Thus, the 

		
1⋅p r( )dr

rL

rR

∫ =1
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FRET rate constant connected to the deactivation of any molecule is also only controlled by 

the distance distribution, p(r); and kFRET is therefore equal to kT averaged over all possible 

distances as weighted by the distance distribution (eq. S21).  

		
kFRET = kT = kT

rL

rR

∫ (r)p(r)dr                              (S21) 

When we insert Förster’s law, we obtain equation S22. 

kFRET = kD
R60
r6rL

rR

∫ p(r)dr = kDR
6
0

1
r6rL

rR

∫ p(r)dr = kDR0
6 r−6                (S22) 

Finally, we start with equation S5b for the effective distance, apply equation S22, and obtain 

the expression for R (eq. S23 , repeated eq. 20, eq. 10 in the main text) 

		
Reff = R0

kD
kFRET

⎛

⎝⎜
⎞

⎠⎟

1/6

= R0
kD

kDR0
6 r −6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1/6

= r −6
−1/6

 , or: 

R = Reff, D→∞ = r−6 −1/6
= 1/ r6( ) p(r)dr

rL

rR

∫
⎛

⎝
⎜

⎞

⎠
⎟

−1/6

                           (S23)
 

With both values analytically determined, we now have a very natural method at hand to 

calculate diffusion-influence or DI values ranging from 0 to 100% via equation S24 (equation 

10 in the main text.) 

                                                                          (S24) 

 

7.    Explanatory Notes On the Equivalence Statements 
 
Before we add explanatory notes to the equivalence statements we start with a survey. 

 
7a.   Survey of the Equivalence Statements 
 
Next to knowing the extreme values of the effective distance, the equivalence statements were 

decisive in developing the HSJE. Enforced by logic, the first three statements yield the fourth. 

First, we repeat the formal expressions of these four statements. Later, we add explanatory 

notes. 

DI =
Reff − L
R − L
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 We arrived at the equivalence statements by always comparing two diffusion-impact profiles 

obtained with two different sets of HSE-inputs, where each set contains the probability 

distance distribution, the diffusion coefficient, the Förster radius and the left integration limit. 

We repeat that we never noted an influence of the right-integration limit, rR. We just had to 

make sure that p(rR) is always close to zero. Thus, set(1) consists of p(1)(r), D(1), !D(1), R0(1) and 

rL(1) and set(2) of p(2)(r), D(2), !D(2), R0(2) and rL(2) . The augmented diffusion coefficients, J(1) and 

J(2), are then given by equation S25 (in accordance with equation 12 in the main text). 

		

J 1( ) =
D 1( )τD

1( )

R0
1( )( )2

	and	J 2( ) =
D 2( )τD

2( )

R0
2( )( )2

                                          (S25) 

The survey: 

ES1: The diffusion-impact profiles of any two well-behaved probability distributions, p(1)(r) and p(2)(r), 

coincide if they were obtained with the same values of the donor lifetime, !D , the Förster radius, R0 , and 

the left-integration limit, rL. 

For	any	p(1) r( ) 	and	p(2) r( ) :If	D 1( ) =D 2( ) , 	τD
1( ) =τD

2( ) , 	R0
1( ) = R0

2( ) ,and	rL
1( ) = rL

2( ) 	
then	DI 1( ) J 1( )( ) =DI 2( ) J 2( )( )                                    (ES1) 

ES2: Given any probability distribution: If the diffusion coefficient is varied from D(1) to D(2) and the 

donor lifetime from !D
(1)  to !D

(2)  but the product of diffusion coefficient and donor lifetime remains 

constant, then the diffusion-impact values obtained from the diffusion-impact functions, DI(1)(J(1)) and 

DI(2)(J(2)), are identical. The corresponding diffusion-impact profiles coincide. 

For	any	p 1( ) r( ) = p 2( ) r( ) :If	D 1( )τD
1( ) =D 2( )τD

2( ) , 	R0
1( ) = R0

2( ) , 	and	rL
1( ) = rL

2( ) 	
then	DI 1( ) J 1( )( ) =DI 2( ) J 2( )( )

               

(ES2) 

ES3: Given any probability distribution: If the Förster radius and the left-integration limit are varied 

but not their ratio then the diffusion-impact values obtained from the diffusion-impact functions, 

DI(1)(J(1)) and DI(2)(J(2)), are identical. The corresponding diffusion-impact profiles coincide. 

		

For	any	p 1( ) r( ) = p 2( ) r( ): 	If	D
1( )τD

1( )

R0
1( )( )2

=
D 2( )τD

2( )

R0
2( )( )2

	and	 R0
1( )

rL
1( ) =

R0
2( )

rL
2( ) 	

then	DI 1( ) J 1( )( ) = DI 2( ) J 2( )( )
                                 (ES3)                                 
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ES4: For any pair of distance distributions, p(1)(r) and p(2)(r): If the diffusion coefficient or the donor 

lifetime or the Förster radius are varied but not the augmented diffusion coefficient J composed of these 

parameters and if the ratio of Förster radius and left-integration limit is not varied, then the diffusion-

impact values obtained from the diffusion-impact functions, DI(1)(J(1)) and DI(2)(J(2)), are identical. The 

corresponding diffusion-impact profiles coincide.  

For	any	p 1( ) r( )and	p 2( ) r( ) : 	If	D
1( )τD

1( )

R0
1( )( )2

=
D 2( )τD

2( )

R0
2( )( )2

	and	 R0
1( )

rL
1( ) =

R0
2( )

rL
2( ) 	

then	DI 1( ) J 1( )( ) =DI 2( ) J 2( )( )                                                        

(ES4) 

 

7b.    ES1:  The Impact of the Left Integration Limit, rL 
 
We	repeat	the	formal	notation	of	ES1:	
For	any	p(1) r( ) 	and	p(2) r( ) :If	D 1( ) =D 2( ) , 	τD

1( ) =τD
2( ) , 	R0

1( ) = R0
2( ) ,and	rL

1( ) = rL
2( ) 	

then	DI 1( ) J 1( )( ) =DI 2( ) J 2( )( )  

The DI-profiles of two distributions overlap, but only, if they share the same left integration 

limit, rL. In Figure S1, we illustrate what happens if everything but the left integration limit 

stays the same. We start with two distributions (Fig. S1a), whose rL-values differ. Figure S1b 

shows the corresponding diffusion profiles and Figure S1c the diffusion-impact profiles. 

These profiles do not overlap. We observe that the distribution with the smaller rL value 

approaches the dynamic limit more slowly.  

The contribution of diffusion to FRET at infinite diffusion is higher in case of the smaller left 

integration value. This can be concluded from term-(2) of the HSE, which encompasses 

Förster’s law (eq. 5): At small rL values, FRET becomes fast and, therefore, higher values of 

the augmented diffusion coefficient are necessary to reach the dynamic limit. 
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Figure S4. (a) Two Gaussian distance distributions (see equation 18 in the main text) with 
b = 30Å, rL = 3Å (black) and b = 30 Å, rL = 5Å (blue). (b)  The corresponding diffusion profiles 
obtained with !D = 100ns and R0 = 15Å. (c) The corresponding DI-profiles.  
 
 
7c.   ES1: “Well-Behaved Distance Distributions”  
 
Such that a distance distribution is really a probability density distance distribution, its 

integral from start (r = rL) to end (r = rR) has to be unity (eq. S26).   

                                                                (S26) 

The left-integration limit can usually not be chosen as zero, because donor and acceptor can 

impossibly occupy the same point in space. In the past, the rL value has therefore been chosen 

somewhat arbitrarily or has not been mentioned at all. If we now use, for instance, the ideal-

chain model as expressed by equation S27, we obtain in some case large discontinuities of the 

distance probability density at the point r = rL (Fig. S2a); it would be hard to find any physical 

justification for such a discontinuity. If instead we use the distribution model as expressed by 

equation S28, the probability density value starts with zero at r=rL and continuously grows or 

descends thereafter (Fig. S2b). 

 

		
p(r)=Nr2 ⋅ 3

2πb2
⎛
⎝⎜

⎞
⎠⎟
⋅exp −3r

2

2b2
⎛

⎝⎜
⎞

⎠⎟
;	b= r2

1/2
                         (S27) 

p(r) = Nr0
2 ⋅ 3

2πb2

⎛
⎝⎜

⎞
⎠⎟
⋅exp −

3r0
2

2b2

⎛

⎝⎜
⎞

⎠⎟
;  r0 = r − rL

                               

(S28) 
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Figure S5. (a) A distance distribution according to equation S27 with b=10Å. The probability 
density equals zero at r=0Å, but the smallest donor-acceptor distance allowed is rL = 3Å. The 
normalization is taken from rL to rR such that the area under the curve between rL and rR 
becomes unity. The probability density jumps from zero when r < rL to a large finite value at r 
= rL. (b) A distance distribution according to equation S28 with b = 10Å.  The probability 
density equals zero at r = rL. After normalization, the area under the curve between rL and rR 
equals unity. The probability density value starts with zero at r = rL and continuously grows 
and descends thereafter.  
 
 
7d.   ES2:   Variation of the Donor Lifetime 
 

 

ES2 follows by force from the HSE, as shown in the main text by variable substitution.  

We can also convince ourselves of ES2 in more intuitive ways. The simplest procedure is 

probably to simply multiply both sites of the HSE with the same factor, c, and absorb this 

factor on the right hand site into the donor lifetime in term-(1) and also in term-(2) and into 
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		p(r =0)	 = 	0
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For	any	p 1( ) r( ) = p 2( ) r( ):If	D 1( )τD
1( ) = D 2( )τD

2( ) , 	R0
1( ) = R0

2( ) , 	and	rL
1( ) = rL

2( ) 	
then	DI 1( ) J 1( )( ) = DI 2( ) J 2( )( )
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the diffusion coefficient in term-(3). We obtain a new donor lifetime !D’ and a new diffusion 

coefficient, D’, but their product has the same value as the product of the old donor lifetime 

and the old diffusion coefficient because: !D’⋅ D’ = (!D/c) ⋅ (D⋅c) = !D⋅ D. By multiplying both 

sites with, for instance, c = 10, we just make all processes in the HSE ten times faster. The 

effective-distance values we obtain from the HSE would, of course, not be impacted by that 

procedure. If we wish to take it to a more universal or or nearly “poetic” level: If all processes 

in the universe would suddenly run ten times faster, we would not be able  to notice this 

change, as all our brain processes would also run ten times faster. 

 

7e.    The HSJE Written as a Single Equation 
 
In Figure 8 in the main text we represented the HSJE as decomposed into eight simple 

equations (I –VIII). That such a decomposition makes sense becomes obvious when we try 

here to represent the equation on a single line (eq. S29). 

             (S29) 
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8.     Global Analysis 
 
8a.   A Study with NAla sdFRET and FTrp sdFRET on a Flexible Peptide 

The following experiments were already reported in detail in reference [3]. We collected 48 

data sets on the Donor−GS6−Dbo peptide where the donor was either FTrp in FTrp sdFRET 

measurements or NAla in NAla sdFRET measurements (Fig.S1). While FTrp displays a 

radiative donor lifetime of 19.8 ns in water,  NAla displays one of 256 ns. Thus, we switched 
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the donor-acceptor pair from FTrp/Dbo to NAla/Dbo and varied, by that, the donor 

fluorescence lifetime by a factor of about 13, by more than an order of magnitude. Also by an 

order of magnitude, by a factor of about 14, we varied the viscosity, η, by adding ethylene 

glycol to the peptide samples. By that, we varied the diffusion coefficient in accordance with 

the equation D=D0⋅η0/η, where D0 and η0 are the diffusion coefficient and the viscosity in 

water in the absence of ethylene glycol. Thus, in total we varied the diffusion-enhancement of 

FRET, varied DFRET, by more than two orders of magnitude. 

Each of the so obtained 48 data sets consisted of four values, of the donor lifetime, the Förster 

radius, the viscosity and the effective distance. At all ethylene glycol concentrations, the 

kinetic traces followed monoexponential time courses. Note, that we used 

5-L-fluorotryptophan (FTrp) instead of tryptophan as donor, as tryptophan would have led to 

more complex kinetics [5]. Only at high ethylene glycol concentrations and in the case of the 

FTrp-labeled peptide, biphasic fits seemed to be slightly more appropriate and were used to 

calculate amplitude-weighted lifetimes,  !DA = ∑iAi!I  [6-8]. The rate constants, kD and kDA were 

then simply taken as the reciprocal values of the determined lifetime constants,  kD = !D
−1and 

kDA = !DA
−1.  

These experimentally obtained effective distance values were now fitted to the theoretical 

values provided by the HSJE by allowing the software to adjust the three parameters, b, rL,  

and D, when the distribution model was the ideal chain model or to adjust the four 

parameters, a, b, rL, and D, when the distribution model was the skewed Gaussian model. 

 

8b.   Details of the Global Analysis Procedure  

Being familiar with global analyses is not a matter of course. Some motivated readers might 

find the following description useful. In our concrete case, we have 48 experimental data sets, 

where each set contains the values of the effective-distance, Reff,obs, the donor lifetime, !D, the 

Förster radius, R0, and the viscosity, η. To extract from these data the diffusion coefficient, D, 

and the parameters of the chosen distance-distribution model, requires a global analysis that 

can be carried out in Excel and Excel’s solver add-in. Thus, we start in Excel with four 

columns, with the “Reff,obs”-, the “!D” -, the “R0”-, and the “η”-column each with 48 entries, 

thus, each stretched over 48 rows.  
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When we use the skewed-Gaussian distance distribution model with its two parameters, a 

and b, we want to determine the values for a, b, rL and D. Of course, as in any fitting, we can 

also fix one of these parameters, for instance, the left-integration limit, rL, if we have 

beforehand information from other sources. As in any fit, we have to choose initial values for 

the four parameters that we enter into these four “destination” cells, the “a”-, “b”-, “rL”-, and 

“D”-cell. The solver varies these fitting parameters in trying to minimize the value of the 

sum-of square difference between the measured values of the effective distance, Reff,obs , and 

the predicted values, Reff,calc , calculated from the HSJE. Let’s recall that we explained in the 

main text’s Introduction how Reff or Reff,obs values are obtained experimentally (supported by  

Fig. S1) and in the Supporting Information, Chapter 4 how Reff or Reff,calc values are obtained from 

the HSE.  

Figure 8 in the main text and equation S29 show how Reff,calc is obtained from the HSJE. To 

calculate Reff,calc  for each of the 48 measured data sets, we need the L and R values and the DI 

values for each measurement (Fig. 8, (I)). The initially chosen probability-distribution values, 

a, b, and rL together with the experimentally known R0 –values, with the “R0” –column, give 

us the L and R-values for each measurement, the “L” and “R”-columns (Fig.8, (VIII) and (IX)). 

The needed integrations to calculate L and R are done numerically by going in steps of 0.1Å 

from r = rL to r = 60 Å. 

The R0 values together with the initially chosen rL value give us the X0 and M values (Fig.8, VI 

and VII), which then yield the DI values or the “DI”-column (Fig.8, (II)). 

We also need the X values for DI-calculation, which we obtain from equations III and IV in 

Figure 8. The diffusion values in equation IV, D1-48, are given through equation S30 by the 

known viscosity values, by the “η”-column, and by the diffusion value, D1 , which is the 

diffusion coefficient in pure water, whose initially estimated value is entered into the “D”-or 

“D1” destination cell before the fit starts and alters it. 

 

D1−48 = D1 ⋅
η1
η1−48

                                                          (S30) 

 

The values of the donor lifetime and R0 are also experimentally known, the “!D” –column and 

the “R0”-column. So, we have the J-and X-values or columns, and, by that, the DI values or 
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the “DI”-column and, by that, the calculated effective distance values or the “Reff,calc”-column. 

While the four measurement columns (Reff,obs, !D, R0, η) never change during the global fit, the 

columns containing the derived parameters change whenever the solver changes a value in 

one of the four destination cells that contain the parameters to be determined, usually a, b, D, 

and rL. The solver stops when the value in the target cell can not be further minimized. This 

value is the sum-of square difference between the measured values of the effective distance, 

Reff,obs, and the predicted values, Reff,calc, calculated from the HSJE. In case of a near perfect fit, 

this value approaches zero.  

 

8c.   Applying the HSJE to Experimental Data in a Global Fit 

We are ready to present the analysis of this first application of the HSJE. For the peptides 

shown in Figure S1, we used NAla and FTrp sdFRET to determine 48 data quadruples of the 

parameters Reff, !D, R0 and η, the viscosity. These data have been formerly presented and 

discussed in reference [3].  But only now we can apply the HSJE to them. Firstly, we 

performed the global fit on the basis of the one-parameter ideal chain model (eq. 18 in the 

main text); the results were always obtained in less than 15 seconds. The fit as shown and 

described in Figure S6, in panels b and c and the legend, was agreeable but far from perfect. 

Secondly, we used the 3D- or skewed-Gaussian model (eq. 19 in the main text). Experimental 

and predicted data matched perfectly (Fig. S7, panels b and c). Figure S6, panel d, and Figure 

S7, panel d, reflect the typical shape of a sigmoid as was not necessarily expected, because 

each point of the curve refers to a different R0 value and, at a constant rL, to a different ratio 

R0/rL and, by that, to different X0- and M-values. Obviously, the relatively small R0 variation 

within the analyzed data set (9.6 - 10.4 Å) left the overall picture of a sigmoid intact. DI-values 

ranged from about 10% to 80% (8.6% to 77.9%). This large diffusion-influence range that was 

experimentally covered speaks to the validity of the  global analysis.  
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Figure S6.  Results of a HSJ-based global fit of 48 experimental data sets. The “ideal chain” 
distance distribution model was used (eq. 18 in the main text) (a) The probability density 
distance distribution obtained from the ideal-chain analysis (solid line). The obtained 
parameters were b=19.5Å, D=68.5Å2/ns, and rL=1.5Å. 
 (b) The predicted effective distance plotted against the experimentally observed effective 
distance. The standard deviation from a straight line of slope one equaled 0.15Å. (c) The 
observed effective distance obtained from FTrp-sdFRET measurements (blue circles) and 
NAla-sdFRET measurements (red circles) and the predicted effective distance (black circles) 
plotted against X, the square root of the augmented diffusion coefficient, J. (d) The diffusion-
influence values, obtained after normalization, plotted against X.  
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Figure S7.  Results of a HSJE-based global fit of 48 experimental data sets. The 3D- or skewed-
Gaussian model (eq. 19 in the main text) was used. The global fit resulted in a=9.6⋅10−6Å−2, 
b=−7221.85Å, D=43.4Å2/ns and rL=1.6Å. (a) The distance distribution obtained from the 
skewed-Gaussian fit (solid line) compared to the distribution obtained from the ideal-chain fit 
(dashed line). (b) The values of the predicted effective distance were plotted against the 
values of the experimentally observed effective distance. The standard deviation from a 
straight line of slope one equaled 0.12Å. (c) The observed effective distance obtained from 
FTrp-sdFRET measurements (blue circles) and NAla-sdFRET measurements (red circles) and 
the predicted effective distance (black circles) plotted against X, the square root of the 
augmented diffusion coefficient, J. (d) The diffusion-influence values, obtained after 
normalization, plotted against X.  
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the skewed-Gaussian model leads to a better, nearly perfect fit (Fig, S7b,c), and the 

distribution is slightly skewed to the left (Fig.S7a, dashed line). We understand the different 

diffusion constants when we recall that shorter donor-acceptor distances contribute more 

than longer distances to FRET (Förster’s law, equation 1 in the main text), and that mutual 

donor-acceptor diffusion contributes more to DFRET when it is active at shorter distances. 

Thus, the Gaussian distribution curved towards shorter distances in combination with the 

smaller coefficient 43.4 Å2/ns corresponds to the ideal-chain distribution, which peaks at a 

larger distance, in combination with the higher coefficient of  68.5 Å2/ns. In an earlier work, 

we applied the HSE in a global analysis of the same data set and settled on a diffusion value 

of 53.4 ± 6.0 Å.3 At that time, we were still unaware of the importance of the left integration 

limit, which we simply set to 0 Å. We see here very well that the “true” value of D depends 

on a correctly chosen distribution model.	Thus, although we believe we are closer to the truth 

with respect to the distance distribution and diffusion coefficient, we also believe that further 

investigation into this matter is warranted. Indeed, it is also possible that a combination of two 

Gaussian distributions, resulting in a distribution with two peaks or one with a left shoulder, 

might better describe the experimental situation and also allow a somewhat higher, physically 

more intuitive value of the left-integration limit. 

The HSJE allows for such a more complex analysis, leading to the final question of how to 

accurately determine an appropriate set of measurements that provides confidence in p(r) and 

D. The structure of the augmented diffusion coefficient, J, clearly points to what should be 

part of the best strategy, the variation of R0 (eq. 12 in the main text, eq. S33). Ideally, one 

would employ two different FRET donor-acceptor pairs in combination with donor lifetime 

and viscosity variation. It might even be possible to include a slight viscogen-induced change 

in the distance distribution into such an extended analysis. 

 

9.    Donor Quantum Yield 
 
Indeed, there is a further photophysical parameter that can be included into the discussion, 

the donor-quantum yield. This parameter defined by equation S31 is implicit in the survey of 

FRET processes in Figure 1 in the main text. It is also among the topics in a couple of earlier 

DFRET studies [1,3,7,9]. The donor lifetime depends on the donor quantum yield and is the 



	 28	

product of the donor quantum yield and the radiative donor lifetime,!rad, the lifetime when 

the quantum yields equals unity (eqs. S31). The Förster radius also depends on the donor-

quantum yield: The sixth power of the Förster radius is the product of the quantum yield and 

the sixth power of the critical Förster radius, the Förster radius when the quantum yield 

equals unity (eq. S32). Using equations S31 and S32, we obtain J and its square root X as 

function of the donor-quantum yield (S33). 

 

        (S31) 

          (S32) 

      (S33) 

 
The donor-quantum yield seems to be an interesting variable as it can be independently 

controlled in experiments. Previously, we varied it by a factor of 12.6 by simply adding iodine 

ions to the the experimental samples [1]. However, we detected not the slightest effect on the 

effective distance. Due to the present study, we now know that we worked, at that time, close 

to the dynamic limit. A look at Figures S6d or S7d could suggest that decreasing the quantum 

yield and, by that, the augmented-diffusion coefficient, should decrease the diffusion 

influence and, by that, the effective distance. The experimental results, however, contradict 

such a gut feeling [1]. We now have learned that a decreasing quantum yield implies a 

decreasing Förster radius and, by that, an increasing M-value or slope of the DI-sigmoid; 

higher DI-values are reached earlier: When we are close to the dynamic limit, a quantum-

yield variation has simply no impact on the diffusion influence and the effective distance. We 

need to remind ourselves that the dynamic limit is given by Reff=R and that R does not 

depend on the donor quantum yield (eq. S20). In contrast, the static limit, Reff=L, depends on 

R0 and, by that, on the quantum yield (eq. S19, eq. S32).  Thus, a variation of the donor-

quantum yield near to the static limit might feed additional information into a global 

analysis. However, we need to consider that the only signal measured in experiment is the 

fluorescence signal. When we significantly decrease the donor quantum yield, we also accept 
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a deteriorating fluorescence signal: The envisaged gain of information is offset by the loss in 

signal accuracy. Theoretically, quantum-yield variation could be useful for a global analysis, 

practically, it almost never is. In contrast, in another method based on two fluorescence 

labels, on two pyrene labels used in the framework of the FBM, of the fluorescence blob 

model, quantum-yield variation often played an important role [10-13]. 

We underestimated the role of the donor quantum yield when we previously proclaimed an 

equal or symmetrical influence  of the diffusion coefficient and the radiative donor lifetime, 

τrad, on the measured effective distance [3]. When we put trust into the HSE, equivalence 

statement 2 (ES2) follows by force: the symmetry between the diffusion coefficient and the 

experimental donor lifetime, τD. In our previous analysis [3], quantum-yield variation and the 

distinction between radiative and experimental donor lifetime indeed made little difference 

in regard to the conclusions but we can not yet exclude that experimental circumstances 

might exist or can be created where it does.  

 

 
10.    Mathematical Challenges 
 
a. We put much more effort in collecting evidence for the validity of ES1 than for the validity 

of ES2. The reason is that ES2 is a mathematically-enforced consequence of the HSE. To show 

that ES1 follows by force from the HSE still poses a challenge.  

b. We observed perfectly symmetrical diffusion profiles (DI(J), DI(X)) in our study but we 

were not yet able to come up with a proof that this has to be the case. 

c. We were surprised that it is possible to derive a closed analytical expression from a PDE in 

a way that to the professional mathematician might appear as “child’s play”. We are therefore 

curious whether such a procedure could be extended to other PDEs to help the 

biologist/chemist/physicist to tackle her or his problem in a more efficient manner. 

 

11.    Outlook 

The work ahead includes the extension of the HSJE to other ranges of R0, that is, to other 

FRET donor-acceptor pairs. Further, guided by the structure of the augmented diffusion 

coefficient, we can now develop recipes to minimize and optimize experimental efforts to 
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determine polymer structure and dynamics, distance distribution and diffusion coefficient, by 

applying the HSJE in global analyses. It is also much easier now to determine experimental 

data sets that allow for the analysis of more complicated distance distributions such as a 

double-Gaussian distribution or a distribution that changes with the concentration of an 

added agent. 
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