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Abstract: The influences of ethylene-based elastomer (EE) and the compatibilizer agent ethylene-
butyl acrylate-glycidyl methacrylate (EBAGMA) on the thermal degradation of PLA/EE blends
were evaluated by the thermal degradation kinetics and thermodynamic parameters using thermo-
gravimetry. The presence of EE and EBAGMA synergistically improved the PLA thermal stability.
The temperature of 10% of mass loss (T10%) of PLA was around 365 ◦C, while in the compatibilized
PLA/EE blend, this property increased to 370 ◦C. The PLA average activation energy (Ea) reduced in
the PLA/EE blend (from 96 kJ/mol to 78 kJ/mol), while the presence of EBAGMA in the PLA/EE
blend increased the Ea due to a better blend compatibilization. The solid-state thermal degradation
of the PLA and PLA/EE blends was classified as a D-type degradation mechanism. In general, the
addition of EE increased the thermodynamic parameters when compared to PLA and the compat-
ibilized blend due to the increase in the collision rate between the components over the thermal
decomposition.

Keywords: PLA; polymer blends; compatibilization; thermal properties; solid-state reaction

1. Introduction

Biodegradable polymers (BDPs) have been researched and developed as materials
with the potential to replace conventional non-biodegradable polymers (n-BDPs). BDPs
present the benefit of being extracted from diverse natural sources (e.g., cellulose and
starch) [1] with low environmental impact and are divided into natural and synthetic
polymers [2]. The natural BDP polysaccharides (such as chitosan, cellulose, starch), proteins
(such as whey protein, corn zein, and soy protein) [3], and microbial polyesters (such as
poly(β-hydroxyalcanoate) (PHA) and poly (3-hydroxybutyrate) (PHB) [4], as well as poly
(hydroxybutyrate-co-hydroxyvalerate) (PHBV)) [5] are the most studied and employed.
Synthetic polymers, such as polyesters, polyamides, polyurethanes, and polyureas [6],
are biodegradable due to these chemical groups being susceptible to hydrolyzation. In
terms of representants, poly (glycolic acid) (PGA) and poly (lactic acid) (PLA) [7], poly
(butylene succinate) (PBS) [8], poly(ε-caprolactone) (PCL) [9], and poly (butylene adipate-
co-terephthalate) (PBAT) [10] are the most important synthetic BDPs.

PLA is one of the most known and employed synthetic biodegradable polyesters, ob-
tained from corn and potato starch [11] and commonly used in the biomedical area [12] and
in additive manufacturing [13]. PLA is a brittle polymer at room temperature and shows
glass transition temperature (Tg) around 60 ◦C [14]. In terms of mechanical behavior, PLA
presents a higher elastic modulus than polypropylene (PP), acrylonitrile-butadiene-styrene
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(ABS), or polyamide (PA) [12]. Depending on the application, the low toughness and slow
crystallization kinetics of PLA implies using plasticizers, nucleating agents, and flexible
polymers (polyesters, conventional or thermoplastic elastomers) [15,16] to improve the
balance of rigidity–toughness–processability. PLA blends with thermoplastic polyurethane
(TPU), ethylene elastomers [17], polycarbonate (PC) [18], polyhydroxyalkanoate (PHA) [19],
or PBAT [16], are commonly used for balancing the PLA rigidity–tenacity, allowing the
production of materials with new properties and good reproducibility at low cost [20].

A polymer blend is affected by factors such as morphology, interfacial interaction
between components, polymer viscosity, and particle size distribution (in the case of het-
erophasic mixtures). Some studies regarding PLA blends reported an improvement of the
PLA mechanical properties in blends with ethylene-vinyl acetate (EVA) [21], poly (ethy-
lene glycol) (PEG) [22], and PCL [23]. Since incompatible polymer blends present phase
separation [24], properties can be improved using a compatibilizer agent (CA) [usually
block or graft copolymers that can interact with both blend phases] [25]. Ethylene-acrylate
copolymers, such as ethylene-glycidyl methacrylate (EGMA), ethylene-methyl acrylate-
glycidyl methacrylate (EMAGMA) [16], and ethylene-butyl acrylate-glycidyl methacrylate
(EBAGMA) [17], have been reported as good CAs for PLA blend compatibilization. The
CA promotes a significant increase in the intermolecular interaction between the polymers’
domains, lowering the interfacial tension [26] and enhancing the mechanical properties [27].
The PLA/plasticized cellulose acetate (pAC) (85/15 w/w) blend compatibilized with AC-
g-PLA [28] and PLA/bio polyethylene (bioPE) (80/20 w/w) blend compatibilized with
EVA [29] have shown improved tenacity comparing with the respective blend without a
compatibilizer agent.

Polymer blend components usually have different chemical structures and, thus, dis-
tinct thermal degradation behavior and kinetics mechanisms. Moreover, some degradation
products may influence the other degradation processes and vice versa, changing the
decomposition rate and the energy input to initiate the degradation process. The thermal
degradation kinetics of polymers is usually assessed by isoconversional methods such as
Flynn–Wall–Ozawa (FWO) [30], Kissinger–Akahira–Sunose (KAS) and Starink [31], as well
as Friedman [30], and Advanced Isoconversional Model (AIC) [32]. The isoconversional
methods allow the estimation of important parameters (such as activation energy) and
are independent of reaction models [33]. Complementing the isoconversional evaluation,
Criado’s method [31] evaluates reaction models and compares experimental data versus
master curves to identify the most probable degradation mechanism.

Another important approach to assess a thermal degradation reaction is through the
thermodynamics of the degradation reaction [34]. Thermodynamical parameters, molar
changes in enthalpy (∆H), entropy (∆S), and free Gibbs energy (∆G) and frequency factor
by using activation (A) are used to evaluate the spontaneity of the degradation reactions
and how these parameters are affected by the extension of conversion (α) and heating rate
(β). Carrasco et al. [35] studied PLA/PA blend kinetics of thermal degradation, observing
the increase of %PA in the blend which shifted PLA T5% to higher temperatures and
increased the apparent activation energy for thermal degradation. The authors observed
that F2 (random degradation nucleation with two nuclei on the individual particle), R2
(phase boundary-controlled reaction), and D2 (2-dimension diffusion) reaction models are
possible models of the kinetics of thermal degradation of PLA/PA 70/30 blend. Alhulaybi
et al. [31] studied the thermal behavior of PLA through thermogravimetry, observing that
PLA thermal degradation occurred in a single thermal event. The PLA kinetics of thermal
degradation was assessed by isoconversional methods (Friedman, FWO, KAS, and Starink),
and activation energy (Ea) was estimated to be between 97–109 kJ/mol. PLA exhibited an
R2-type (geometrical contraction model) reaction mechanism regardless of the heating rate
based on Criado’s method.

Many papers discussing the PLA and PLA blend thermal degradation focus on their
thermal stability at different atmospheres by TGA/DTG analysis. However, to the best
of our comprehension, the literature offers a minor number of papers regarding a deeper
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discussion about how a compatibilizer agent can affect or modify the PLA thermal stability
or degradation. In a previous work [36], we discussed the effect of the compatibilizer
agent EBAGMA on the PLA/TPU (70/30% wt.) blend mechanical properties. The addition
of 5 wt.% EBAGMA in the PLA/TPU blend increased the Izod impact absorption from
3.4 kJ/m2 to 5.0 kJ/m2 (while the PLA Izod impact was only 1.9 kJ/m2), evidencing an
improved intermolecular interaction between the polymer molecules. This paper aims to
investigate the effect of the compatibilizer agent EBAGMA on PLA/EE (ethylene elastomer)
blends’ thermal degradation by evaluating the thermal decomposition kinetic and thermo-
dynamic parameters using TGA/DTG analyses. The choice of thermoplastic elastomer EE
was because of its non-polar nature (in contrast to PLA, a polar polymer), which requires a
compatibilizer agent in a blend with PLA.

2. Materials and Methods
2.1. Materials

The main physical, rheological, and thermal data of the polymers, poly (lactic acid)
(PLA) (NatureWorks, NE, USA) ethylene elastomer (EE) (DuPont, Brazil), and terpolymer
ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) (DuPont, Brazil) are listed in
Table 1.

Table 1. Polymer’s main physical, rheological, and thermal data *, and suppliers.

Polymer Density
(g/cm3)

MFI
(g/10 min) Tg (◦C) Tm (◦C) Company

Poly (lactic acid) (PLA) 1.24 35 a 60 170 NatureWorks
Ethylene elastomer (EE) 0.87 23 b −45 43 DuPont

Ethylene-butyl
acrylate-glycidyl

methacrylate
(EBAGMA)

0.94 12 a −45 74 DuPont

* Condition: a—190 ◦C/2.16 kg and b—80 ◦C/2.16 kg.

2.2. Preparation of PLA/EE Blends

Table 2 shows the nomenclature and compositions (in wt.%) of the PLA/EE blends
prepared without (PLA30EE) and with the compatibilizer agent (CA) EBAGMA (PLA30EE-
C) as previously discussed [17]. The PLA blend components were simultaneously added
into an internal mixer chamber model Haake Rheodrive 7 Rheomix OS (ThermoFisher,
Waltham, MA, USA) (chamber temperature: 190 ◦C; rotors speed: 50 rpm; residence time
8 min). The polymers PLA, EE, and EBAGMA were dried at 30 ◦C for 24 h before processing
to remove moisture.

Table 2. Nomenclature and compositions (wt.%) of the PLA/EE blends.

Sample PLA/EE/EBAGMA (wt. %)

PLA 100/0/0
PLA30EE 70/30/0

PLA30EE-C 65/30/5

2.3. PLA and PLA Blends Thermal Characterization

The thermal stability of PLA, EE, EBAGMA, and PLA blends was assessed in terms
of mass loss (TG) and mass loss rate (DTG) through thermogravimetric analysis (TGA)
using a thermogravimetric analyzer model Q50 calorimeter (TA Instruments, New Castle,
DE, USA) in the N2 atmosphere. The tests were carried out from 25 to 600 ◦C at different
heating rates (β) (5, 10, and 20 ◦C min−1) using approximately 10 mg of each sample. The
temperature of 5 and 10% of mass loss (T5% and T10%, respectively) and the DTG peak
temperature (Tp) were estimated for all samples in different β.
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2.3.1. Thermal Decomposition Kinetic Approach

The thermal decomposition kinetics of PLA, EE, EBAGMA, and PLA/EE blends
were evaluated according to Flynn–Wall–Ozawa (FWO) (Equation (1)) and Vyazovkin
(Equation (2)) models.

log (β) = log [A Ea/g(α)] − 2.315 − 0.4567 (Ea/RT) (1)

g(α) =
∫ α

0

dα
f(α)

= A
∫ t

0
exp

(
Eα(α)

RT

)
dt = AJ[Eα(α), T] (2)

where g(α), f(α), and A are, respectively, the integral form of the reaction model, the heating
program, and the Arrhenius constant, and T(t) is also the heating program (assumed as
linear).

The curves log β versus reciprocal of temperature (in absolute temperature) at different
heating rates (β) were plotted, and the apparent activation energy (Ea) (slope of the curve) at
each extent of conversion (α) was determined for all samples. Ea (associated with the energy
to the occurring event) and the frequency factor (A) (associated with the vibration frequency
of the products from the reaction degradation, also known as Arrhenius parameters) were
estimated using the isoconversional method, assuming the reaction rate at constant α is
only affected by the temperature.

The Criado method [37] was used to determine and evaluate the degradation reaction
mechanism in a solid-state reaction process for PLA, EE, EBAGMA, and PLA blends. This
method uses a Z function, which depends on the conversion extent α (Z(α)) (Table 3). The
comparison of the master curves (plotted from the theoretical values) with the experimental
values indicates the most likely mechanism(s) of the solid-state reaction. The degrada-
tion mechanisms divide into nuclei formation (An), phase boundary-controlled reaction
(Rn), diffusion (Dn), random degradation nucleation (Fn), and random chain scission (Ln)
processes [38].

Table 3. Theoretical and experimental models for Z(α) type function.

Model Z(α) Type Function

Theoretical Z(α) = f(α)g(α)
Experimental Z(α) = (dα/dT)(Ea/R)(exp (Ea/RT))P(x)

2.3.2. Thermodynamic Approach

The thermodynamic parameters of the degradation reaction [39] are functions of
the extent of conversion (α) and are used in conjunction with the kinetics of thermal
decomposition. The expressions for the thermodynamic parameters of the degradation
frequency factor (A), molar changes in enthalpy (∆H), entropy (∆S), and Gibbs free energy
(∆G) are in Table 4. The heating rate for estimating Tp and Ea was 20 ◦C/min (estimated by
the FWO method).

Table 4. Reaction thermodynamic parameters and respective equations.

Parameter Equation

A A = [β Ea exp (Ea/RTp)]/RTp
2

∆H ∆H = Ea − RTα

∆G ∆G = Ea + RTp ln [(kBTp)/(hA)
∆S ∆S = (∆H − ∆G)/Tp

Where “β” is the heating rate (in K.min−1), “kB” is the Boltzmann constant (1.38 ×
10−23 J K−1), “h” represents the Planck’s constant (6.67 × 10−34 J s), “Tp” is the DTG peak
temperature (in K), “Tα” is the temperature (in K) at an extent of conversion α, and “R” is
the gas constant (8.314 J mol−1 K−1).
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3. Results and Discussion
3.1. Thermal Stability Evaluation in a Non-Oxidative Atmosphere

The poly (lactic acid) (PLA) is a polar semicrystalline polyester (–[HCCH3-CO-O]n–),
the ethylene elastomer (EE) is a non-polar ethylene-α olefin copolymer (–[CH2-CH2]x-
[CH2-CH(CH2(CH2)mCH3)]y–), and the compatibilizer agent EBAGMA is a terpolymer
ethylene-butyl acrylate-glycidyl methacrylate (–[CH2-CH2]x-[CH2-CHCOOBu]y-[CH2-
CCH3COOGly]z–) with non-polar and polar chain sequences. The polymer’s thermal
stability is mainly related to the molecular weight and chemical and physical structure of
molecules, affecting the type of intermolecular forces and the polymer’s thermal behavior.

Figure 1 shows the mass loss (TG) and derivative (DTG) curves of the PLA, EE, and
EBAGMA as a function of temperature at different heating rates.
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The thermal stability of PLA is affected by moisture, hydrolyzed monomers and
oligomers, molecular weight, and residual metals [40], resulting in lower thermal stability
than polyolefins [33]. The PLA thermal degradation occurs by chain-end scission with
a hydroxyl group (–OH) and random scission at the main polymer chain [33], as well
as unzipping depolymerization reactions [41]. These chain scission reactions divide into
hydrolysis, oxidative degradation, cis-elimination, and inter/intramolecular transesteri-
fication reactions [41]. In terms of PLA degradation products, linear hydroxyl, ester, and
carbonyl groups are the most important ones [42]. The PLA (Figure 1A) presented a single
decomposition event regardless of the heating rate, as similarly observed by Ruz-Cruz
et al. [43]. The increase in the heating rate shifted the PLA decomposition peak (Tp) to
higher temperatures due to thermal lag, heat transfer limitations, and the time-temperature
superposition principle [44].

Table 5 shows the temperatures in which there is 5% (T5%) and 10% (T10%) of mass loss
and the temperature (Tp) where the degradation rate is maximum (or the derivative curve
peak) of the PLA, EE, and EBAGMA as a function of temperature at different heating rates.
The Tp,PLA occurred in the range 350–380 ◦C at different heating rates, in conformity with
Karimpour-Motlagh et al. [44], Hayone et al. [45], and Abu Hassan et al.’s [46] findings.
Based on T5% and T10% values at different heating rates, the PLA would be thermally stable
and suitable for injection and extrusion processing. The ethylene elastomer EE, a non-polar
elastomer mostly composed of ethylene monomers, has unsaturated butene as the main
thermal degradation product and other vapors [17]. The EE (Figure 1B, Table 5) presented
two decomposition events and no significant mass loss below 200 ◦C, indicating that this
material is suitable for injection and extrusion processes as PLA. The Tp, EE occurred in
the range 360–470 ◦C at different heating rates, as similarly reported for high-density
polyethylene (HDPE) under a non-oxidative atmosphere [47–49]. In general, increasing the
heating rate leads the polymer degradation to occur by two events in higher temperatures.

Table 5. TG and DTG parameters of PLA, EE, and EBAGMA.

Sample Heating Rate (β)
(◦C/min)

T5%
(◦C)

T10%
(◦C)

Tp
(◦C)

PLA
5 312 324 358
10 335 347 380

20 * 334 * 365 378 *

EE
5 298 322 364
10 317 337 375
20 407 421 470

EBAGMA
5 377 396 456
10 396 415 466
20 405 422 470

* Originally published: [17].

The acrylate compatibilizer EBAGMA is a random terpolymer composed of 66.75 wt.%
ethylene, 28 wt.% n-butyl acrylate, and 5.25 wt.% glycidyl methacrylate. The bigger the n-
butyl acrylate content, the better the engineering polymers’ thermal stability [50]. EBAGMA
is the compatibilizer agent used in polymer blends with polyesters such as PET and PLA
because of its high efficiency [51]. However, there is little data discussion in the litera-
ture on the decomposition mechanism of EBAGMA and yielded products. The different
chemical structures in EBAGMA could undergo individual thermal decompositions and
yield different products. However, EBAGMA presented a single decomposition event with
Tp in the range 460–480 ◦C (Figure 1C, Table 5), which could be explained by the high
ethylene content. Despite each domain undergoing individual thermal decomposition, the
ethylene domain degradation controlled the overall reaction of EBAGMA, resulting in a
similar thermal degradation exhibited by HDPE. The ethylene domain thermal degradation
mechanism occurs by a random scission followed by a radical transfer process [52], and
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some possible yielding products are hydrocarbons, carboxylic acids, and aldehydes [53].
On the other hand, poly (n-butyl acrylate) thermal degradation occurs by random chain scis-
sions [54], and some yielding products are butene, methacrylic acid, and anhydrides [55].
The GMA group in GMA-grafted polymers can undergo chemical reactions with polyester
hydroxyl end-groups and generate graft copolymers at the interface, improving polymer
blend compatibility [55–58]. Huang and Kang [56] evaluated the thermal stability of poly
(glycidyl methacrylate) (PGMA) by TGA at different heating rates, observing that PGMA
showed a single thermal decomposition event and an onset thermal decomposition around
280–300 ◦C. On the other hand, Lee et al. [57] reported that the poly (ethylene-co-glycidyl
methacrylate) (EGMA) thermal decomposition, under a non-oxidative atmosphere, was a
single-step event and the Tp was around 475 ◦C.

Figure 2 shows the mass loss (TG) and derivative (DTG) curves of PLA (A1, A2),
PLA30EE (B1, B2) and PLA30EE-C (C1, C2) blends versus temperature at different heating
rates.
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The PLA/EE blends exhibited two thermal decomposition events and two DTG peaks
(Tp1 and Tp2) regarding PLA (1st event) and EE (2nd event) degradation processes, as
previously reported [17]. The presence of EE or EBAGMA did not change the PLA thermal
decomposition onset temperature. These results agreed with the report by Hassan et al. [46]
in their evaluation of the thermal degradation of PLA/ HDPE blends, in which these
blends exhibited two thermal decomposition events associated with each polymer. The 1st
event (relative to PLA) occurred between 325–425 ◦C and Tp, PLA was identified at 375.4 ◦C,
while the HDPE decomposition (2nd event) occurred between 430–520 ◦C and Tp, HDPE
was identified at 480.1 ◦C.

Table 6 shows the corresponding temperatures in which there are 5% (T5%) and 10%
(T10%) of mass loss and the temperature (Tp) where the degradation rate is maximum. The
use of EBAGMA as a compatibilizer agent in the PLA30EE blend slightly shifted Tonset, PLA
to higher temperatures, indicating that this compatibilizer agent could have increased
the thermal stability of both PLA and EE. These results were similar to the investigation
of Karimpour-Motlagh et al. [44] of the thermal stability of PLA/PP/cloisite composites
compatibilized with EBAGMA. The presence of PP reduced Tonset, PLA in all heating rates.
However, EBAGMA increased the Tonset of PLA/PP/cloisite composites, suggesting this
CA could have improved PLA system thermal stability. On the other hand, Lu et al. [58]
studied the thermal decomposition of PLA/HDPE blends compatibilized by EBAGMA.
The Tonset, PLA increased regardless of HDPE%, and the %HDPE did not affect the Tp, HDPE.
However, adding 5%EBAGMA in PLA/HDPE 60/40 blend reduced T5% from 343.2 to
314.1 ◦C and Tp, PLA from 367.2 to 354.5 ◦C.

Table 6. Temperatures with 5 and 10 wt.% mass loss, Tp according to heating rate of the PLA, and
PLA/EE blends.

Sample Heating Rate (β)
(◦C/min)

T5%
(◦C)

T10%
(◦C)

Tp,1
(◦C) Tp,2 (◦C)

PLA
5 312 324 358 -

10 335 347 380 -
20 334 * 365 378 * -

PLA30EE
5 331 341 365 459

10 340 350 384 473
20 341 * 364 377 * 474 *

PLA30EE-C
5 310 323 360 450

10 344 355 385 475
20 342 * 370 371 * 466 *

* Originally published: [17].

3.2. PLA and PLA/EE Blends Kinetics of Thermal Degradation
3.2.1. Estimative of Apparent Activation Energy (Ea)

Figure 3 shows the activation energy (Ea) estimated by FWO (Figure 3A) and Vya-
zovkin (Figure 3B) methods as a function of the conversion extension (α) for PLA, EE, and
EBAGMA. Ea is associated with the susceptibility and reactivity of a chemical reaction and
indicates the minimum energy required for breaking the molecular bonds [30]. The average
value Ea

(
Ea
)

of PLA was approximately 96.6 kJ/mol by the FWO method and 96.4 kJ/mol
by the Vyazovkin method, and Ea decreased slightly with the conversion rate α. Carrasco
et al. [59] studied the PLA thermal degradation kinetics by the FWO method, reporting that
PLA Ea varied accordingly to α, and Ea was estimated as 162 kJ/mol. According to Monika
et al. [38], the PLA Ea was estimated as 158 kJ/mol by the FWO method. The divergence
between the Ea value and the ones reported in the literature can be due to a difference in
the molecular weight of PLA. In our work, PLA was previously processed in the mixer
chamber before the TGA analysis, which could have led to a degradation of the fraction of
higher molecular weight molecules.
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The Ea average value
(
Ea
)

was approximately 138.8 (FWO method) and 143.8 kJ/mol
(Vyazovkin method) for the ethylene elastomer EE and 155.3 (FWO method) and 227.4 kJ/mol
(Vyazovkin method) for the acrylate compatibilizer EBAGMA, and Ea values were influ-
enced by α in both polymers. Sinfronio et al. [60] research about low (LDPE) and high
(HDPE) density polyethylene thermal degradation kinetic using the FWO method reported
a similar tendency. The activation energy Ea varied with the conversion rate α, and the
average Ea was 192.53 kJ/mol for LDPE and 202.46 kJ/mol for HDPE. On the other hand,
Lyer et al. [61] employed the FWO method and reported an average Ea of 262.1 kJ/mol
for the LDPE and 257.2 kJ/mol for the HDPE. The difference between the Ea values could
be explained by the fact that EE is an amorphous thermoplastic elastomer with very low
crystallinity, while LDPE and HDPE are thermoplastics with low and high crystallinity. In
addition, the molecular weight of both polyethylenes is usually higher than the thermoplas-
tic elastomers. The activation energy average Ea of EBAGMA increased drastically with
the conversion rate α because of a possible transformation of the molecule’s chemical and
physical structure at high temperatures, resulting in a more stable structure due to intra
and intermolecular forces. Moreover, amorphous polymers like EBAGMA could have high
entanglement density that would contribute to better thermal stability and higher Ea values.
The curves Ea vs. α in Figure 3A and B showed the same profile and Ea values of the same
order existing in good accordance with the models that suggest similar mechanisms of
degradation for the individual polymers. Therefore, the EBAGMA presence in the PLA/EE
mixture will improve the blend stability and the decomposition process [30].

Figure 4 shows the activation energy (Ea) estimated by FWO (A) and Vyazovkin (B)
methods as a function of the α for PLA and PLA/EE blends. The addition of 30 wt.% of EE
in the PLA depressed the Ea of the PLA30EE blend compared to the neat PLA since the
polymers are incompatible, as was already reported in the literature [17]. Harris et al.’s [62]
study about PLA/HDPE identified that 10 wt.%HDPE has reduced the PLA onset thermal
degradation, resulting in a faster decomposition process of PLA. On the other hand, the
addition of 5 wt.% EBAGMA in the PLA30EE mixture improved the blend compatibility
and thermal stability, increasing the activation energy required for starting the degradation
process. The variation in the Ea values with conversion may be associated with a change in
the reaction mechanism during thermal degradation.
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Table 7 shows the activation energy Ea average values estimated by the FWO and
Vyazovkin methods for the pure polymers (PLA, EE, EBAGMA) and PLA30EE blends. The
presence of EBAGMA in PLA30EE blend increased the Ea value, which was an effect of
the compatibilization promoted by EBAGMA on the physical and chemical intermolecular
interaction between the PLA-EE molecules, producing a more stable system even at higher
temperatures. A similar effect was reported by Reddy et al. [63] using 3 wt.% of the ethylene-
propylene copolymer grafted with maleic anhydride (EP-g-MA) as a compatibilizer agent
in PP/PLA blends, with the onset of degradation at higher temperatures due to a better
stabilization of the mixture.

Table 7. Average activation energy (Ea) of the PLA degradation, EE and EBAGMA, and PLA30EE
blend estimated by FWO and Vyazovkin methods.

Sample
Ea (kJ/mol)

FWO Method Vyazovkin Method

PLA 96.6 ± 4.4 96.4 ± 4.5
EE 138.8 ± 20.4 143.8 ± 23.0

EBAGMA 155.3 ± 20.4 227.4 ± 72.7
PLA30EE 78.0 ± 7.7 77.3 ± 6.8

PLA30EE-C 81.6 ± 14.0 120.4 ± 11.4

3.2.2. Evaluation of Thermal Degradation Mechanism by the Criado Method

The Criado method assessed the thermal degradation mechanism in a solid state
of the PLA, EE, and EBAGMA. The activation energy Ea was estimated by the FWO
method (as similarly done in [39]). Figure 5 shows the master curves Z(α) versus α and the
experimental data of the PLA (A), EE (B), and EBAGMA (C).
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The PLA degradation mechanism was related to the one-dimension diffusion mech-
anism (D1) and three-dimension diffusion (Ginstlinge-Brounshtein model) mechanism
(D4). Considering that D1 and D4 are diffusional processes, it could be assumed that the
reaction rate is higher than the reaction front propagation [64,65]. This result diverged from
Alhulaybi et al. [31], Shao et al. [66], and Gharshallah et al.’s [67] findings, which suggested
that PLA thermal degradation is more likely to happen as R2, R3, and F2 mechanisms,
respectively. The divergence could be due to the scission of some PLA chains during
processing by shear forces, reducing the average molecular weight, which would explain
the lower degradation activation energy (Ea) value found for PLA in this work (Table 7). As
a result, the heat transfer to PLA may promote a degradation process based on a diffusion
mechanism (D-type) instead of a phase boundary-controlled reaction (R-type).

EE showed a solid-state thermal degradation mainly influenced by the conversion rate
(α) (Figure 5B). At the beginning of the thermal degradation process, the sample exhibited
a diffusion mechanism, probably associated with the heat transfer to the elastomer. When
the conversion rate was between 0.2 and 0.3, the phase boundary-controlled reactions
(mainly R1 and R2 mechanisms) controlled the solid-state degradation process. At this
stage, the EE thermal degradation could have generated thermal degradation products
(such as unsaturated butane) based on a reaction mechanism controlled by the sample´s
surface. This trend agreed with the findings reported by Aboulkas et al. [68] and Choudhary
et al. [69] for LDPE and HDPE thermal degradation mechanisms described as R-type. When
the degradation reaction reached α between 0.4 and 0.7, the reaction mechanism tended to
random nucleation (F3), probably due to the random cleavage of the remaining polymer
chain segments.
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On the other hand, EBAGMA (Figure 5C) exhibited an F1 degradation mechanism
characterized by random nucleation with one nucleus on the individual particle [39].
According to Poletto et al. [70] and Vyazovkin [71], in the F1 mechanism, there are no
preferable sites in the reaction medium to start the thermal degradation reactions, and
there are regions responsible for nucleate and evolution of these reactions. Considering
that EBAGMA is a random terpolymer composed of ethylene segments, n-butyl acrylate,
and glycidyl methacrylate, the reaction mechanism in the solid-phase reaction could occur
based on the random scission of the polymer chain, and the degradation propagates based
on the random nucleation.

The solid-state thermal degradations of PLA and PLA/EE blends were evaluated by
the Criado method using the Ea estimated by the FWO method. Figure 6 shows the master
curves and the results of the experimental data for the PLA (A) and blends PLA30EE (B)
and PLA30EE-C (C).
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The PLA30EE curve has shown a D-type degradation mechanism, the same exhib-
ited by the individual polymers PLA and EE. The D-type mechanism suggested that the
thermal degradation of PLA and EE did not affect each other, which could be explained
by the different temperature range degradation of PLA and EE. The PLA onset thermal
degradation process (see Figure 1 and Table 5) was earlier than EE, implying that EE is
thermally more stable than PLA. The PLA30EE-C curve (Figure 6C) indicated this blend
has also shown a D-type degradation mechanism (also exhibited by the individual PLA
and EE, but not for EBAGMA). These results diverged from Karimpour-Motlagh et al. [44]
research about the thermal degradation of PLA/PP blends with and without clay. PLA
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showed an F1-type thermal degradation, but it has converted into an F3-type in PLA/PP
(75/25) blend, while the incorporation of clay into the polymer blend has changed the PLA
thermal degradation mechanism from F3 to R2-type; however, when using EBAGMA in
the reinforced polymer blend, the PLA mechanism has undergone a new modification (this
time, from R2 to R3).

3.3. Thermodynamics Parameters of the PLA and the PLA/EE Blends

The frequency factor (A), molar changes in enthalpy (∆H), entropy (∆S), and Gibbs
free energy (∆G) for the thermal decomposition reaction as functions of conversion of
PLA, EE, EBAGMA, and PLA30EE blends are shown in Figure 7A–D, respectively). The
estimative of each one of these thermodynamic parameters considered the activation energy
(Ea) values calculated according to the FWO method.
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functions of extension of conversion (α) of the PLA, EE, EBAGMA, and PLA30EE blends estimated
by FWO method.

According to Choudhary et al. [69], higher frequency factors (A) values can indicate
(i) high reactivity, (ii) higher barrier energy, and (iii) formation of a possible simpler
complex during the reaction. For A ≥ 109 min−1, a simpler complex is created during
the reaction, while for A > 1014 min−1, the collision rate between the components of the
system increases. According to Figure 7A, only EBAGMA presented A values higher than
1014 min−1, suggesting a higher activity of EBAGMA polymer segments during thermal
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degradation. EBAGMA possibly experienced higher reactivity than the other samples
evaluated since the thermal degradation reaction was faster than the others. This result was
corroborated by the highest value of ∆S of this polymer, which indicated a higher disorder
degree of a system, and by the reaction mechanism in solid-phase reaction characterized by
random scission of the polymer chain, as described previously.

The molar change in enthalpy (∆H) (Figure 7B) can be interpreted as the total heat
content of a system [72], and positive ∆H values indicative of an endothermic process
during the thermal decomposition reaction [69], implying that the system requires heat
absorption to progress the decomposition reaction. All samples presented positive ∆H
values, which was expected once the energy absorption was needed to initiate the thermal
degradation reaction. The PLA average ∆H value was 91.13 ± 4.25 kJ mol−1, a result lower
than other values previously reported in the literature (114–160 kJ mol−1) [34,38]. This
difference could be due to PLA thermal degradation during processing, reducing the length
of some of the longer polymer chains and, consequently, Ea and ∆H values. On the other
hand, EBAGMA presented the highest ∆H values, agreeing with the highest Ea (as seen in
Table 7). The behavior of EBAGMA during thermal degradation suggested this terpolymer
needed higher energy to initiate the thermal degradation process, and when it started, the
reaction was faster and random.

The molar change in entropy (∆S) (Figure 7C) indicates the randomness and disorder
degree of a system [39,69]. Positive ∆S values suggest the disorder increased because the
system changed, while negative ∆S values indicate the system became less disordered.
According to Maia et al. [73], higher ∆S can be associated with the system reactivity, in
which higher ∆S implies a faster reaction rate, decreasing the reaction time. PLA, EE, and
both PLA30EE blends showed negative ∆S values, suggesting that the system was close
to the thermodynamic equilibrium after the initiation of the thermal degradation reaction,
agreeing with Palmay et al. [34] and Choudhary et al.’s [69] investigations. However,
EBAGMA apparently exhibited a different behavior with the progression of conversion
values. As the reaction progressed, the ∆S values changed from negative to the highest
positive values. It is possible that the high reactivity of the reaction products increased the
collisions between the molecules (as suggested by the A values) and promoted randomness
in the degradation system, causing a higher system disorder and higher ∆S values.

The molar change in Gibbs free energy (∆G) indicates how spontaneous a process
is [69] under certain conditions (such as temperature, pressure, and composition). For
positive ∆G, the thermal decomposition is non-spontaneous, requiring external agents
to force the progress of this reaction. On the other hand, for negative ∆G, the thermal
decomposition spontaneously occurs, and the activation energy to initiate the thermal
decomposition decreases. All samples presented positive ∆G values (Figure 7D), and their
thermal decomposition was non-spontaneous. EBAGMA presented the highest ∆G values
(as commented before), suggesting this polymer needed a higher energy input to undergo
thermal degradation. However, with the progress of the reaction, less energy was necessary
for the thermal degradation continuity, which could be explained by probable nucleation
and scission random of the polymer chain.

4. Conclusions

PLA, EE, EBAGMA, and PLA/EE blends were evaluated regarding their thermal
stability, thermal degradation kinetics, and thermodynamic parameters. PLA/EE blends
exhibited two thermal decomposition events, and the elastomer EE and the compatibi-
lizer agent EBAGMA increased the thermal stability of PLA. The EBAGMA increased
the activation energy (Ea) average of the PLA/EE blend due to the compatibilization of
the polymers compared to the blend without the compatibilizer agent. The solid-state
thermal degradation evaluation using the Criado method revealed that PLA and its blends
underwent degradation via a D-type mechanism, suggesting that thermal degradation was
closely related to a diffusion mechanism. The increase in the collision rate between the
polymer components during the thermal decomposition was probably the main factor for



Polymers 2023, 15, 4324 15 of 18

higher values of the thermodynamic parameters in the PLA/EE blend compared to the
PLA and the compatibilized blend (PLA30EE-C).
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