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Abstract: The aim of this study is to use fly ash powder in an environmentally friendly matrix, in
a novel way, addressing environmental and disposal problems. Fly ash/epoxy composites were
prepared and studied varying the filler content. An investigation of structural and morphological
characteristics was conducted using of X-ray diffraction patterns and scanning electron microscopy
images, which revealed the successful fabrication of composites. Thermomechanical properties were
studied via dynamic mechanical analysis and static mechanical tests. The composites exhibited
an improved mechanical response. Broadband dielectric spectroscopy was used to investigate the
dielectric response of the composite systems over the frequency range from 10−1 to 107 Hz and
the temperature range from 30 to 160 ◦C. The analysis revealed the presence of three relaxation
processes in the spectra of the tested systems. Interfacial polarization, the glass-to-rubber transition
of the polymer matrix, and the rearrangement of polar side groups along the polymer chain are the
processes that occur under a descending relaxation time. It was found that dielectric permittivity
increases with filler content. Finally, the influence of filler content and the applied voltage under
dc conditions was analyzed to determine the ability of the composites to store and retrieve electric
energy. Fly ash improved the efficiency of the storing/retrieving energy of the composites.

Keywords: green epoxy; fly ash; thermomechanical properties; dielectric behavior; energy stor-
ing/retrieving efficiency; sustainable materials

1. Introduction

In recent years, there has been increasing interest in the development of advanced
composite materials with improved properties for a wide range of engineering applications.
Among these new materials, epoxy-based composites have received considerable attention
due to their exceptional mechanical, thermal, and electrical properties. A particular focus
in this area is on the incorporation of fly ash particles into epoxy matrices, which offer
a unique opportunity to produce sustainable and high-performance composites. One
of the industrial by-products produced by burning coal dust in thermal power plants is
coal fly ash powder. Fly ash is made up of the fine particles removed from flue gases or
exhaust using electrostatic precipitators or bag filters. They make up about 70% of the
by-products of thermal power plants and are extremely difficult to handle. Millions of
tons of fly ash are produced around the world every year. However, recent research has
highlighted its untapped potential as a reinforcing material in composite materials [1–6].
Fly ash consists primarily of amorphous silica, alumina, and iron oxide particles, which can
serve as effective reinforcements when combined with epoxy resins. The use of fly ash in
composites can not only improve the properties of the resulting materials, but also provide
a sustainable solution for the disposal of this waste material. The motivation for studying
epoxy/fly ash composites is the pursuit of sustainable and high-performance materials. By
incorporating fly ash particles into epoxy matrices, researchers can improve the mechanical
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properties of the resulting composites while addressing the environmental issues associated
with fly ash disposal. This approach aligns with the principles of green engineering,
promoting the use of waste materials for the development of value-added and eco-friendly
products. By exploring recent advances in the field, researchers hope to shed light on the
fabrication techniques, mechanical properties, thermal behavior, electrical conductivity and
other important aspects of these composites. In addition, previous studies aimed to explore
the potential applications of epoxy/fly ash composites as engineering materials in various
industries such as aerospace, automotive, construction and electronics [6–12].

In this work, a green thermosetting epoxy resin is used as the matrix because it has
high corrosion resistance, low moisture absorption, good thermomechanical behavior and
high stability, and it can be processed easily, while being available at a low cost. Fly ash
(FA) particles are used as the reinforcing phase. FA has several excellent properties such as
the enhancement of durability [13,14], workability [15], and low shrinkage, the reduction in
porosity and microcracks in the microstructure of cementitious mixtures, and the lowering
of hydration reaction temperatures [16]. Moreover, the presence of FA leads to a decrease in
the amount and rate of carbon dioxide (CO2) release [17–19]. To investigate the impact of
fly ash particle concentration on induced dielectric properties, AC conductivity, electrical
energy storage and recovery, static and dynamic mechanical behavior, and thermal proper-
ties, the prepared composites were tested via several experimental techniques varying the
amounts of fly ash. Fabricated systems were structurally and morphologically characterized
via X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images.

2. Materials and Methods

Fly ash/epoxy nanocomposites with filler contents of 1, 3, 5, 7, and 10 phr (parts per
hundred resin per mass) were fabricated. A reference specimen of neat resin was also
prepared. Entropy Resins supplied the epoxy prepolymer and curing agent marketed
under the brand names “ONE Epoxy resin (High bio-based laminating epoxy)” and “ONE
Resin and ONS (SLOW Hardener)”, respectively, The chemical structures of the epoxy
resin and hardener are not given by the manufacturing company (Entropy Resins, North
Walsham, UK) probably for commercial reasons. However, according to the datasheet, the
epoxy prepolymer mostly contains the following ingredients: 4,4’-isopropylidenediphenol
and oxirane, and mono[(C12-14-alkyloxy)methyl]. The main ingredients of the hardener, as
indicated in the relative datasheet, are polyoxypropylenediamine, rimethylhexamethylene-
diamine, and methylenebiscyclohexanamine, 4,4. According to the information provided by
“Entropy Resins”, more than 70% of the employed chemicals are environmentally friendly.
Fly ash in the form of particles was kindly provided by Titan Cement Co., with a purity
of 90–95% and size in the range of 3 to 100 µm, according to the supplier. Table 1 lists
the chemical ingredients of the employed fly ash. The employed fly ash originated from
the thermoelectric power plant of PPC S.A. (DEI) in Megalopolis, Greece. According to
the European Standard EN197-1 [20], the Megalopolis fly ash belongs to the limestone
type W, since it contains 10–15% CaO with the main ingredients being SiO2, Al2O3 and
Fe2O3. According to the ASTM C618 standard [21], the used fly ash is of the N type, since
it contains SiO2, Al2O3 and Fe2O3 in a percentage higher than 70%.

The following actions were taken during the preparation process. Fly ash particles
were added to epoxy monomers in a pre-calculated quantity. In order to prevent the
formation of clusters, the resulting mixture was slowly swirled in a sonicator at 50 ◦C for
10 min. Once the epoxy prepolymer and fly ash particles were thoroughly mixed, the curing
agent was added at a weight ratio of 10:1 (w/w). Then, the resulting liquid underwent
15 min of magnetic agitation to further disperse the particles. The homogenized mixes
were then poured into a cylindrical silicon mold and allowed to cure for a week at room
temperature. Finally, the mold was placed inside an oven for 4 h for post-curing at 100 ◦C.
In earlier research, curing and post-curing processes have been examined and established
via various experimental studies [22–25].
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Table 1. The percentages of chemical ingredients of the employed fly ash powder.

Powder Fly Ash %

humidity 0.00
LOI 2.50
SiO2 48.76

Al2O3 17.61
Fe2O3 11.12
CaO 10.86
MgO 3.09
SO3 2.87
K2O 2.08

Na2O 0.44
TiO2 0.82

Cr2O3 0.04

The structural properties of the manufactured composites were determined using
X-ray diffraction (XRD) patterns. Bragg–Brentano X-ray diffraction (XRD) patterns were
obtained using a Bruker AXS D8 Advance (Coventry, UK) instrument. The spectral line of
incident radiation was Cu Kα (l = 1.54062 Å), and the detector that was used was LynxEye.
The scan mode was continuous, and the scan speed was 0.5 s per step with a 0.02◦ 2θ step.
The source slit was 0.6 mm in width, and the current and voltage were 40 kV and 40 mA,
respectively. The specimens’ morphology was examined via scanning electron microscopy
(SEM) by employing a Carl Zeiss EVO MA 10 device. With the same setup, the composition
of the systems and the mapping of ingredients was conducted via energy-dispersive X-ray
spectroscopy. To conduct the dynamic mechanical analysis (DMA) tests, TA Instruments’
TA Q800 equipment was used to evaluate dynamic mechanical behavior. The performed
experiment was a three-point bending test, with applied temperatures between ambient
temperature and 100 ◦C, at 1 Hz for the oscillating mechanical stimulus. The prepared
composites’ static mechanical properties were examined using an Instron 5582 tester at
room temperature at a tension rate of 5 mm/min. Broadband dielectric spectroscopy (BDS)
was used to analyze the dielectric properties of the manufactured composites using Alpha-
N Frequency Response Analyzer, which was purchased from Novocontrol Technologies
GmbH & Co. KG (Montabaur, Germany).

The frequency of the applied AC field ranged between 0.1 Hz and 10 MHz at a constant
Vrms of 1 V. The temperature was controlled using a Novotherm system (Novocontrol
Technologies, Montabaur, Germany) with 0.1 ◦C accuracy. The employed dielectric cell
(BDS 1200, Novocontrol Technologies) was a set up with two gold-plated metal electrodes
between which samples were placed in a parallel-plate capacitor configuration. All samples
were tested under isothermal conditions, scanning the frequency of the applied field, from
30 to 160 ◦C. The used temperature step between successive scans was 5 ◦C. The data
recordings were automatically and continuously acquired through the use of WinDETA
software (Windows 10, 64 bit version).

AC dielectric testing was performed in accordance with ASTM D150 standards [26]. A
high-resistance meter (DC, Agilent 4339B, Agilent Technologies, Santa Clara, CA, USA) was
used to perform the DC electrical measurements. In order to maintain continuous control
over the charging/discharging sequence, in the experimental setup an automatic measure-
ment process was integrated. An appropriate software, created in the Smart Materials &
Nanodielectrics Laboratory, was used for automatic and real-time data recording [24,25].
Specimens were sandwiched between a pair of parallel electrode plates in the testing cell.
Each specimen was tested at two charging levels, namely 100 and 200 V, for a period of 60 s.
The charging procedure was followed by a 300 s discharging one. Naturally, during the
discharging procedure no voltage was applied to the specimens. A discharging short-circuit
procedure was used in advance of each measuring sequence to ensure that the specimens
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were free of any residual charges. All DC tests were performed in accordance with ASTM
D257 standards [27] in the Smart Materials & Nanodielectrics Laboratory of University
of Patras, Greece. In [28], the experimental design and methodology used are described
in detail.

3. Results

The XRD diffractographs of fly ash/epoxy composites at various filler concentrations
are shown in Figure 1, along with the XRD pattern of fly ash powder. No diffraction
peaks can be seen in the XRD graph of the amorphous polymer matrix. Therefore, all the
peaks seen in the nanocomposites’ patterns originate from the fly ash filler, proving that
the particles were successfully dispersed throughout the epoxy. The recorded peaks are
in accordance with those reported previous studies on the same type of fly ash [29]. In
addition, as predicted, the filler’s concentration increases the intensity of the peaks.
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Figure 1. XRD patterns of the as-received fly ash particles (a) and the fabricated epoxy/fly ash
composites (b).

SEM images of Figure 2 provide evidence of the morphology of the fabricated com-
posites. From the obtained images, it can be concluded that fly ash microparticles are
finely dispersed in the matrix and no extensive clusters are detected. With an increase
in filler content, a limited number of agglomerates can be observed. Figures S1–S3 de-
pict the composition of the composites and the mapping of the fly ash ingredients for
the 1 phr/epoxy and 5 phr/epoxy specimens, as obtained via energy-dispersive X-ray
spectroscopy. Figure S4 presents an overall image of the composite with the higher fly ash
content (10 phr) at lower magnification, verifying the fine dispersion of the inclusions.

Figure 3 displays the outcomes of the static mechanical tests. Tensile stress–strain plots
were used to derive values of Young’s modulus, tensile strength, and fracture toughness
for each system. Elastic modulus steadily rises with the percentage of fly ash added
to a material. Filler content has a significant impact on tensile strength and fracture
toughness, elucidating the reinforcing ability of fly ash on mechanical properties and the
strong adhesion of reinforcing particles with the matrix. At higher filler contents, the
values of tensile strength and fracture toughness increase by multiple times with respect
to the unfilled polymer matrix. In general, fly ash increases the mechanical durability of
nanocomposites, and the employed particles do not act as stress concentration points or
stress raisers within the epoxy matrix. The latter should lead to a considerable decrease in
both tensile strength and fracture toughness with filler content. This seems to be consistent
with the results of DMA testing.
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Figure 4 depicts the thermomechanical behavior of all the systems studied as deter-
mined via DMA data. The effect of temperature and the percentage of the reinforcing phase
on the storage modulus is depicted in Figure 4a. As the temperature rises, the polymeric
matrix changes from a rigid glassy state to a viscous rubber- one, as evidenced by the
decrease in all the curves. Storage modulus values increase systematically with fly ash
content, demonstrating the reinforcing ability of metal oxide particles in the glassy state.

The maximum values of the storage modulus as a function of fly ash content are
plotted as a bar graph in Figure 4b, further elucidating this behavior. As the amount of
reinforcing phase particles increases, the maximum values of the storage modulus rise,
which can be considered a strong indication of the particles’ fine dispersion [30]. The results
of the DMA tests agree with those of the static mechanical analysis presented earlier.

Due to their free-charge carrier’s low density, polymer composites are classified as
electrical insulators; as such, their electrical properties should be related to dielectric
relaxation phenomena that occur under AC conditions. The relaxation processes, resulting
from the orientation of the permanent and induced dipoles, are associated with the space
charge’s migration and the presence of dipolar groups in the polymeric chains. Using
three-dimensional graphs of the real part of dielectric permittivity (ε′) and loss tangent (tan
δ) as functions of frequency and temperature, Figures 5 and 6 show the dielectric response
of the nanocomposite systems with 3 phr of and 7 phr of fly ash, as the reinforcing phase.
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The temperature and frequency dependence of the real part of the dielectric permittiv-
ity is shown in Figure 5a,b. The real part of dielectric permittivity drops with increasing
frequency. Low ε′ values are caused by the inertia of the dipoles, both permanent and
induced, to follow the alternating applied field at high frequencies [31]. Since dipoles
have more time to orient themselves in the direction of the field, ε′ values rise in the
low-frequency region. The thermal activation of the dipoles also supports the polariza-
tion process, so the maximum values of ε′ are observed at low frequencies and high
temperatures. The 3D spectra show evidence of relaxation processes in the form of two
step-like transitions.

Figure 6 shows 3D loss tangent spectra, which provide a clearer picture of these
processes. The loss tangent (δ) is plotted against temperature and frequency in Figure 6
for the same samples as those in Figure 5. The recorded three peaks in the spectrum of
dielectric loss can be interpreted as evidence of different relaxation processes. In particular,
large dipoles are formed at the interface between the epoxy resin and the fly ash inclusions,
because of the accumulation of unbounded charges. The effect is amplified when the
temperature and the frequency are high and low, respectively. The large size of these
dipoles gives them increased inertia, so their alignment with the applied field requires
a longer time and thermal agitation, resulting in high permittivity values in this region.
Interfacial polarization (IP) describes this type of polarization process. The process taking
place in the intermediate zone is a reflection of the glass-to-rubber relaxation of the epoxy
matrix (α-relaxation).

During this process, macromolecules relax in a cooperative manner, because of the
cross-links, and thus large portions of the polymer chains are able to be aligned with
the external field via performing cooperative segmental motions. The third relaxation,
β-relaxation, is observed in the high-frequency region and is ascribed to the realignment of
small polar side groups of the polymer chain. β-relaxation is a weak secondary process.
The dielectric behavior shown in Figures 5 and 6 is indicative of all studied systems. Figures
S4 and S5 present the dielectric response of the unfilled epoxy resin and of the composite
with 5 phr of fly ash. A common general performance it is apparent.

Figure 7 is a three-dimensional representation of the AC conductivity of the same
two composites as a function of frequency and temperature. The spectra demonstrate
that the AC conductivity varies with both frequency and temperature. The higher impact
of temperature in the low-frequency range indicates that the conduction mechanism is
affected by temperature. The investigated systems consist of an insulating matrix and
semiconducting inclusions; therefore, it is plausible that they exhibit low conductivity
values that increase with temperature. At low frequencies, the applied field alternates
slowly, allowing charge carriers to cover greater distances. However, due to the existence
of the insulating matrix, which creates high potential barriers, this mobility is restricted,
even though a small number of carriers participate in the process and thermal activation
helps them to overcome some of these barriers, leading to an increase in conductivity
with temperature [32]. The exponential frequency dependence of AC conductivity at high
frequencies is temperature-independent. When the field is highly alternating, carriers
can only “hop”/move from one adjacent site to another adjacent one, separated by low
potential barriers. This eliminates the need for thermal activation and results in a dramatic
increase in the number of charge carriers involved in the process, despite a significant
decrease in the distances that those carriers could travel. The occurring conduction process
is known as hopping conduction and refers to the movement of charge carriers such as
electrons, ions, and polarons [32]. The universal law of AC conductivity [33], valid for
disordered systems [34], describes the frequency-dependent change in AC conductivity at
a constant temperature:

σAC(ω) = σDC + A(ω)s (1)

where σDC is the DC limiting value of conductivity, ω is the field’s angular frequency and
A and s are temperature- and filler-dependent parameters. Figure 7 demonstrates how
temperature causes an upward shift, in the frequency range, of the exponential portion
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of the AC curves. The composites’ relaxation mechanisms account for the formation of
‘shoulders-like’ peaks in the intermediate frequency range.
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Figure 7. AC conductivity as a function of frequency and temperature for the composites with
(a) 3 phr and (b) 7 phr fly of ash content.

Figure 8a shows the real part of dielectric permittivity against frequency for each of the
examined systems at 30 ◦C. The increase in ε′ with the filler content reveals an additional
aspect of the reinforcing ability of the fly ash particles. When compared to neat epoxy, all
reinforced systems show greater values of ε′. In addition, it is well-observed that ε′ values
decrease as the frequency increases because of the reduction in polarization. In Figure 8b,
the variation of the real part of dielectric permittivity versus temperature, at constant
frequency of 1 kHz, for all studied systems can be seen. The gradual increase in ε′ in the
temperature range between approximately 40 and 80 ◦C is related to the facilitation of dipole
orientation in the region where glass-to-rubber transition takes place. The more intense
increase in ε′ values above 120 ◦C is attributed to IP, which occurs at high temperatures
and is dependent on the heterogeneity of the composites [31,35]. Apparently, the real part
of dielectric permittivity increases with fly ash content as a result of the enhancement of
interfacial polarization because of the increase in the systems’ heterogeneity. Dielectric
permittivity is greater in the fly ash-reinforced samples than in the insulating matrix. For
this reason, the reinforced systems achieve greater values of ε′ across the entire temperature
and frequency spectra.

Dielectric data can be analyzed via different formalisms, that is, dielectric permittivity,
AC conductivity and electric modulus. Electric modulus eliminates the parasitic effect of
electrode polarization and all relevant capacitances and is defined as the inverse quantity
of complex permittivity, as shown by Equation (2):

M∗ =
1
ε∗

=
1

ε′ − jε′′
=

ε′

ε′2 + ε
′′2 + j

ε′′

ε′2 + ε
′′2 = M′ + jM′′ (2)

where ε′ and M′, and ε′′ and M′′ are the real and the imaginary part of dielectric permittivity
and the electric modulus, respectively [35].

Figure 9a,b shows the loss modulus peaks for the unfilled epoxy matrix and the system
with 3 phr of fly ash at the frequencies where transitions occur in the ε′ 3D spectra, at various
temperatures. The intensive peaks are indicative of the glass-to-rubber transition. As the
temperature rises, the loss peaks increase in frequency due to the frequency–temperature
superposition. At temperatures between 50 and 100 ◦C, the rate of the main peak’s shift
appears constant, while at higher temperatures, the peak shift rate decreases alongside
an accompanying increase in loss modulus maxima. The shrinking of the free volume is
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responsible for this variation [36–39]. It is interesting to note that there is a tendency of
the second peak to be formed at the high-frequency edge. This peak is attributed to β-
relaxation. Figure 10a shows the frequency dependence of the imaginary part of the electric
modulus (M′′) for all studied systems at 160 ◦C. The formation of a loss peak indicates
the presence of an α-relaxation mechanism in all samples. The peak of α-relaxation is
related to the glass transition temperature (Tg) of the amorphous polymer matrix. The
thermal energy absorbed by macromolecules near Tg allows the cooperative segmental
motion of significant portions of the polymer chains. The presence of strong or weak
interactions between the polymer matrix and fillers is indicated by a shift in the loss peak
to lower or higher frequencies at a constant temperature, depending on the amount and
type of embedded particles [36–40]. Figure 10b depicts the electric modulus loss index
(M′′) as a function of temperature, at 1 kHz for all tested systems. In all spectra, the
formation of two peaks is evident. The main peak is assigned to α-relaxation and its
shifting toward higher temperatures, with the fly ash particles’ content, which implies an
increase in the glass transition temperature, and which can be considered a result of strong
adhesion/interactions between particles and macromolecules. The weaker peak recorded
at low temperatures is ascribed to β-relaxation and occurs because of the rearrangement of
polar side groups of the main polymer chain. The loss peak frequency’s position allows the
determination of the relaxation time. Representative results are listed in Table 2.
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Table 2. Relaxation times for α-relaxation and values of parameters A and TV derived by fitting data
via Equation (3).

Filler Content in
Specimens (phr)

τ (s) α-Relaxation
50 ◦C 100 ◦C 150 ◦C TV (K) A (K)

Neat epoxy 0.0294 5.424 × 10−5 3.026 × 10−6 296.79 25.35
1 phr fly ash 0.1093 9.166 × 10−5 3.934 × 10−6 302.31 26.18
3 phr fly ash 0.2401 1.549 × 10−4 5.114 × 10−6 305.58 26.46
5 phr fly ash 0.2401 1.592 × 104 6.649 × 10−6 307.02 27.41
7 phr fly ash 0.3122 1.592 × 10−4 6.649 × 10−6 310.98 27.98
10 phr fly ash 0.5276 2.014 × 10−4 6.649 × 10−6 311.24 28.10

The dynamics of α-relaxation are presented in Figure 11, where the loss peaks’ fre-
quency, for all systems, as a function of reciprocal temperature, is depicted. As expected, the
dynamics of α-relaxation deviate from Arrhenius-type behavior, because of the variation in
free volume, following the Vogel–Fulcher–Tammann (VFT) relation [40]. The VFT relation
is expressed by Equation (3):

fmax = f0·exp
(
− A

T − TV

)
(3)

where f 0 is a pre-exponential factor, A is a parameter that measures the activation energy
and TV is the Vogel temperature, also referred to as the ideal glass transition temperature.
Obtained dielectric data were fitted via Equation (3), resulting in the curves shown in
Figure 11. Values derived from the fitting procedure, for the parameters A and TV, are
listed in Table 2.

It is worth mentioning that both parameters increase with fly ash content indicating an
increase in the glass to rubber transition temperature and in the corresponding activation
energy. These findings are in accordance with the results in Figure 10 and indicative of the
good adhesion/wetting of the inclusions by the matrix.
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the main loss peak.

Figure 12a,b shows the stored and retrieved energies as a function of time for all inves-
tigated systems and for a charging voltage of 200 V. Since the integrated fly ash inclusions
act like a dispersed network of capacitors, both energies enhance as the filler percentage
rises. This network defines a microscale active device that is capable of performing a rapid
charging and discharging process for the stored/retrieved energy. Using Equation (4) and
by integrating the time-dependent charge/discharge current functions, the stored and
retrieved energy can be evaluated.

E =
1
2

Q2

C
=

1
2
[
∫

I(t)dt]2

C
(4)

where E represents the stored or retrieved energy at the composite, Q is the amount of stored
or retrieved charge, I(t) is the charging or discharging current, and C is the capacitance of the
specimen, derived from the BDS measurements at the lower frequency [24,25,41]. Due to
the insulating nature of the samples, charge carriers injected by the applied voltage/electric
field fail to pass through the specimens. It is possible that raising the temperature will give
the carriers enough energy to overcome potential barriers, resulting in higher conductivity.
At room temperature, a small fraction of charges can overcome the potential barriers, result-
ing in restricted charge migration and low conductivity. If a higher voltage/electric field is
applied during the charge-storing procedure, potential barriers could be lowered, resulting
in an increased mobility of the charges, which follow a trapping/detrapping sequence
as they migrate through the extended interfacial region of the composite. Increased con-
ductivity and leakage currents resulting from this process decrease the amount of energy
recovered [24,25,41]. The introduction of the coefficient of energy efficiency (neff) allows
the evaluation of the storage and retrieval process. Equation (5) provides a method for
determining the relative coefficient of energy efficiency:

nrel =
Eretr, comp

Eretr, matrix
(5)

where Eretr,comp and Eretr,matrix are the retrieved energies from a composite and the matrix
under the same charging voltage and at the same instance, respectively.
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Figure 12. Variation in (a) storing energy (Echarge), (b) retrieving energy (Edischarge), and (c) the
relative coefficient of energy efficiency (nrel), as a function of time, for all studied systems, at a
charging voltage of 200 V.

Figure 12c shows the time dependence of the relative coefficient of energy efficiency for
the systems studied at a 200 V charging voltage. It is apparent that the ability of retrieving
energy is improved with filler content and in the system with the highest fly ash content,
the low-frequency edge approaches 30 times the ability of the storing/retrieving energy of
the neat epoxy resin.

4. Conclusions

Fly ash/epoxy resin composites were prepared and studied with reinforcing phase
content as a parameter. The particles were successfully integrated into the polymer matrix,
as evidenced via structural and morphological characterization. Under both static and
dynamic loading conditions, the thermomechanical performance of the composites was
studied. The Young’s and storage moduli consistently alter as fly ash content increases.
Following the change in polarization of the examined systems, the dielectric permittivity
is enhanced with fly ash content and temperature, while it decreases remarkably with
frequency. At low frequencies and high temperatures, IP is observed; at medium frequen-
cies and temperatures, the glass-to-rubber transition takes place; and at high frequencies,
the re-orientation of polar side groups occurs. The composite with 10 phr fly ash exhibits
the optimum dielectric properties. AC conductivity values show a high scatter with both
temperature and frequency. Above a critical frequency, conductivity increases exponentially
with frequency, while below it, it remains roughly constant, approaching its DC value.



Polymers 2023, 15, 3418 13 of 15

The observed behavior is consistent with the AC universality law, which in turn suggests
that hopping conduction may be involved in charge migration. Finally, the manufactured
composites can be used for electrical energy storage and retrieval, with the latter abil-
ity increasing in tandem with filler content. The unique properties of these composites
make them suitable engineering materials for a wide range of industrial sectors including
aerospace, automotive, construction and electronics. Structural components, insulating
materials, and materials for energy storing/retrieving are highlighted as potential uses for
epoxy/fly ash composites. In summary, the study of epoxy/fly ash composites is a promis-
ing field for the development of sustainable and high-performance engineering materials
of low cost by exploiting materials beyond their servicing life. The synergistic combination
of epoxy resin and fly ash particles opens up new possibilities for engineering applications
and paves the way for innovative solutions that meet performance requirements and that
are environmentally sustainable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15163418/s1, Figure S1: Energy-dispersive X-ray spec-
troscopy spectrum for the composite with 1 phr fly ash. (Mapping); Figure S2: Energy-dispersive
X-ray spectroscopy spectrum for the composite with 5 phr fly ash. (Mapping); Figure S3: (a) Energy-
dispersive X-ray spectroscopy spectrum for the composite with 1 phr fly ash and (b) 5 phr fly ash;
Figure S4: SEM image from the composite with 10 phr fly ash content, at a lower magnification;
Figure S5: (a) Real part of dielectric permittivity, (b) loss tanδ, and (c) σac as a function of frequency
and temperature for the neat epoxy composite; Figure S6: (a) Real part of dielectric permittivity,
(b) loss tanδ, and (c) σac as a function of frequency and temperature for the the 5 phr fly ash/epoxy
composite; Table S1: Filler content in specimens.
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