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Abstract: Self-healing elastomers refer to a class of synthetic polymers that possess the unique
ability to autonomously repair from internal and external damages. In recent years, significant
progress has been made in the field of self-healing elastomers. In particular, intrinsic self-healing
elastomers have garnered a great deal of attention. This mini-review outlines recent advancements in
the mechanisms, preparation methods, and properties of various intrinsic self-healing elastomers
based on non-covalent bond systems, reversible covalent bond systems, and multiple dynamic bond
composite systems. We hope that this review will prove valuable to researchers in order to facilitate
the development of novel strategies and technologies for preparing high-performance self-healing
elastomers for advanced applications.

Keywords: self-healing; elastomer; intrinsic; reversible bonds; dynamic polymers; supramolecular
polymers

1. Introduction

Elastomers possess high extensibility and the capability to recover their original shape
after the removal of external forces and are therefore extensively applied in various in-
dustries, including manufacturing, medical instruments, and automobile manufacturing.
However, in practical applications, elastomers are often susceptible to environmental or
external stresses which can lead to unexpected damage, cracks, and even macroscopic
fractures, severely degrading their functionality and lifespan [1]. Self-healing elastomers,
which have self-healing properties, can address these problems by fully or partially restor-
ing in situ mechanical damages, thereby extending their service life and improving safety
during use [2,3]. Consequently, self-healing elastomers have attracted tremendous attention
over the past two decades as they can effectively alleviate environmental pollution, prolong
the lifetime of products, and reduce costs [4–7].

Self-healing can be divided into two kinds: extrinsic self-healing and intrinsic self-
healing. Extrinsic self-healing elastomers rely on pre-embedded repairing reagents (e.g.,
microcapsules, hollow fibers, and microvascular networks) in the matrix [8–12]. However,
they are limited by the supply of healing agents, are incapable of multi-cycle repair and
quick response, and may be affected by the outflow of healing agents [13]. On the other
hand, the self-healing ability of intrinsic self-healing materials comes from the breakage
and recombination of reversible chemical bonds [14]. Intrinsic self-healing elastomers do
not require the addition of repair agents, thereby avoiding the above tough problems [15].
Since intrinsic self-healing elastomers not only possess superior elastomers properties but
can also repair their mechanical properties themselves when physically damaged, they
have become a kind of material with broad prospects [16,17].

A new generation of intrinsic self-healing elastomers has emerged based on the
mechanisms of non-covalent and covalent bonds or their combinations [18]. In this mini-
review article, we only focus on the mechanisms of self-healing elastomers which involve
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non-covalent bonds, covalent bonds, or systems which combine them (Scheme 1). By
summarizing a variety of successful approaches to realizing the self-healing function of
elastomers over the last five years, we expect that this review will encourage more research
studies in this booming field.
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Scheme 1. Various mechanisms of intrinsic self-healing elastomers.

2. Non-Covalent Interactions

Non-covalent interactions are intrinsically reversible due to their lability. Introducing
non-covalent cross-links into the molecular design of elastomers can result in increased
mechanical strength without sacrificing extensibility, toughness, and tensile strength [19].
Non-covalent interactions that can be applied in self-healing elastomers include hydrogen
bonds, ionic interactions, and metal–ligand coordination.

2.1. Hydrogen Bonds

Hydrogen bonds (H-bonds) have been widely used in self-healing elastomers since
Cordier et al. first reported on them in 2008 [20]. The dynamic nature, tunable strength, re-
sponsiveness, and reversibility of hydrogen bonds could provide materials with significant
mechanical strength and an excellent self-healing ability [21]. Low-molecular-weight poly-
mers become robust and repairable when they are cross-linked by dense hydrogen bonds.
For example, Aida et al. employed thiourea to form a less ordered hydrogen-bonded array
without inducing unfavorable crystallization, and they also introduced a structural element
to activate the exchange of hydrogen-bonded pairs [22]. They proposed four structural
elements for the design of mechanically robust healable materials, including relatively short
polymer chains for larger segmental movements, tight, cross-linked H-bonds for better
mechanical properties, nonlinear (less ordered) H-bond arrays to prevent or reduce crystal-
lization, and mechanisms for promoting the exchange of H-bonded pairs. Additionally,
a biomimetic strategy was utilized to build polymer backbones with hierarchical (single,
double, and quadruple) hydrogen bonding moieties (Figure 1a) [23]. The urethane, urea,
and 2-ureido-4[1H]-pyrimidinone in the hierarchical hydrogen bonds endow transparent
elastomers with super toughness (345 MJ m−3) and high tensile strength (44 MPa) after
self-healing. This may be attributed to the relatively low entanglement and the dynamic
exchange of H-bond pairs. Generally, dynamic dense hydrogen bonding interactions con-
tribute to extraordinary toughness and recoverability. On the other hand, Yoshie et al.
demonstrated that entropy-driven strong H-bonds enabled the creation of a vicinal diol-
functionalized polymer with mechanical robustness, along with functionalities based on the
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dynamicity of the H-bonds [24]. Furthermore, Konkolewicz et al. even suggested that only
strong and dynamic H-bonds should be chosen for enhancing materials’ performance [25].
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Figure 1. Non-covalent interactions. (a) Modular structure consisting of hierarchical hydrogen
bonding [23]. (b) The damage and self-healing process of bottle-brush elastomers [26]. (c) Reversible
Fe3+-pyridine coordination bond-assisted healing process and results [27]. (d) The 3D printing
process of PCL-based polymer complexes [28]. Copyright 2018, Wiley-VCH GmbH; 2020, Royal
Society of Chemistry; 2021, Elsevier; and 2021, American Chemical Society.

2.2. Ionic Interactions

An ionic cluster is a small cluster of several to several hundred atoms or molecules
with special physical and chemical properties which exist in ionomers, polyelectrolytes, and
polyampholytes. Ionic clusters are associated with a comparatively long lifetime respon-
sible for enhanced flexibility, toughness under dynamic load, and potential self-healing
functions derived from sufficient molecular mobility [13]. Furthermore, ionic elastomers
with dispersed ionic clusters also benefit from the variable network density of reversible
aggregates. Typically, ionic interactions can be introduced into commercially available
rubbers through ion–dipole interactions. A simple method that converts widely used
rubbers into elastomers with extraordinary self-healing properties is replacing conven-
tional fillers with reactive materials and constructing a reversible supramolecular hybrid
network. For instance, zinc oxide (ZnO) can be blended with styrene–butadiene–styrene
(SBS) or natural rubber (NR) to obtain ionic cross-links in the rubber matrix through in
situ neutralization reactions [29,30]. By melt-mixing with 1-butyl imidazole, imidazolium-
modified bromo-butyl rubber (bromine-modified isoprene–isobutylene copolymer, BIIR)
can form a cross-linked network via ionic association [31,32]. Another strategy is to fabri-
cate biomimetic self-healing ionic elastomers. Zhao et al. developed a type of bottle-brush
elastomer with a terminal bromine atom in each side chain, resulting in the formation of a
supramolecular ionic network [26]. The bottle-brush elastomer is capable of mimicking
the typical features of skin by regulating the densities of branch chains and cross-linking
points (Figure 1b). It exhibits a shear modulus of 46 kPa and a self-healing efficiency of 98%
at room temperature. A class of self-healing strengthening elastomers (SSEs) that becomes
strengthened during the healing process has also been reported [33]. This is because of
the larger and denser ionic aggregates resulting from the disruption of kinetic stability
under heat or an external force. These ionic self-healing elastomers hold great potential for
artificial skin, wearable devices, smart soft robots, and so on [34].

2.3. Metal-Ligand Coordination

Metal–ligand coordination refers to the moderate bonding energy between low hydro-
gen bonding energy and high covalent bonding energy, providing both self-healing capacity
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and certain mechanical properties. The most common coordination is between the ligand
and iron ions. Han and Filippidi et al. reported that reversible catechol-Fe3+ coordination
bonds could serve as effective cross-linking points to amplify the effect of nanoscale do-
mains and provide bonds as strong as those of covalent bonds [35,36]. Pyridine-containing
ligands with Fe3+ can readily break and reform while the iron centers remain attached
to the ligands, enabling reversible unfolding and refolding of the polymer chains [37].
Metal-coordinated polyurethane with an optimized monomer ratio and Fe2+ content shows
a high tensile strength of 4.6 MPa (Strain ≈ 498%) and a high Young’s modulus of 3.2 MPa.
Chen et al. introduced Fe3+-pyridine coordination bonds to rubber chains in commercially
available epoxidized natural rubber (ENR) via a ring-opening reaction between epoxy
groups and aminopyridine (Figure 1c) [27]. The Fe3+-pyridine coordination bonds can
be readily broken and re-formed under moderate conditions. A sample with a molar
ratio of Fe3+ to pyridine of 1:4 showed excellent healing efficiency with a tensile strength
of 87%. Meanwhile, the Fe3+-pyridine coordination bonds can also act as cross-linking
points, which increased the mechanical properties of the fabricated rubbers 18 times more
than the original sample in terms of tensile strength. On the other hand, an Fe-triazole
interaction can also achieve a healable efficiency of over 90% [38]. In addition to iron ions,
Co2+ and Zn2+ have been utilized to form kinetically labile coordination bonds, endowing
cross-linked polymer hydrogels, nitrile rubber (NBR), and polydimethylsiloxane (PDMS)
with self-healing abilities [39–43]. In addition, multiple metal–ligand coordination with
various metal ions can form weak or strong coordination bonds to modulate different
properties of elastomers, leading to optimal self-healing efficiency and superior mechanical
properties [44–46].

2.4. Other Non-Covalent Systems

Compared with the non-covalent interactions illustrated above, cyclodextrins (CDs)
have emerged as promising host monomers that can construct reversible cross-linked
network in elastomers via host–guest interactions [47]. For example, permethylated cy-
clodextrins (PM-CDAAmMe) used in the bulk polymerization of liquid acrylate monomers
and guest monomers can fabricate highly flexible, self-healing, and tough elastomers [48].
In particular, the incorporation of CDs into polyurethane has demonstrated outstanding
self-healing efficiency, including in waterborne polyurethane, thermoset polyurethane, and
thermoplastic polyurethane, resulting in a high healing efficiency of 98.54% and nearly
100% repair after scratches [49–51].

Other than the host–guest interaction, shape memory has also been verified to facilitate
self-healing since physical damage usually occurs during the deformation process. In
blended polymer complexes, polycaprolactone (PCL) can act as a healing agent capable of
diffusing and rearranging between cracks during the annealing process to heal scratches
at 80 ◦C for 30 min as well as a semicrystalline thermoplastic (Figure 1d) [28]. It is worth
mentioning that shape memory must assist self-healing with external stimuli such as
thermal, magnetic, or light stimuli or a combination thereof [52]. By tailoring polymer
chains, shape-memory polymers can simultaneously achieve high elasticity, excellent shape
recovery, and repeatable thermal-assisted healing [53].

3. Covalent Bonds

Non-covalent bonds have inherent limitations due to their weak bond energy, which
can easily lead to poor structural stability and mechanical properties [54,55]. In contrast,
covalent bonds exhibit greater fracture tolerance compared to non-covalent bonds, thereby
enhancing the mechanical strength of elastomers. Self-healing elastomers, relying on
dynamic covalent bonds, have the capability to undergo dynamic bond dissociation and re-
arrangement in response to external stimuli [56]. Dynamic covalent bonds can be generated
via several reactions, including the Diels–Alder reaction and disulfide exchange reaction.
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3.1. Diels-Alder Reactions

Diels−Alder (DA) reactions are thermoreversible and can be applied to a wide range
of elastomers. The integration of DA chemistry and rubber products has been extensively re-
searched [57]. Most of these studies rely on the DA reactions between furan and maleimide
groups [58,59]. Santana et al. employed furan moieties to graft maleated natural rubber
(NR) and then cross-linked it with a bismaleimide, created a thermoreversible bridge in
cross-linked NR [60] (Figure 2a). The results show that the cross-linking density and me-
chanical properties of the modified NR are comparable to a vulcanized NR with a low sulfur
content, achieving a healing efficiency of >80% at low deformations. Rubbers like ethy-
lene/propylene/diene rubbers (EP[D]Ms) [61], carboxylated nitrile rubber (XNBR) [62], and
ENR can also be functionalized with maleimide and furan derivatives via a Diels−Alder
coupling reaction [63]. These self-healing and reusable rubbers extend the product life
cycle, thus reducing waste resources. As for thermoplastic self-healing polyurethane (PU)
based on the DA reaction, the thermal movement effect of molecular chains accelerates
the entire healing process [64]. In particular, a PU elastomer containing DA bonds and
PCL soft segments can be constructed by integrating a bismaleimide (BM) with the furfuryl
pendant group in PU via the DA reaction, resulting in excellent self-healing efficiency
(nearly 100%) and superb mechanical strength (over 30 Mpa) [65,66]. Additionally, Zheng
et al. were the first to design a PDMS elastomer network by utilizing polydimethylsiloxane
and bisepoxide, both containing two DA bonds in one molecule [67]. PDMS processed
through a DA modification exhibits high stretchability (over 400%), excellent self-healing
properties up to 93%, and remoldability up to 95%.

Polymers 2023, 15, x FOR PEER REVIEW 5 of 15 
 

 

covalent bonds exhibit greater fracture tolerance compared to non-covalent bonds, 
thereby enhancing the mechanical strength of elastomers. Self-healing elastomers, relying 
on dynamic covalent bonds, have the capability to undergo dynamic bond dissociation 
and rearrangement in response to external stimuli [56]. Dynamic covalent bonds can be 
generated via several reactions, including the Diels–Alder reaction and disulfide exchange 
reaction. 

3.1. Diels-Alder Reactions 
Diels−Alder (DA) reactions are thermoreversible and can be applied to a wide range 

of elastomers. The integration of DA chemistry and rubber products has been extensively 
researched [57]. Most of these studies rely on the DA reactions between furan and malei-
mide groups [58,59]. Santana et al. employed furan moieties to graft maleated natural rub-
ber (NR) and then cross-linked it with a bismaleimide, created a thermoreversible bridge 
in cross-linked NR [60] (Figure 2a). The results show that the cross-linking density and 
mechanical properties of the modified NR are comparable to a vulcanized NR with a low 
sulfur content, achieving a healing efficiency of > 80% at low deformations. Rubbers like 
ethylene/propylene/diene rubbers (EP[D]Ms) [61], carboxylated nitrile rubber (XNBR) 
[62], and ENR can also be functionalized with maleimide and furan derivatives via a 
Diels−Alder coupling reaction [63]. These self-healing and reusable rubbers extend the 
product life cycle, thus reducing waste resources. As for thermoplastic self-healing poly-
urethane (PU) based on the DA reaction, the thermal movement effect of molecular chains 
accelerates the entire healing process [64]. In particular, a PU elastomer containing DA 
bonds and PCL soft segments can be constructed by integrating a bismaleimide (BM) with 
the furfuryl pendant group in PU via the DA reaction, resulting in excellent self-healing 
efficiency (nearly 100%) and superb mechanical strength (over 30 Mpa) [65,66]. Addition-
ally, Zheng et al. were the first to design a PDMS elastomer network by utilizing polydi-
methylsiloxane and bisepoxide, both containing two DA bonds in one molecule [67]. 
PDMS processed through a DA modification exhibits high stretchability (over 400%), ex-
cellent self-healing properties up to 93%, and remoldability up to 95%. 

 
Figure 2. Covalent bonds: (a) the DA reaction of NR and maleic anhydride [60]; (b) amine-function-
alized PDMS synthesis and the self-healing process [68]; (c) the synthesis of PU elastomers [69]. 
Copyright 2021, Elsevier; 2020, Elsevier; and 2023, Elsevier. 

  

Figure 2. Covalent bonds: (a) the DA reaction of NR and maleic anhydride [60]; (b) amine-
functionalized PDMS synthesis and the self-healing process [68]; (c) the synthesis of PU elas-
tomers [69]. Copyright 2021, Elsevier; 2020, Elsevier; and 2023, Elsevier.

3.2. Imine Exchange Reaction

Owing to the distinct imine exchange processes, imine bonds have been established as
a form of reversible covalent bond [70]. Silicon elastomers based on PDMS are the most
extensively studied imine-based elastomers [71]. Zhu et al. employed amine-functionalized
PDMS as a backbone and 1,4-diformylbenzene (DFB) as a cross-linking agent, creating a
reversible imine bond based on the amine groups in the PDMS while the aldehyde groups
of the DFB act as self-healing points [68]. When two newly cut slices come into contact,
the imine bond is rebuilt once the unbounded amino and aldehyde groups bind again,
and the sample is then patched (Figure 2b). However, the healing efficiency depends on
the repair time. The delicate structure design that improves chain mobility is in favor of
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excellent self-healing efficiency at room temperature [72]. Utilizing different aldehyde-
modified tetraphenylene derivatives or boroxine derivatives as cross-linkers can even help
to prepare self-healing elastomers with luminescent functionality via a dynamic imine
bond [73,74]. In addition, employing a symmetric imine–diol chain extender allowed for
the fabrication of a robust self-healing PU elastomer which could realize a dynamic imine
exchange reaction under mild conditions [75]. The unique molecular structure led to an
unexpected balance between mechanical properties and self-healing efficiency. The tensile
strength was as high as 40 MPa, while the elongation reached levels of up to 880%. Its
mechanical properties could nearly fully recover after 2 h of healing at 80 ◦C (96%). The
dynamic exchange of imine bonds can also facilitate chitosan or lignin elastomers with
self-healing abilities [76,77].

3.3. Disulfide Exchange Reaction

Disulfide bonds are easily broken, after which a new covalent bond is formed through
a translocation exchange reaction to achieve self-healing in elastomers under mild con-
ditions [78,79]. The amounts of sulfur and various disulfide/polysulfide ratios have an
impact on the mechanical properties and self-healing efficiencies of the elastomer [80].
Additionally, the effects of chemical bond types and synthesis methods have also been
studied [81].

A type of bio-based epoxy elastomer composed of a commercial bio-based epoxy
resin (ESO) and an aromatic disulfide-containing agent (DTSA) benefits from dynamic
aromatic disulfide bonds that can rapidly self-heal even at room temperature due to fast
translocation exchange [82]. Another unique liquid crystal elastomer (LCE) with disulfide
bonds was also previously demonstrated [83]. The polymer network rearranges under UV
irradiation or upon heating, caused by a metathesis reaction of disulfide bonds, becoming
reprocessable and self-healable at high temperatures.

Self-healing PUs based on disulfide bonds have attracted significant research efforts
in recent years [84,85]. Liu and Zhang et al. introduced chain extenders, including 4,4′-
diaminodiphenyl disulfide (DAPS) and double-hydroxyl suspended chains, into PU [69]
(Figure 2c). When the usage of DAPS and suspension chains reached 30% and 50%, respec-
tively, they induced a synergistic interaction that enabled a self-healing efficiency of up to
95%. Since the dynamic disulfide bonds of PU are embedded in the hard segments, mainly
locked in the hard microphase domain, self-healable PUs with high healing efficiencies can
be fabricated [86]. Taking advantage of this phase-locked bond design strategy, Dong et al.
demonstrated a type of robust self-healing thermoplastic elastomer that exhibit a maximum
tensile stress of 25 MPa and an elongation at break of over 1600% [87]. The scratches on the
surface can recover within 60 s at 70 ◦C.

3.4. Other Covalent Systems

Other dynamic covalently cross-linked systems have also emerged [55]. For example,
various boron-based bonds have been widely employed to fabricate self-healing polymeric
materials [88–90]. Wei and Ding proposed a synergy strategy that coordinates a boronic es-
ter and boron–nitrogen to prepare supramolecular polyurethane elastomers [91] (Figure 3a).
B-N coordination accelerated the formation and dissociation of a boronic ester at room
temperature, improving self-healing efficiency and also serving as a sacrificial bond to
demonstrate superior notch insensitiveness and recoverability. Through a dynamic boronic
ester bond, self-healing biodegradable hydrogels can be fabricated from carboxyethyl
cellulose–graft–phenylboronic acid (CMC-B(OH)2) [92].
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Society of Chemistry; 2020, Elsevier; and 2019, American Chemical Society.

Otherwise, via transesterification reactions, the composite materials can be recycled
and self-healed at elevated temperatures by undergoing dynamic reshuffling and rearrang-
ing the network topology [95]. The obtained sample achieved a recovery efficiency of 85%
and a self-healing efficiency of 80%.

In addition, a dynamic urea-bond-based cross-linking polyurea using polydimethyl-
siloxane as the soft segment was developed as a self-healing elastomer [96]. The dynamic
exchangeable urea bond at 60 ◦C enabled the dynamic exchange of the cross-linking net-
work without altering the macroscopic shape.

4. Combined Systems

In general, it is hard to balance the self-healing properties and mechanical properties of
materials which are essentially incompatible. At present, combining multiple interactions
has become the main solution to overcome the contradiction between the mechanical
properties and self-healing properties of elastomers, which has created the so-called fourth
generation of self-healing materials [18].

4.1. Covalent Bond Based Systems

Covalent bonds possess higher energy compared to non-covalent bonds, contributing
to the mechanical performance of a material. Therefore, it is crucial to enhance their
reversibility to achieve high healing efficiencies by introducing non-covalent bonds or other
reversible interactions [97,98].

The study of disulfide-bond-assisted H-bonding self-healing materials began system-
atically in 2017 [99,100]. H-bonds played a crucial role in the early stages of self-healing,
while the dynamic translocation of disulfide bonds improved it by promoting polymer
chain movements [101,102]. Moreover, hydrogen bonding strength can easily decline in the
presence of disulfide bonds, which can result in their easier dissociation and topological
network rearrangement [103,104]. Due to the synergistic interaction between stronger disul-
fide bonds and dynamic strong and weak H-bonds, these elastomers demonstrate high
stretchability, up to 14,000%, and fast autonomous self-healing capability under universal
conditions (10 min for healing at room temperature) [105].
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Significantly, H-bonds are commonly used to support covalent bonds [106]. However,
H-bonds and covalent bonds are intrinsically immiscible without cosolvents due to different
polarities [107]. Nonetheless, it is practicable to force covalent and reversible bonds to mix
at the molecular scale by cross-linking randomly branched polymers carrying motifs to
create a homogenous network, resulting in tough, self-healing polymers [54]. H-bonds, urea
bonds, and the products of a thiol–ene click reaction can be incorporated into a polymeric
backbone with a one-pot in situ photopolymerization method, thus preparing a self-healing
and robust poly(urethane-urea) elastomer [108]. Additionally, H-bonds can also cooperate
with imine bonds as well [109,110].

Compared to H-bonds, ionic bonds not only have a higher bond energy but also
a higher association energy due to their high propensity to segregate into ionic aggre-
gates [111]. A dual-network structure of covalent and ionic cross-linking in ENR enables
the almost unlimited mobility of rubber chains, achieving rubber-based self-healing be-
haviors [112]. Furthermore, imine and coordination bonds have been demonstrated to
form a silicon elastomer with a dual cross-linked structure, realizing room-temperature
self-healing properties with an efficiency of 94% [113].

In addition to dual-network structures, novel and facile methods incorporating multi-
ple dynamic bonds (more than two types of bonds) have been proposed [114]. For instance,
Gao et al. prepared a silicone elastomer with aminopropyl-terminated polydimethyl-
siloxane (A-PDMS), thioctic acid (TA), and 2,6-pyridine dialdehyde (Py) [93]. These sil-
icone elastomers comprised disulfide bonds, hydrogen bonds, and metal–ligand bonds
(Figure 3b). The hydrogen bonds formed a new weak interface while the disulfur bonds
and metal–ligand bonds accelerated the formation of a strong interface. However, the
lack of energy to drive hydrogen bond formation and disulfur exchange, or the lack of
reactive sites, led to a lower healing efficiency at low temperatures. To achieve self-healing
performance at room temperature, the synergistic effect of multiple dynamic interactions is
key [115].

Furthermore, two types of dynamic reversible covalent bonds can also produce syn-
ergistic self-healing effects. The introduction of imine bonds and boroxine bonds into
PDMS networks can easily fabricate a polysiloxane elastomer with a maximum healing
efficiency of up to 97.8% [116]. Integrating boroxine bonds into the polymer networks can
improve mechanical strength. Meanwhile, the integration of both dynamic bonds resulted
in excellent self-healing properties.

4.2. Multiple Non-Covalent Interactions

Multiple non-covalent interactions refer to the interaction of two or more non-covalent
bonds between molecules. Compared with a single non-covalent-interaction cross-linking
material, multiple dynamic-interaction cross-linking polymer complexes provide a simpler
method for enhancing the mechanical properties and structures of repairable elastomers.

The most common non-covalent interaction is H-bonding, which can be combined with
other interactions including ionic interactions [117], coordination bonding [118,119], host–
guest interactions [120], and other intermolecular forces to design self-healing elastomers
with various properties.

Self-healing polymers based on ionic bonds and hydrogen bonds can achieve excellent
mechanical strength while maintaining a high healing efficiency. Wang et al. utilized
hydrogen bonding to prepare amide oligomers with a certain elasticity and then introduced
zinc–carboxylate interactions in the oligomers [121]. The connection network was enhanced
by hard ion regions and aggregation, thereby improving the rigidity and mechanical
strength of the material. Additionally, this synergistic mechanism could produce highly
tough and strong polyurethane/PDMS elastomers with a self-healing ability [122,123].

Regarding H-bonds and metal–ligand coordination, Qiu and Liu et al. constructed
a dual physical network of H-bonds and Zn2+-ligand coordination which can realize fast
solid–liquid separation during photocuring and 3D printing and exhibits high stretchability,
a shape-programming ability, and a self-healing capacity [124]. This thermoplastic elas-
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tomer exhibited a healing strain and stress of 79% and 73%, respectively, after self-healing
at 70 ◦C in 24 h.

Connecting H-bonds and host–guest interactions led to the construction of double
networks [94]. The two networks comprised a polyacrylate matrix and poly-cyclodextrin
(Poly-CD) and adamantane (Ad) groups, respectively (Figure 3c). They were miscible
and interpenetrated at the molecular level due to supramolecular interactions. When the
sample was stretched, the double bonds shared the load and acted as sacrificial bonds for
the driving force of energy dissipation and self-healing. The sample exhibited a recovered
tensile strength of up to 4.5 MPa after autonomous self-healing in ambient conditions.

In addition, H-bonds and hydrophobic associations show great potential in enhancing
the mechanical performance and self-healing ability of elastomers, as indicated by Mooney–
Rivlin equation calculations [125]. Furthermore, the synergistic effects of electrostatic
and H-bond interactions within polymer networks could endow the complexes with a
high tensile strength of 27.4 MPa and a self-healing efficiency of approximately 96% in an
environment with ~90% relative humidity at room temperature [126].

5. Summary and Perspectives

This mini-review focuses on the latest advances in intrinsic self-healing elastomers,
especially the various strategies used to construct new self-healing elastomers via different
mechanisms. The self-healing elastomers prepared in this manner have a wide range of
applications, including 3D printing [127], optical lenses [128], wearable electronics [129],
adhesive films [130], and intelligent detection [131]. However, there are still some problems
with self-healing elastomers:

(1) The cost of self-healing elastomers is too high due to the high raw material cost, com-
plex synthesis steps, and reaction conditions. In particular, the reaction intermediates
typically involve highly active functional groups, such as amines, isocyanates, and free
radicals, which will undoubtedly limit their shelf life and prohibit their applications.

(2) So far, the repair conditions of self-healing materials are too harsh. Generally, achiev-
ing a self-healing function at room temperature is difficult, and it requires heat at a
certain temperature or electromagnetic radiation to achieve self-healing. Moreover,
flow and closure are the foundations that make healing possible. Thus, it is vital to
put fractured structures back together, which is not currently possible without manual
intervention.

(3) The repair speeds of self-healing elastomers have not yet met the needs of practical
applications.

(4) With increases in use time and repair time, the physical properties of self-healing
materials will weaken. Meanwhile, their healing speed and efficiency will be greatly
reduced due to the water molecules or dust particles that may occupy the positions
where reversible bonds form and break between polymer chains.

(5) It is a challenge to ally robust mechanical performance with virtuous self-healing
abilities in elastomers.

In view of the above limitations, future works on self-healing elastomers should focus
on the following aspects:

(1) Introducing self-healing properties into commercially available polymer materials
without changing the original properties of the polymer material, such as PDMS,
rubbers, and PUs.

(2) Optimizing the position, concentration, and structural arrangement of the dynamic
chemical bonds in the polymer network to realize the transition from elastomer to
liquid after dynamic bond breakage so that the flow of the polymer segment can also
completely fill the damaged area.

(3) Improving the mobility of molecular chains and the dynamic exchange rate of dynamic
bonds to shorten the healing time.
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(4) Integrating different chemical groups into polymer networks with fine control of the
proportions and positions responsible for self-healing and other functions during
synthesis or through post-modification.

(5) Increasing cross-linking density and endowing the dynamic properties of cross-linking
points, which may improve the mechanical properties of self-healing materials, or
alternatively constructing a dual network structure composed of both non-covalent
and covalent bonds into the material. Dynamic covalent bonds cause a significant im-
provement in mechanical properties, while non-covalent interactions, as the primary
sacrificial bond, provide substantial improvements in healing efficiency. In addition, it
is advisable to choose reversible covalent bonds with higher bond energies combined
with auxiliary supramolecular interactions, controlling the structure of the soft seg-
ment and the soft/hard segment ratio or constructing a microphase separation system
and introducing an enhanced phase. All these methods aim to achieve self-healing
elastomers with both high mechanical strength and superior healing efficiency.

(6) Specifically, it is beneficial to establish mechanisms by mimicking organisms found in
plants and human skin when designing self-healing elastomers.

(7) Exploring multiple combinations in search of further positive effects.
(8) Using fillers or other additives as carriers for additional repair mechanisms may also

be a promising option.

In summary, ideal self-healing elastomers should possess a quick healing time, high
efficiency, robust mechanical properties, and autonomous healing without external energy
and be fully restored (including mechanical properties and other functions) after repair.
Additionally, developing multifunctional self-healing elastomers will be a future research
hotspot. We believe that the present serious limitations will be resolved in the near future,
and that diverse high-performance self-healing elastomers with various properties have
excellent prospects.
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