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Abstract: In the huge field of polymer structure and dynamics, including intrinsically disordered
peptides, protein folding, and enzyme activity, many questions remain that cannot be answered by
methodology based on artificial intelligence, X-ray, or NMR spectroscopy but maybe by fluorescence
spectroscopy. The theory of Förster resonance energy transfer (FRET) describes how an optically
excited fluorophore transfers its excitation energy through space to an acceptor moiety—with a rate
that depends on the distance between donor and acceptor. When the donor and acceptor moiety
are conjugated to different sites of a flexible peptide chain or any other linear polymer, the pair
could in principle report on chain structure and dynamics, on the site-to-site distance distribution,
and on the diffusion coefficient of mutual site-to-site motion of the peptide chain. However, the
dependence of FRET on distance distribution and diffusion is not defined by a closed analytical
expression but by a partial differential equation (PDE), by the Haas-Steinberg equation (HSE), which
can only be solved by time-consuming numerical methods. As a second complication, time-resolved
FRET measurements have thus far been deemed necessary. As a third complication, the evaluation
requires a computationally demanding but indispensable global analysis of an extended experimental
data set. These requirements have made the method accessible to only a few experts. Here, we show
how the Haas-Steinberg equation leads to a closed analytical expression (CAE), the Haas-Steinberg-
Jacob equation (HSJE), which relates a diffusion-diagnosing parameter, the effective donor–acceptor
distance, to the augmented diffusion coefficient, J, composed of the diffusion coefficient, D, and the
photophysical parameters that characterize the used FRET method. The effective donor–acceptor
distance is easily retrieved either through time-resolved or steady-state fluorescence measurements.
Any global fit can now be performed in seconds and minimizes the sum-of-square difference between
the experimental values of the effective distance and the values obtained from the HSJE. In summary,
the HSJE can give a decisive advantage in applying the speed and sensitivity of FRET spectroscopy
to standing questions of polymer structure and dynamics.

Keywords: fluorescence; FRET; peptide and polymer structure and dynamics; distance distribution;
diffusion coefficient

1. Introduction

There is no question about the significance of fluorescence in multiple molecular
investigations; its speed and sensitivity even enable investigations on the level of the single
molecule [1]. There is also no question about the significance of Förster resonance energy
transfer in structural and dynamic molecular studies as the number of citations to Förster’s
original paper approaches 10,000 [2]. We believe that diffusion-enhanced fluorescence
resonance energy transfer, or DFRET, on the molecule ensemble can also develop into an
influential method but is, as of now, difficult to handle and non-transparent in terms of data
acquisition and analytics [3–14]. This article aims to make DFRET accessible to any scientist
working in one of the many fields of polymer structure and dynamics. Here, we would
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like to point out that the Supporting Information file we have created contains assisting
information in regard to different audiences: the layman, the expert, and, especially, the
scientist who wants to put our method to work.

When a protein or peptide, or any molecule, has been modified at two sites with two
fluorophoric moieties, one moiety can act as FRET donor and the other as FRET acceptor.
When the intermittent chain between these sites is flexible, the optically excited donor
and the acceptor can approach each other by diffusional motion. In accordance with
Förster’s law (Equation (1)), the probability of energy transfer from donor to acceptor
increases. Förster’s law connects the distance-dependent transfer rate constant, kT(r), with
the rate constant of deactivation in the donor-only peptide, kD, with the Förster distance,
R0, a constant that characterizes the donor-acceptor pair, and with the donor–acceptor
distance, RDA.

kT = kD

(
R0

RDA

)6
(1)

Figure 1 gives a survey of the processes relevant in DFRET.
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for instance, by iodine ions (knrad) or by transferring its excitation energy to the acceptor, A (kFRET). 
FRET can take place at every D-A distance but is more likely to happen at shorter distances, which 
is why it is enhanced by D-A diffusion. The pertinent equations (I-IV) are explained in the main 
text. 

After excitation, the excited donor (D) can become deactivated in one of three ways: 
by emitting fluorescence with the rate constant krad (“kradiative”); by being quenched, for 
instance by iodine ions, with the rate constant knrad (“knon-radiative”); or by transferring its 
excitation energy to the acceptor (A) with the rate constant kFRET. In experimental meas-
urements, we always use the donor-acceptor peptide (the DA-peptide) together with the 

Figure 1. DFRET: Diffusion-enhanced Förster resonance energy transfer. After excitation, the excited
donor, D, can either become deactivated by emitting fluorescence (krad) or by being quenched, for
instance, by iodine ions (knrad) or by transferring its excitation energy to the acceptor, A (kFRET). FRET
can take place at every D-A distance but is more likely to happen at shorter distances, which is why it
is enhanced by D-A diffusion. The pertinent equations (I–IV) are explained in the main text.

After excitation, the excited donor (D) can become deactivated in one of three ways: by
emitting fluorescence with the rate constant krad (“kradiative”); by being quenched, for instance
by iodine ions, with the rate constant knrad (“knon-radiative”); or by transferring its excitation
energy to the acceptor (A) with the rate constant kFRET. In experimental measurements, we
always use the donor-acceptor peptide (the DA-peptide) together with the “donor-only”
peptide (the D-peptide). If no acceptor is present but only the donor, the measured rate of
deactivation is kD = krad + knrad (Figure 1; (I)). In the donor-acceptor peptide, in presence
of an acceptor, the measured rate is kDA = krad + knrad + kFRET (Figure 1, (II)). Subtracting
(I) from (II) yields the effective FRET rate, kFRET, kFRET = kDA − kD (Equation (2)). In any
normal situation, kFRET increases with increasing diffusional motion between donor and
acceptor. During the lifetime of the donor fluorescence, donor and acceptor can approach
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each other, and the probability of the FRET event increases in accordance with Förster’s law
(Equation (1)), where kT is the distance-dependent Förster transfer rate constant at a specific
donor–acceptor distance, RDA. Consequently, kFRET increases with diffusion, and the effective
distance derived from kFRET (Figure 1, (III), (IV), Equations (3) and (4)) decreases. In summary,
the effective distance (Equation (4)) is a suitable diagnostic parameter to measure the diffusion
enhancement of FRET. The effective distance serves as the interface between experiment
and theory, that is, between the experimental results and the numerical solutions of the
Haas-Steinberg equation (HSE). To restate, the effective distance is obtained experimentally
from steady-state or time-resolved measurements on the peptide equipped with donor and
acceptor, the “DA-peptide” (see Figure 1), and the peptide equipped only with the donor, the
“D-peptide”. Measurements on the DA-peptide yield the fluorescence intensity, IDA, in steady-
state experiments or the fluorescence decay rate, kDA, in time-resolved experiments, while
measurements on the D-peptide yield ID or kD. Exemplary chemical structures (Figure S1)
and kinetics (Figure S2a,b) are given in the Supporting Information, Chapter 3.

kFRET = kDA − kD (2)

kFRET = kD

(
R0

Reff

)6
(3)

Reff = kD

(
R0

kFRET

)1/6
(4)

Introduction to the Haas-Steinberg Equation

The story of diffusion-enhanced FRET or DFRET started 40 years ago [3]. Since then,
the number of published articles based on DFRET has remained small, not for lack of
interest but for the method’s complexity [4–6,8,10–14]. In 1978, Steinberg derived what
we began to call the Haas-Steinberg equation (HSE) [3]. Haas and co-workers developed
unique techniques and used the HSE to tackle fundamental biological questions in pro-
tein folding, enzyme activity, and, more recently, in regard to intrinsically disordered
peptides [3,5,10,11,15].

The HSE allows the calculation of theoretical effective distances. These theoretical or
predicted values of HSE-based effective distances can then be fitted to the experimentally
observed values in a multivariate analysis; in a global fit, that yields structure, i.e., the
distance distribution, p(r), as well as dynamics, i.e., the diffusion coefficient, D.

In this work, we show how the HSE leads to a closed analytical equation, the HSJE
(Haas-Steinberg-Jacob equation) by going through four equivalence statements (ES1-4).
The HSJE eases and accelerates any global analysis, and, in addition, provides insight into
the role of each parameter participating in DFRET.

2. Materials and Methods

The HSE was solved numerically by using the finite element method implemented in
the PDE toolbox of MATLAB 2020 (MathWorks). The results from MATLAB calculations
were analyzed within MATLAB 2020 and Microsoft Excel (Mac 2011). Figures were pro-
duced by using ProFit (QuantumSoft). For the global fits based on the HSJE and presented
in the Supporting Information, Chapter 8, Figures S6 and S7, we used Microsoft Excel and
its Solver add-in.

2.1. The HSE

The HSE can be written in various ways; we have specifically chosen the version
shown in Equation (5).

∂N(r, t)
∂t

= − 1
τD

N(r, t)− 1
τD

R6
0

r6 N(r, t) +
∂

∂r

(
N0(r)D

∂(N/N0)

∂r

)
(5)
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In Equation (5), we focus on the donor fluorescence lifetime, τD, instead of the donor
deactivation rate constant, kD, used in Figure 1 (Equation (I): kD = krad + knrad). It is much
easier to recall the value of a lifetime, for instance, 100 ns, than that of a rate constant, for
instance, 0.01 ns−1. The donor lifetime in the donor-only peptide, τD, is simply the inverse
of the rate constant, kD, in this peptide (Equation (6)).

τD = k−1
D (6)

Our shorthand notation for the HSE will simply be “(0) = (1) + (2) + (3)”, which
enables us to address the left-hand-side term of the equation with term-(0) and the right-
hand-side terms of the equation with terms-(1), -(2), and -(3). The function, N(r,t), on
the left-hand side is a measure of the number of chains with excited donor after donor
excitation. At a specific donor–acceptor distance, r, this number decreases with time, t.
Thus, we have two independent variables, r and t, and, therefore, a partial differential
equation, a PDE. N(r,t) is further normalized in a way that N0 = N(r, t = 0) in term-(3)
is the initial probability density distance distribution. Upon irradiation, donors become
activated with a probability assumed to be random, to be independent of the presence
of an acceptor at various distances. In consequence, N0 is identical to the equilibrium
distance distribution, p(r), of all chains present in the measurement sample. This distance
distribution, p(r), as well as the site-to-site diffusion coefficient, D, in term-(3), is what we
are interested in. They inform us on the structure and the dynamics of the (bio)polymer
under investigation.

In summary, the HSE is a linear partial differential equation of second order: The
second derivative becomes better visible on expansion of term-(3). Further, the HSE has
constant coefficients that include the parameters, D, τD, and R0. The HSE relates the rate
of donor deactivation, term-(0); to the rate of donor deactivation in the absence of FRET,
term-(1); plus the additional rate due to FRET, term-(2); plus the additional rate due to
diffusion enhanced FRET, term-(3). A numerically obtained solution of the HSE yields the
value of the effective distance between donor and acceptor. We elaborate on this calculation
in Supporting Information, Chapter 4, Figure S3a–i.

2.2. Steinberg’s Derivation

Steinberg’s derivation of the HSE led him first to the following form (Equation (7)) [3].

∂N(r, t)
∂t

= −kDN(r, t)− kD
R6

0
r6 N(r, t) +

∂

∂r

(
N0(r)D

∂(N/N0)

∂r

)
(7)

Here, the diffusion coefficient, D, in term-(3) does not depend on time, t, but it
could still depend on the donor–acceptor distance, r: D = f (r). It is, however, even today,
challenging to gather sufficient experimental results to investigate this possible dependence.
Steinberg was content with an average diffusion coefficient that can be regarded as a
constant. Then, D can be written in front of term-(3) (Equation (8)).

∂N(r, t)
∂t

= −kDN(r, t)− kD

(
R0

r

)6
N(r, t) + D

∂

∂r

(
N0(r)

∂(N/N0)

∂r

)
(8)

When we apply Equation (6), we again obtain the HSE in the form of Equation (5).
In summary, we know how to obtain Reff from experiments as well as from numerically
solving the HSE. We can therefore use the HSE to globally fit the experimental data. This
was quite arduous in the past, where the HSE served a bit as a black box [5,6,10–14]. In the
Results Section, we develop the Haas-Steinberg–Jacob equation (HSJE), a closed analytical
expression (CAE). Any global fit based not on the HSE (PDE) but on the HSJE (CAE) is
faster by about two orders of magnitude.
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3. Results
3.1. Ideas and Concepts

We first outline the basic ideas and concepts. Based on a freely selected distance
distribution (Figure 2a) and selected values for the donor lifetime and Förster distance, τD
and R0, we solved the HSE for a large range of values of the diffusion coefficient reaching
from 10−3 to 106 Å2/ns. The obtained effective-distance values formed a full diffusion
profile, ranging from the “static limit” in the near absence of diffusion to the “dynamic
limit” at high diffusion. In figures and graphs, we always plotted the effective distance
against the square root of the diffusion coefficient or, later, against the square root of the
“augmented diffusion coefficient” to keep the x-axis numbers or labels manageably small
and readable (Figure 2b).
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Figure 2. (a) An exemplary probability distance distribution of the donor–acceptor distance in a
linear (bio)polymer (b) The diffusion profile or Reff (D1/2) profile: Solving the HSE under variation
of the diffusion coefficient results in values of the effective distance that range from L to R (dashed
lines). The effective distance plotted against D1/2 approaches Reff = L when the extent of diffusional
motion approaches zero and approaches Reff = R when the extent of diffusional motion approaches
infinity. (c) The diffusion-influence profile or DI(D1/2) profile is obtained when the diffusion profile
shown in (b) is normalized with L and R according to DI = (Reff − L)/(R − L) (Equation (11)). The
diffusion influence, DI, can adapt values between 0 (0%) and 1 (100%). (d) The diffusion-influence
profile, the DI(J1/2) or DI(X) profile: The diffusion influence plotted against the square root of the
augmented diffusion coefficient, X = J1/2 (see Equation (12)).

We have analytical equations for both extremes of the diffusion influence (Equations (9)
and (10)): The “left” value, L, of the effective distance marks the static limit or the case of no
diffusion (Equation (9)), as we first derived in the Supporting Information of reference [12].
The “right” value, R, of the effective distance marks the dynamic limit or the case of infinite
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diffusion (Equation (10)) [12,16] The derivations of the L- and R-equations can be found
in this article’s Supporting Information, Chapters 4 and 4a,b. Explanations of the two
underlying basic concepts, “the Energy Transfer Efficiency” and “the Average”, can be
found in in the Supporting Information, Chapters 3 and 3a,b. At first glance, these equations
appear to be quite complex, but, because of their analytical character, L and R are calculated
within Matlab or Excel in a fraction of a second. We note that L is a function of the Förster
radius and the distance distribution, while R is a function of only the distance distribution.
Further, we note that any integration of p(r) takes place from the left-integration limit, rL,
to the right-integration limit, rR. A physical but oversimplified perspective is to view rL as
the closest possible distance between donor and acceptor.

L = Reff,D→0 = R0


1−

rR∫
rL

p(r)

(
r6

r6 + R6
0

)
dr

−1

− 1


1/6

(9)

R = Reff,D→∞ =
〈

r−6
〉−1/6

=

 rR∫
rL

(
1/r6

)
p(r)dr

−1/6

(10)

As we have these analytical equations for the static and dynamic limit of the effective
distance, the L and R values are supposed to be extremely close to the effective-distance
values at the start and end of the numerically obtained diffusion profile (Figure 2b). This
demands virtual identity of the analytically and numerically obtained values that always
served as the first important control indicating that the numerical simulations were properly
executed. We now use the L- and R-values to normalize the diffusion profiles: Equation (11)
defines the diffusion influence DI. It goes from 0 or 0%, when Reff approaches L, to 1 or 100%,
when Reff approaches R (Figure 2c). Thus, we distinguish in Figure 2 between the diffusion
profiles, the Reff(D) or Reff(D1/2) profiles (Figure 2b), and the diffusion-influence profiles,
the DI(D) or DI(D1/2) profiles (Figure 2c), or the DI(J), DI(J1/2), or DI(X) profiles (Figure 2d)
after we discovered that the decisive independent variable, the decisive x-variable, is not D
but J or its square root, X (Equation (12)).

DI =
Reff − L
R− L

(11)

In our quest for the HSJE, for an analytic equation that captures all possible diffusion
profiles, we systematically varied the initial distance distribution as well as all coefficients
of the HSE. Doing that, we found that, as mentioned, the appropriate independent variable
is not the diffusion coefficient, D, but what we now call the augmented diffusion coefficient,
J, composed of three coefficients: the diffusion coefficient, the donor lifetime, and the
Förster radius (Equation (12)). Remarkably, J is dimensionless. To repeat, we address plots
of DI versus J or its square root, X = J1/2, as diffusion-influence profiles, as DI, DI(J), or
DI(X) profiles.

J =
DτD

R2
0

; X =
√

J =
√

DτD

R0
(12)

We found that all DI-profiles are sigmoids that can be fitted to Equation (13), where
X0 = J1/2. The value X0 is the X value where DI = 50%; the M value describes the steepness
of the sigmoid.

DI(X) =
(X/X0)

M

1 + (X/X0)
M (13)

The sigmoidal profiles obtained from the HSE solutions appear to be perfectly point
symmetrical around the point (X0, 50%) provided that a logarithmic scale is chosen for the
x-axes or, equivalently, that DI is plotted against lnX. The numerically obtained profiles
could then be perfectly fitted according to Equation (13). Thus, we are convinced that
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any DI profile follows a symmetrical sigmoid in accordance with Equation (13). This
requirement of sigmoidal symmetry served as the second important control that indicates
correctly performed numerical simulations. Equations (12) and (13), in combination, yield
Equation (14), a first raw form of the HSJE.

In the course of our investigation, we discovered and formulated four equivalence
statements that led us from D as the independent variable in the diffusion profiles, to J or
its square root, X, as independent variables in the diffusion-influence profiles. We learned
that the parameters X0 and M in Equation (13) are functions of just a single variable, of the
ratio of the Förster radius and the left-integration limit, of R0/rL. Thus, in the last step, we
completed the HSJE by numerical work to determine how X0 and M depend on R0/rL.

Reff =
(X/X0)

M

1 + (X/X0)
M · (R− L) + L (14)

3.2. The Equivalence Statements

In the following, we always compare effective-distance and diffusion-influence val-
ues and profiles obtained from the HSE used with two different sets of inputs that we
distinguish by (1) and (2) as superscript. That is, we compare HSE(1) and HSE(2), where
HSE(1) uses set(1) that consists of the distance distribution, p(1)(r), and the values, D(1),
τD

(1), R0
(1), and rL

(1), while HSE(2) uses set(2) that consists of the distance distribution,
p(2)(r), and the values, D(2), τD

(2), R0
(2), and rL

(2). Accordingly, the augmented diffusion
coefficient J(1) equals D(1)τD

(1)/(R0
(1))2 and J(2) equals D(2)τD

(2)/(R0
(2))2. We also have to

distinguish between the two diffusion-influence profiles obtained from HSE(1) and HSE(2),
between DI(1) and DI(2) as functions of J or X, as they usually stem from different distance
distributions, p(1)(r) and p(2)(r), that usually come with different L- and R-values, L(1) and
R(1) and L(2) and R(2) (see Equations (9)–(11)).

3.2.1. The First Equivalence Statement: Variation of the Distance Distribution

To expose what happens if we only vary the distance distribution, we have chosen
the three distributions shown in Figure 3a. The diffusion profiles that correspond to these
distributions and to the chosen photophysical parameters are given in Figure 3b. These
profiles are expectedly very different because any specific distance distribution comes
with specific L- and R-values (Equations (9) and (10)). However, when we calculate the
DI-values by using the L- and R-values characteristic for each distribution (Equation (11)),
and normalize the profiles that way, we obtain perfect overlap of the resulting diffusion-
influence profiles (Figure 3c). This normalization, the introduction of the diffusion-influence
or DI-value defined by Equation 11 opened our path towards the HSJE.
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Figure 3. (a) Three different 3-D Gaussian distance distributions (black, red, blue). (b) The corre-
sponding diffusion profiles (black, red, blue) with the effective distance plotted against the square
root of the diffusion coefficient. The donor lifetime, the Förster radius, and the left integration limit
were kept constant (τD = 100 ns, R0 = 10 Å, rL = 2.5 Å) (c) After normalization (Equation (11)), the
three profiles became identical.
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We now express the first equivalence statement (ES1) as text and, then, in formula.

Equivalence Statement 1 (ES1, Text)

“The diffusion-influence profiles of any two well-behaved probability distributions,
p(1)(r) and p(2)(r), coincide if they were obtained with the same values of the donor lifetime,
τD, the Förster radius, R0, and the left-integration limit, rL”.

ES1 (formal):

For any p(1)(r) and p(2)(r) : If D(1) = D(2), τ
(1)
D = τ

(2)
D , R(1)

0 = R(2)
0 , and r(1)L = r(2)L

then DI(1)
(

J(1)
)
= DI(2)

(
J(2)
) (15)

Here and in the three following statements, we always use the augmented diffusion
coefficient, J, defined by Equation (12), as the independent variable in diffusion-influence
or DI profiles. In this first statement, J(1) and J(2) are obviously identical, and using J as the
independent variable makes no difference versus using D instead, but it fosters the formal
parallelism of the four equivalence statements. Two questions arise:

1. Why do we demand that rL
(1) = rL

(2)? Why can ES1 not be applied if the left-integration
limit differs in both sets?

In case of a smaller left-integration value, the contribution of diffusion to FRET at
infinite diffusion is higher. This can be concluded from term-(2) of the HSE (Equation (5))
that encompasses Förster’s law (Equation (1)): At smaller rL values, FRET becomes faster.
As a consequence, higher values of the augmented diffusion coefficient are necessary to
reach the dynamic limit in the diffusion-influence profiles. Therefore, the distribution with
smaller rL will lead to a diffusion-influence profile that only later reaches DI values close to
100%. This is further detailed and illustrated in the Supporting Information, Chapter 7b,
Figure S4a–c.

2. Is ES1 valid for any distance distribution equation or model? Or is it only valid for
“well-behaved” models?

Prominent model equations that have been chosen in the past to describe end-to-end
distance distributions in flexible peptides have been the one-parameter ideal-chain or random-
coil model (Equation (16), parameter b) or the two-parameter 3D-Gaussian or skewed-
Gaussian model (Equation (17), parameters a and b). The normalization constant, N, is
determined through the normalization condition: The integral over p(r) from left to right
integration limit has to be unity (see the Supporting Information, Chapter 7c, Equation (S26)).

p(r) = Nr2 ·
(

3
2πb2

)
· exp

(
− 3r2

2b2

)
; b =

〈
r2
〉1/2

(16)

p(r) = Nr2 · exp
(
−a
(

b− r2
))

(17)

Using Equations (16) or (17), we discovered that sometimes the DI-overlap of the profiles
of two such distributions became less perfect in case of large discontinuities of the distributions
at the point r = rL, that is, in the case of large jumps of probability-density values from zero to
finite values at this point (Supporting Information, Chapter 7c, Figure S5a). In the transition
region of the sigmoidal DI-profiles of two such distributions, the DI-value disagreement
can become as large as 10%, undermining our efforts to develop a closed analytic equation
with precisely determined constants, the HSJE. Further, such discontinuities can hardly be
justified by any physical reasoning. This problem was resolved, and complete overlap was
restored for all cases when we modified the distribution equations to display continuity
of probability-density values at and around r = rL (Equations (18) and (19)), (Supporting
Information, Chapter 7c, Figure S5b). Thus, we proceeded by using only “well-behaved”
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distribution equations that, by their very nature, guarantee that p(r = rL) = 0 and guarantee
p(r)-value continuity (Equations (18) and (19)).

p(r) = Nr2
0 ·
(

3
2πb2

)
· exp

(
−

3r2
0

2b2

)
; r0 = r− rL (18)

p(r) = Nr2
0 · exp

(
−a
(

b− r2
0

))
; r0 = r− rL (19)

3.2.2. The Second Equivalence Statement: Variation of the Donor Lifetime

Next, we vary the donor lifetime. Figure 4a shows an exemplary distance distribution,
and Figure 4b the four diffusion profiles that were obtained for this distribution and for
the four donor lifetime values, 100 ns (red curve, left), 30 ns (blue curve), 10 ns (green
curve), and 1 ns (black curve, right). All other parameters of the HSE were kept constant.
Using the same color code, Figure 4c shows the corresponding diffusion-influence profiles.
When we now plot, for each profile, the diffusion-influence value against the product of the
diffusion coefficient and the corresponding donor lifetime, 100, 30, 10, or 1 ns, or against the
square root of this product, we observe that the four profiles become identical (Figure 4d).
Going from the diffusion coefficient, D, to the product D·τD as the independent variable
in diffusion-influence plots is the first of two steps towards the augmented diffusion
coefficient, J.
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Figure 4. (a) A 3-D Gaussian distance distribution (b) Four diffusion profiles obtained with (a) four
different donor lifetime constants, τD, of 100 ns (red), of 30 ns (blue), of 10 ns (green), and of 1 ns
(black). The Förster radius (R0 = 15 Å) and the left integration limit (rL = 3 Å) were held constant.
(c) Diffusion-influence profiles after normalization. (d) The DI-profiles coincide when the DI values
are plotted against the square root of the product of diffusion coefficient and donor lifetime.
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This observed profile identity means that the values of the effective distance obtained
from the HSE with input sets, set(1) and set(2), that only differ by the diffusion coefficient, D(1)

in contrast to D(2), and by the donor lifetime, τD
(1) in contrast to τD

(2), are identical as long
as the product D·τD does not change, that is, as long as it is valid that D(1)τD

(1) = D(2)τD
(2).

We now formulate the second equivalence statement and prove it to be a mathematical
consequence of the HSE.

Equivalence Statement 2 (ES2, Text)

“Given any probability distribution: If the diffusion coefficient is varied from D(1)

to D(2) and the donor lifetime from τD
(1) to τD

(2), but the product of diffusion coefficient
and donor lifetime remains constant, then the diffusion-influence values obtained from
the diffusion-influence functions, DI(1)(J(1)) and DI(2)(J(2)), are identical. The corresponding
diffusion-influence profiles coincide”.

ES2 (formal):

For any p(1)(r) = p(2)(r) : If D(1)τ
(1)
D = D(2)τ

(2)
D , R(1)

0 = R(2)
0 , and r(1)L = r(2)L

then DI(1)
(

J(1)
)
= DI(2)

(
J(2)
) (20)

ES2 can be derived in several ways from the HSE (Equation (5)), as detailed in the
Supporting Information, Chapter 7d.

Here we opted for a change-of-variable approach applied to the HSE (Equation (5)).
We use the fact that any rescaling of time can impossibly affect the value of the effective
distance (see Supporting Information, Chapter 7d). We rescale the time with the donor
lifetime (Equation (21)) and insert the resulting substitutions into the HSE to arrive at
Equation (22) that simplifies to Equation (23).

z =
t

τD
→ ∂z =

∂t
τD
→ ∂t = τD∂z (21)

1
τD

∂N(r, z)
∂t

= − 1
τD

N(r, z)− 1
τD

R6
0

r6 N(r, z) + D
∂

∂r

(
N0(r)

∂(N/N0)

∂r

)
(22)

∂N(r, z)
∂z

= −N(r, z)−
R6

0
r6 N(r, z) + DτD

∂

∂r

(
N0(r)

∂(N/N0)

∂r

)
(23)

We observe that the product of diffusion coefficient and donor lifetime, D·τD, ap-
pears in the rescaled HSE (Equation (23)) at the same place as D does in the initial HSE
(Equation (5)). Secondly, neither D nor τD appear at any other place of the rescaled HSE
(Equation (23)). It is obvious from Equation (23) that any change of the diffusion coefficient
and donor lifetime will not change the resulting effective distance, Reff, if their product,
D·τD, does not change. This is what ES2 expresses.

3.2.3. The Third Equivalence Statement: Variation of the Förster Radius and
Left-Integration Limit

In the next step, we only change the Förster radius from R0
(1) to R0

(2) and the left-
integration value from rL

(1) to rL
(2). We observe total overlap of the resulting diffusion-

influence profiles, DI(1)(J(1)) and DI(2)(J(2)), if the third equivalence statement is obeyed:

Equivalence Statement 3 (ES3, Text)

“Given any probability distribution: If the Förster radius and the left-integration
limit are varied but not their ratio, then the diffusion-influence values obtained from the
diffusion-influence functions, DI(1)(J(1)) and DI(2)(J(2)), are identical. The corresponding
diffusion-influence profiles coincide”.
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ES3 (formal):

For any p(1)(r) = p(2)(r) : If D(1)τ
(1)
D(

R(1)
0

)2 =
D(2)τ

(2)
D(

R(2)
0

)2 and R(1)
0

r(1)L

=
R(2)

0

r(2)L

then DI(1)
(

J(1)
)
= DI(2)

(
J(2)
) (24)

That ES3 holds true with excellent precision is illustrated in Figure 5. Here, we also
tested ES1 again: We compared three different distance distributions and their DI-profiles
obtained with three different pairs of R0-and rL-values where R0/rL was always held
constant at 3. The three corresponding DI-profiles coincide (Figure 5c, X = J1/2).
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− 1
τ D

R0

r







6

N (r,t) = −
R0

r







6

N (r, z) = − 1

r
R0








6 N (r, z) = − 1
s6 N (s, z)  

(26)
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DτD
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∂
∂s
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











(27)
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∂z
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s6 N s ,z( )+ J ∂

∂s
N0 s( ) ∂ N /N0( )

∂s











(28)
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Figure 5. (a) Three ideal-chain distance distributions (Equation (18)) with b = 18 Å, rL = 3 Å (black
curve); b = 24 Å, rL = 4 Å (red curve); and b = 30 Å, rL = 5 Å (blue curve). (b) The corresponding
diffusion profiles obtained with b = 18 Å, rL = 3 Å, R0 = 9 Å (black curve); with b = 24 Å, rL = 4 Å,
R0 = 12 Å (red curve); and with b = 30 Å, rL = 5 Å, R0 = 15 Å (blue curve). Thus, for all three evaluated
distributions (black, red, blue), the ratio R0/rL equaled 3. (c) The corresponding diffusion-influence
profiles with DI plotted against X (X = J1/2). The three profiles merge into one.

To explain ES3, we continue to use the change-of-variable approach. After rescaling
time with the donor lifetime, we now rescale space with the Förster radius. The new space
coordinate is defined by Equation (25).

s =
r

R0
→ ∂s =

∂r
R0
→ ∂r = R0∂s (25)

How term-(2) of the HSE (Equation (5)) changes after time rescaling and subsequent
space rescaling is shown in Equation (26).

− 1
τD

(
R0

r

)6
N(r, t) = −

(
R0

r

)6
N(r, z) = − 1(

r
R0

)6 N(r, z) = − 1
s6 N(s, z) (26)

Thus, the HSE, now written not with the old (r,t)-coordinates but with the new
(s,z)-coordinates, is expressed by Equation (27) or, when we insert the definition of the
augmented diffusion coefficient, J, (Equation (12)), by Equation (28).

∂N(s, z)
∂z

= −N(s, z)− 1
s6 N(s, z) +

DτD

R2
0

∂

∂s

(
N0(s)

∂(N/N0)

∂s

)
(27)

∂N(s, z)
∂z

= −N(s, z)− 1
s6 N(s, z) + J

∂

∂s

(
N0(s)

∂(N/N0)

∂s

)
(28)

When we rescale space, we also rescale the distance distribution, and that also means
that we rescale the integration limits of the distance distribution. As discussed, changing
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the left-integration limit has a strong effect on the diffusion-influence profile. We need to
pay less attention to the right-integration limit, rR, as simulations showed that rR has only
to be chosen to be sufficiently large to enclose the distance distribution up to probability-
density values close to zero. Additionally, the changing shape of the distribution caused
by rescaling, its expansion or contraction in the x-direction, is of no consequence, as has
been demonstrated (ES1, Figures 3 and 6). Nevertheless, we keep in mind, in the ongoing
analysis, the validity of ES3 rests on the validity of ES1. After rescaling, in accordance with
Equation (26), the new left-integration limit follows Equation (29).

sL =
rL

R0
(29)Polymers 2023, 15, 705 15 of 20 
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Figure 6. The HSE was solved for two different series of ideal-chain distributions (Equation (18)).
R0 was varied from 9 Å to 15 Å, and rL was varied from 1.5 Å to 5 Å. The donor lifetime was held
constant (τD = 100 ns). In one series of distributions, the constant b was chosen as b = 1.5·R0 ranging
from 13.5 Å to 22.5 Å, in the other series as b = 2·R0 ranging from 18 Å to 30 Å. (a) Exemplary
distributions for the two series with rL = 3 Å, R0 = 10 Å and either b = 1.5·R0 = 15 Å (blue curve)
or b = 2·R0 = 20 Å (black curve). (b) The DI(X) profiles overlap for both distributions shown in (a).
(c) All DI(X) profiles were analyzed by using Equation (13).

Thus, when we change R0
(1) to R0

(2) and rL
(1) to rL

(2) and apply space rescaling to the
corresponding HSE equations, HSE(1) and HSE(2), we obtain J(1) and J(2) as well as sL

(1) and
sL

(2). Only if sL
(1) and sL

(2) are identical can we expect that the diffusion-influence values
DI(1)(J(1)) and DI(2)(J(2)) and corresponding profiles coincide. According to Equation (29),
this will be the case if rL

(1)/R0
(1) = rL

(2)/R0
(2). This is equivalent to the condition used in

ES3: R0
(1)/rL

(1) = R0
(2)/rL

(2).

3.2.4. The Fourth Equivalence Statement

Taken together, the three established statements combine into a fourth one.

Equivalence Statement 4 (ES4, Text)

“For any pair of distance distributions, p(1)(r) and p(2)(r): If the diffusion coefficient
or the donor lifetime or the Förster radius are varied but not the augmented diffusion
coefficient J composed of these parameters, and if the ratio of the Förster radius and
left-integration limit is not varied, then the diffusion-influence values obtained from the
diffusion-influence functions, DI(1)(J(1)) and DI(2)(J(2)), are identical. The corresponding
diffusion-influence profiles coincide.”

ES4 (formal):

For any p(1)(r) and p(2)(r) : If D(1)τ
(1)
D(

R(1)
0

)2 =
D(2)τ

(2)
D(

R(2)
0

)2 and R(1)
0

r(1)L

=
R(2)

0

r(2)L

then DI(1)
(

J(1)
)
= DI(2)

(
J(2)
) (30)
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This means that a fixed R0/rL ratio corresponds to a single sigmoidal curve, a single
diffusion-influence profile. We slide along that sigmoid when we vary J, that is (see
Equation (11)), when we vary the diffusion coefficient, or the donor lifetime, or the Förster
radius and the left-integration limit, but latter two only in combinations that keep R0/rL
constant. Such a sigmoid follows Equation (13) with constant coefficients, X0 and M.

Thus, if the R0/rL ratio is fixed, X0 and M are constants that can be determined by
fitting the numerically obtained sigmoid to Equation (13). As soon as we vary R0/rL, we
obtain a different sigmoid characterized by different X0- and M-values. Thus, X0- and M
are functions of R0/rL. We need to determine these functions to establish Equation (13) as
an equation that covers all possible diffusion-influence profiles. Being content to firstly
cover only a small two-dimensional range of R0 and rL, we learned that these functions are
then simple polynomials of second degree. In the following, the focus shifts from mainly
mathematical reasoning to the need to obtain reliable results from numerical HSE-solutions.

3.3. The Grid

We determined these polynomial functions firstly for a limited two-dimensional
range of 9–15 Å for R0 and of 1.5–5 Å for rL: These are the crucial R0- and rL-ranges
for short-distance FRET methods applied to flexible peptides or polymers [13,17,18] (see
Supporting Information, Chapter 3, Figures S1 and S2). The R0,rL-grid, or R0,rL-set, was
R0/Å × rL/Å = {9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0} × {1.5, 2.0, 2.5, 3.0, 3.5, 4,0, 4.5, 5.0}
resulting in a total of 56 R0,rL-combination. For each combination, we determined the
corresponding DI-profile by numerically solving the HSE for at least 28 values of the
diffusion coefficient. We then determined the X0- and M-value of each of these 56 profiles
by fitting them to Equation (13). Indeed, the X0- and M-values coincided for all those
R0,rL-combinations with a constant ratio R0/rL. A selection of results, those for R0/rL
equal to 3, 4, 5, or 6, are shown in Table 1. These results clearly corroborate ES3 and, by
that, also ES1, on which ES3 rests.

Table 1. Fitting results for X0 and M *.

R0/rL R0 rL X0 M

3 9 3 0.8935 1.7823
3 12 4 0.8929 1.7876
3 15 5 0.8933 1.7861
4 10 2.5 1.1722 1.6513
4 12 3 1.1719 1.6532
4 14 3.5 1.1724 1.6494
5 10 2 1.4259 1.5387
5 15 3 1.4256 1.5391
6 9 1.5 1.6591 1.4481
6 12 2 1.6592 1.4483
6 15 2.5 1.6587 1.4483

* The test distributions were chosen to follow Equation (18) with b = 2R0.

Which distance distributions were used in this analysis? To obtain highly reliable X0-
and M-values from fits of the numerically obtained sigmoids required perfectly symmetrical
sigmoids in the first place. Recall, that we argued in the first chapter of Results, “Ideas
and Concepts”, that any diffusion-influence profile should be a perfectly symmetrical
sigmoid, a condition that when met points to a properly executed numerical simulation.
A consequence of the normalization Equation (11) is that sigmoids numerically obtained
from the HSE follow Equation (13) less accurately when the difference between the extreme
values of the effective distance, L and R, when the amplitude of the sigmoid, ∆Reff = L − R,
becomes smaller. Very narrow distance distributions only allow for accordingly small
∆Reff-values. It is then almost impossible to numerically obtain well-shaped sigmoids.
Luckily, we were free to choose the distance distributions in any way we wanted (ES1) to
evaluate the grid. We have chosen the simplest model possible, the ideal-chain or random
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coil model (Equation (18)). Here, the broadness of the distribution is determined by the
parameter, b. Thus, to always guarantee broad distributions and to always guarantee a
large difference, ∆Reff = L − R, when R0 is varied within the grid, the parameter b was
chosen to follow the equation b = 2·R0. An exemplary distribution (R0 = 10 Å, rL = 3 Å) of
this series is given by the black curve in Figure 6a.

We performed the same analysis with a series of less broad distributions following
b = R0 and b = 1.5·R0. An exemplary distribution (R0 = 10 Å, rL = 3 Å) of the latter is given
by the blue curve in Figure 6a. Figure 6b compares the diffusion-influence profiles for
R0 = 10 Å, rL = 3 Å, b = 2·R0 (black curve) and for R0 = 10 Å, rL = 3 Å, b = 1.5·R0 (blue
curve). Both profiles overlap so well that visual distinction is impossible. This is valid for
comparisons at any of the employed R0-values as is shown in Figure 6c. The M-values were
virtually identical, and the X0-values (lower black and blue data points) were always so
close that the corresponding DI-profiles were visually indistinguishable (see Figure 6b).

This comparative analysis confirmed that distributions with b = 2·R0 are sufficiently
broad to guarantee accurate numerical results. In addition, at this point, we have gained
strong confidence in the validity of ES1 and ES3 and in all of the equivalence statements.

The figure illustrates how X0 and M vary with R0 for the two series when rL is kept at
3 Å. For M, the values obtained for the two series overlap (upper black and blue circles);
for X0, the values (lower black and blue circles) obtained for the two series are so close that
the corresponding diffusion profiles (see panel b) are visually indistinguishable.

3.4. The HSJE

We can now analyze the results obtained for X0 and M for the distribution series with
b = 2R0, the series that guarantees highest numerical accuracy by leading to the largest
∆Reff = L − R differences or DI(X) amplitudes. We obtained smooth curves that could be
fitted to second-degree polynomial functions. Data points and fitting curves coincided
(Figure 7). The functions and coefficients are given in Table 2.
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Figure 7. The results for X0 and M (solid circles in panels (a,b) obtained for the range of R0 = 9–15 Å,
rL = 1.5–5 Å with b = 2R0, and R0/rL > 3) were fitted to second-degree polynomial functions (solid
lines in panels (a,b) given in Table 2).

We are ready to state the HSJE for the given range of R0 = 9–15 Å and rL = 1.5–5 Å
(see the legend of Figure 7) in Figure 8. For clarity, we have decomposed the HSJE into its
simple constituents, equations (I) to (VIII). The HSJE written as a single equation is shown
in Supporting Information, Chapter 7e.
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Table 2. X0 and M as second-degree polynomial functions of R0/rL.

X0 = a0 + a1 × (R0/rL) + a2 × (R0/rL)2; M = b0 + b1 × (R0/rL) + b2 × (R0/rL)2

n X0 = an-value M = bn-value
0 a0 −0.023191 b0 2.262606
1 a1 × (R0/rL) 0.333543 b1 × (R0/rL) −0.185375
2 a2 × (R0/rL)2 −0.008843 b2 × (R0/rL)2 0.008271

The coefficients a0, a1, a2, and b0, b1, b2 are valid for the conditions R0 = 9–15 Å, rL = 1.5–5 Å, R0/rL > 3.
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Figure 8. The Haas-Steinberg–Jacob equation (HSJE) is a closed analytical equation decomposed here
into simple equations, I to VIII, for clarity. With the coefficients shown here (a0 to b3), it is valid for
R0 9–15 Å and rL 1.5–5 Å.

We now have a closed analytical expression, a CAE, for a defined parameter range. As
with any other equation, it can now be applied to global analyses. The preliminary insights
gained from such applications are very interesting but not the main topic of this article.
We therefore referred these first applications of the HSJE to the Supporting Information,
Chapter 8, Figures S6a–d and S7a–d.

4. Discussion

We have followed the full path from a partial differential equation, the HSE, to a closed
analytical expression, the HSJE. Its benefits are of a theoretical but also of a mere practical
nature: The HSJE is usually solved in seconds, not in minutes or hours, by two orders of
magnitude faster than the HSE. This advantage amplifies when the HSJE is used as the
basis of a global analysis that generally requires numerous fitting cycles to reach the best
values for the diffusion coefficient, D; the distance distribution, p(r); and the left-integration
limit, rL. Experimental values of the effective distance can be obtained from time-resolved
fluorescence measurements but equally well from more widely available steady-state
fluorescence spectroscopy. The HSJE is certainly not trivial but is still simple enough that
multivariate or global analysis can be performed in commonly available programs such as
Microsoft Excel.

DFRET is just one method in a whole range of optical methods for studying the structure
and dynamics of polymers [10–14,17,19–62]. When we go into detail, we realize that any
progress in DFRET can synergistically promote progress in this entire field [13]. The structure
and dynamics of polymers are so important that numerous methods based on two optical
molecular labels have been developed [2,3,5,6,10,11,13,15,17,22–25,27–38,47–49,57–59,63–68].
These labels are either synthetically conjugated to the chain or naturally present, as, for
instance, Trp or Tyr in a peptide or protein. One of the deepest motivations for developing
such methods has always been the “protein folding problem”. The “static” folding problem
now appears to have been solved by artificial intelligence methods applied to a huge amount
of data [69] but countless questions about folding involving dynamics and mechanisms remain
open. Examples include misfolding in amyloidosis diseases as well as the sometimes bizarre
behavior of intrinsically disordered peptides and proteins [70].
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These methods include not only FRET, but also CQ methods (collisional-quenching
methods)1 [25,71]. For example, the sdFRET method is based on the excitation of a donor,
e.g., the donor FTrp, in combination with Dbo as acceptor. The peculiarity of this FTrp/Dbo
pair is that instead of FTrp, one can simply excite Dbo, whose fluorescence is then quenched
by collision with FTrp [49]. This particular CQ method is called CIFQ (collision-induced
fluorescence quenching). How quickly this quenching proceeds also informs the dynamics
and flexibility of the chain. In the past, we have been able to reconcile seemingly contradic-
tory results from different sdFRET, CIFQ, and CQ methods [13]. Therefore, we reiterate
our assertion that any progress in DFRET or any of the other methods can synergistically
promote progress in the entire field of polymer structure and dynamics. We believe that we
have made such progress with the development of the HSJE.

The augmented diffusion coefficient. In addition to the practical benefits of the HSJE,
we believe that its structure gives a more lucid insight into parameters whose variation
can feed essential information into the needed global analysis. This is first of all the
newly defined augmented diffusion coefficient, J. What does J actually mean? If we want
to determine the diffusion impact and the diffusion coefficient, D, we need the widest
possible range of the diffusion influence, DI, preferably from 0 to 100%. It is clear that
any experimental series might cover a range within these limits but can never reach these
limits themselves. We established that DI increases with J and that J increases linearly with
D and τD, the donor lifetime, and decreases with the square root of the Förster radius,
R0 (Equation (18)). All of these variations have been employed in earlier attempts at a
global analysis but without knowing which range of the diffusion influence was actually
covered [3,7,9,10,14]. In this work, we obtained certainty that our previous variation [14]
of the diffusion coefficient by solvent viscosity and variation of the donor lifetime by
adding the viscogen ethylene glycol and by going from the donor FTrp to the donor NAla
covered a DI range of 8 to 80% (comp. Supporting Information, Chapter 8c). In previous
works [12,14], we also investigated and discussed the role of the donor quantum yield,
and we continue this discussion in Supporting Information, Chapter 9, because the donor
quantum yield can be made part of the HSJE as shown in Equations (S31)–(S33).

Preview. In summary, the diffusion contribution to FRET should not be neglected
whenever we are not close to the static limit. Therefore, the question remains up to which
R0-values and under which circumstances are we not close to this limit. Up to which
R0-values should diffusion be included into the analysis, and up to which values should
the HSJE be extended?

5. Conclusions

Fluorescence methods and methods based on fluorescence resonance energy transfer
have asserted their place in questions of molecular/bio-molecular structure and dynam-
ics simply because their speed and sensitivity are unsurpassed. We believe that also
diffusion-enhanced Förster resonance energy transfer or DFRET has the potential to be-
come influential, although the number of publications based on it has been small to date.
DFRET ensemble analysis has been based on a partial differential equation, on the HSE.
Using the HSE in a global analysis means that profound challenges must first be over-
come. Furthermore, even with seemingly successful fits, doubts often remain about the
realistic significance of the results obtained. By replacing the PDE with a closed analytical
expression, by replacing the HSE with the HSJE, these difficulties can be ended.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15030705/s1, The document “Supporting information:
Diffusion-Enhanced Förster Resonance Energy Transfer in Flexible Peptides: From the Haas-Steinberg
Partial Differential Equation to a Closed Analytical Expression”, which provides a detailed glossary,
a review of relevant previously published information, an overview of basic concepts, aids to
understanding the new findings, an initial application of the HSJE in a global analysis, and an
introduction to ongoing discussion points.

https://www.mdpi.com/article/10.3390/polym15030705/s1
https://www.mdpi.com/article/10.3390/polym15030705/s1
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