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Abstract: α-tricalcium (α-TCP) phosphate is widely used as an osteoinductive biocompatible mate-
rial, serving as an alternative to synthetic porous bone materials. The objective of this study is to
obtain a highly filled fibrous nonwoven material composed of poly-3-hydroxybutyrate (PHB) and
α-TCP and to investigate the morphology, structure, and properties of the composite obtained by the
electrospinning method (ES). The addition of α-TCP had a significant effect on the supramolecular
structure of the material, allowing it to control the crystallinity of the material, which was accompa-
nied by changes in mechanical properties, FTIR spectra, and XRD curves. The obtained results open
the way to the creation of new osteoconductive materials with a controlled release of the source of
calcium into the living organism.

Keywords: poly-3-hydroxybutyrate; α-tricalcium phosphate; fibrous nonwoven material; electro-
spinning

1. Introduction

The relevant scientific field today consists of the development of new biocompatible
materials for bone and tissue engineering based on combinations of biopolymers and
effective additives [1]. Of particular interest in this area is the regeneration of teeth and jaws
in view of the significant disadvantages of existing methods involving auto grafts, allografts,
and transplants which are expensive and painful and are accompanied by high risks of
rejection [2]. The essence of the tissue engineering approach is to develop composites based
on biopolymers as a biological alternative, which should not replace, but stimulate the
restoration of damaged tissues [3]. Today, there are a number of successful studies on the
selection and combination of biopolymers and active substances that stimulate regeneration,
which include cells [4], growth factors [5], and calcium sources [6] in combination with
different carbon-based carriers [7].

A large number of biocompatible polymer matrices for bone tissue regeneration based
on calcium sources and collagen [8], fibroin [9], poly(lactide-co-glycolide) [10], poly(α-
hydroxyl acids) [11], and polycaprolactone [12] have already been proposed. However, the
question of optimizing the composition and selection of a polymer matrix with a controlled
bioresorption period in the conditions of living organism is still open.

Particular attention among the sources of calcium should be paid to α-tricalcium
phosphate (αTCP). α-TCP (Figure 1) is a form of tricalcium phosphate (Ca3(PO4)2). It is
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biocompatible, and α-TCP is a representative of calcium phosphates, which are well known
as effective osteoconductive materials [13]. α-TCP-based materials in different forms, such
as cements, composites, and coatings, are widely used for dental applications [14]. These
materials are highly biocompatible and do not induce immunological reactions [15].

α-TCP is widely used as an osteoinductive biocompatible material, serving as an
alternative to synthetic porous bone materials. Due to its porous structure, the migration
of primary human osteoblasts occurs, leading to faster bone tissue regeneration [15,16].
Moreover, not only osteoinductive but also osteogenic properties of α-TCP are mentioned as
for hydroxyapatite [17]. For instance, complete osseointegration based on hydroxyapatite
material occurred after 4 months, while with α-TCP, it took only 6 weeks [18]. All of these
advantages certainly make α-TCP very interesting for research in the field of creating new
composites for regeneration.

In clinical practice, there are several types of bone grafts [19] that can be utilized for
bone tissue regeneration. These include autogenous grafts (obtained from the patient’s own
tissues) [20], allogeneic grafts (transplants obtained from donor bone tissue) [21], xenogenic
grafts (obtained from animal tissue), and synthetic grafts (artificial materials designed to
simulate bone tissue or create a supportive matrix for bone regeneration) [22]. Synthetic
bone grafts have various applications in medicine and show promise. Particularly interest-
ing are composites based on α-TCP. This material exhibits osteoinductive properties and
promotes the proliferation and differentiation of osteoblasts. It can be utilized in restorative
dentistry, implantology, preventive dentistry, surgery, and other fields [23]. This is because
chemical analysis of enamel, dentin, and bone reveals that calcium and phosphate are
the main components [24]. Another advantage of the composite nonwoven fabric is its
flexibility, as it can be rolled into suitable shapes or used in layers.

As a polymer matrix for such an effective calcium source, high attention should be
paid to a polymer of natural origin—poly-3-hydroxybutyrate (PHB). PHB is well known
due to its high biocompatibility and controlled biodegradation in the body [25,26]. PHB
(Figure 1) is a biopolymer that is naturally synthesized by certain species of microorganisms
belonging to the genera Alcaligenes, Azobacter, Bacillus, and Pseudomonas [27,28]. It should
be noted that PHB is a semi-crystalline, thermoplastic polymer with no cytotoxic effect [29]
that easily satisfies the tasks of various methods of production and modification with a
wide list of additives [30].

Electrospinning (ES) was chosen as the most promising method for obtaining PHB-α-
TCP composite materials with different calcium source content [31]. Electrospun materials
have proven their effectiveness in bone regeneration due to the opportunities to create a
unique highly developed surface filled with tissue repair activator [32–34].
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Therefore, the aim of the article is to explore the effect of introducing α-TCP into the
polymer matrix of PHB on the morphology and structure of the electrospun materials for
creating osteoinductive biocompatible material.

2. Materials and Methods
2.1. Materials

Commercial poly-3-hydroxybutyrate (PHB) was obtained from microbial synthesis
(series 16F, BIOMER production, Frankfurt, Germany); crystallinity was 60%; molecular
weight was 206 kDa; density was 1.248 g/cm3; melt flow index was 10 g/10 min (180 ◦C,
5 kg).

The α-tricalcium phosphate (α-TCP) was prepared by mixing ammonium phosphate
salts with a concentration of 0.6 M and calcium nitrate with a concentration of 1 M under
constant stirring with an overhead stirrer at 150–200 rpm. The pH value of the system in the
range from 6.5 to 7.0 was maintained with an aqueous ammonia solution. The temperature
of the reaction medium was maintained at 22 ◦C. Then, it was filtered, washed with distilled
water, and dried at 90–100 ◦C overnight in an oven. It was fired in a furnace at a temperature
of 1400 ◦C for 9 h in an air atmosphere at a heating rate of 5 ◦C/min.

At the next stage, the α-TCP powder was ground in a planetary mill in alcohol for
30–40 min at 23 rpm and room temperature, filtered, dried at room temperature for 2 h,
and sifted through a sieve with a mesh size of 100 µm.

2.2. Methods
2.2.1. Obtaining of Fibrous Materials

Fibrous composite materials based on PHB-α-TCP were obtained by electrospinning
(ES). A homogeneous solution for ES was prepared by dissolving PHB in chloroform at a
concentration of 7% with the addition of α-TCP at concentrations 0, 3, 10, 20, and 30%. The
solutions were homogenized by ultrasonic treatment.

Fibrous materials were obtained by ES [36] using a single-capillary laboratory unit
EFV-1 (IBCHP RAS, Moscow, Russia). Figure 2 shows the main elements components of
the ES laboratory unit. The conditions of the ES for forming 25 mL of each solution were
such that the distance between the electrodes was 250 mm, the voltage was 18 kV, and the
gas pressure on the solution was 14 kg/cm−2. Subsequently, the materials were dried at
24 ◦C for 48 h to remove residual solvents and moisture.
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2.2.2. Optical and Scanning Electron Microscopy

Structural changes, including fiber diameter and morphological variations, were ana-
lyzed using Olympus BX43 (Olympus, Tokyo, Japan). The main morphological properties
of the fibers were measured using micrography with the assistance of Olympus Stream
Basic software.

Images of electrospun PHB-α-TCP composites were obtained by scanning electron
microscopy (SEM) using the Tescan VEGA SBU II (Brno, Czech Republic) on the samples
with gold layer.

2.2.3. Surface Density

Surface density of the PHB-α-TCP composites was analyzed gravimetrically using the
Balance XPR106DUHQ/A (Mettler Toledo, Columbus, OH, USA). Surface density, g/cm3,
was calculated as follows:

δ =
m

l × B × b
(1)

where m is the weight of the sample; l is the length; B is the width; b is the thickness. The
average value was estimated from 10 measurements. Experimental error was below 3–5%.

2.2.4. Fourier-Transform Infrared Spectroscopy (FTIR)

The IR-spectra were recorded in the 4000–400 cm−1 wavelength region. The KBr pellet
technique was used with 1 mg of powder in 50 mg of spectroscopic-grade KBr.

2.2.5. Differential Scanning Calorimetry (DSC)

Thermophysical characteristics, such as melting enthalpy, melting temperature, and
degree of crystallinity, were studied using a DSC 214 Polyma (Netzsch, Selb, Germany).
The DSC temperature program comprised two heating cycles (from 20 ◦C to 220 ◦C) and
two cooling cycles (from 220 ◦C to 20 ◦C). The samples were tested in an argon atmosphere,
with a heating and cooling rate of 10 K/min. The sample weight ranged from 6 to 7 mg.

Crystallinity degree, χ, was defined from the melting peak as follows:

χ =
∆H

HPHB
× 100% × C (2)

where ∆H is melting enthalpy; HPHB is melting enthalpy of the ideal crystal of the PHB,
146 J/g [37]; C is the content of the PHB in the composition.

2.2.6. X-ray Diffraction Analysis (XRD)

Phase components of samples were identified by X-ray diffraction using a TD-3700 Dan-
dong Tongda Science and Technology (Tongda, Dandong, China) diffractometer equipped
with a Mythen2 Dectris detector (CuKα radiation, tube voltage 35 kV, tube current 25 mA,
step mode, step 0.04◦, delay 5 s, range 8–48◦.

2.2.7. Mechanical Analysis

Tensile properties of composite materials were determined using a universal testing
machine Instron electropuls e3000 (Instron, Norwood, MA, USA) with a load cell of 5 N
capacity. Rectangular specimens of dimensions 30 mm × 5 mm were used for testing at
a crosshead speed of 5 mm/min. The room conditions were controlled at 22 ◦C and 40%
relative humidity.

3. Results and Discussion
3.1. Morphological Characterizations of Electrospun PHB-α-TCP Materials

Electrospinning (ES) makes it possible to obtain highly porous nonwoven materials
with a high degree of surface development, which has a positive effect on tissue regenera-
tion [38]. It is important to emphasize that ES allows to obtain a fairly uniform distribution
of the additives in the material, increasing the efficiency of regeneration [39]. The features of
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the resulting nonwoven structure depend on a variety of parameters, including properties
of polymer solution, processing parameters, and environmental conditions [40]. The intro-
duction of additives into the polymer solution should provide sufficient values of electrical
conductivity and viscosity of polymer-additive system, which also affect the voltage, flow
rate, Taylor’s cone shape, and evaporation rate of the solvent. It should be noted that the
introduction of even large concentrations up to 30% of α-tricalcium phosphate (α-TCP) did
not interfere with the ES process, which may be due to the presence of a metal atom in the
additive, which positively affects the electrical conductivity of the forming solution. SEM
images of obtained materials are shown in Figure 3.
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Attention should be paid to the specific pear-shaped defects represented by spindles
(Figure 3a), which are a feature of the fiber formation of poly-3-hydroxybutyrate (PHB) [41].
Insufficient balance of viscosity and electrical conductivity of the solution of pure PHB
leads to the formation of such thickenings. It can be seen that the introduction of α-TCP
contributes to their formation. With the introduction of α-TCP, the number of defects on the
surface of the fibers decreases; however, as the concentration of the additive increases, large
inclusions appear, probably α-TCP. α-TCP particles consist of two fractions (1–10 µm—80%
and 10–30 µm—20%) and are splintered particles (Figure 4).

There are many technological solutions to eliminate artifacts and defects of the fiber
surface [42], where one of the most effective methods is the introduction of metal-containing
modifying additives that increase the electrical conductivity of the molding solution [43].
In previous works, we managed to achieve high uniformity of fibers due to the control of
the electrical conductivity of the polymer solution and the modifying additive [44,45]. The
introduction of a calcium source, despite the content of metal atoms, did not increase the
electrical conductivity sufficiently. The number of defects decreased with 3% of α-TCP. But
it is important to stress that as the α-TCP concentration increased, the shape and type of
defects changed. It is noticeable that new more elongated and thickened areas on the fibers
have appeared (Figure 3c–e). It could be explained by the fact that a significant part of the
additive is located in the fiber, occupying amorphous regions of the structure of the PHB.
With a further increase in α-TCP concentration, the additive comes to the surface in the
form of characteristic crystals (Figure 3d,e). In other works, α-TCP could be found on the
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surface of the fibrous polymeric matrix and could be clearly visible [34]. However, in the
case of the obtained PHB-α-TCP matrix, it is important to note that the source of calcium is
located deep in the polymer, which will allow controlling the rate of its output, ensuring
control of the healing rate, and this problem exists for α-TCP and is designated as too fast
and uncontrolled rate of resorption of tricalcium phosphate [14,46].
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Morphology of the PHB-α-TCP materials is characterized in Table 1.

Table 1. Morphology of the PHB-α-TCP materials.

Sample Concentration of
α-TCP, %

Average Diameter, µm
∆ ± 0.04 µm

Surface Density, g/cm3

∆ ± 0.04 g/cm3

PHB 0 2.2 0.30
PHB-α-TCP 3 1.6 0.24
PHB-α-TCP 10 1.7 0.22
PHB-α-TCP 20 2.5 0.20
PHB-α-TCP 30 1.6 0.20

It should be noted that the introduction of 3% and 10% of α-TCP leads to a decrease in
the average diameter of the fibers (Figure 3b,c). However, increasing the concentration to
20% leads to the appearance of individual thicker fibers passing through the structure of
the material (Figure 3d), which cause a significant rise in the average diameter, although
a large mass of fibers still remains in the range of 1.5–1.7 µm. At the same time, when a
concentration of 30% is reached, such thicker fibers change their appearance (Figure 3e)
and resemble defects and local thickenings in shape.

In addition, it is seen from Table 1 that the introduction of an additive reduces the
surface density of the material under the same production conditions, which indicates an
increase in the proportion of open pores and the growth of the surface development.

3.2. Chemical Characterizations of Electrospun PHB-α-TCP Materials

The chemical structure of the obtained materials was determined by FTIR. FTIR spectra
of PHB-α-TCP materials are shown on Figure 5.
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The most pronounced chemical groups of PHB correspond to the peaks at 1721 cm−1

(C=O group), 1052 cm−1 (C-O-C group), 1278 cm−1 (CH3 group), and 3000–2700 cm−1

(-C-H of the main chain) [43]. As it can be seen, all of the signal characteristics for groups
of PHB were detected in composite materials.

A new peak observed at 3440 cm−1 corresponds to adsorbed water in the materials [34].
It is known that no -OH groups could be detected in α-TCP and they are contained in
very small quantities in PHB; therefore, the changes in the chemical structure of PHB
chain (growth of the number of end groups of polymer chain) are assumed during the ES
process. This assumption is confirmed by a decrease in the oscillation bands belonging to
-PO4 ions at 1100 cm−1 and to -O-P-O- at 470 cm−1. Attention should be paid to the region
540–620 cm−1, characteristic of -O-P-O-, the intensity of which is significantly reduced as
well as the decrease in the intensity of the peaks characteristic of PHB, responsible for
-C-O-C- bonds at 800 cm−1 and at 1052 cm−1, which confirm the possibility of forming
a chemical interaction between PHB and α-TCP [46]. In addition, intensity changes are
observed in the -C-H region of the main chain, which also indicates the possibility of
chemical interaction.

3.3. Thermophysical Properties of Electrospun PHB-α-TCP Materials

The thermal properties of the obtained materials were determined by DSC. Results
are shown in Table 2, and DSC curves are shown in Figure 6.
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Table 2. Thermal Properties of PHB-α-TCP materials, ∆H -melting enthalpy ∆ ± 2.5%, Tm—melting
temperature ∆ ± 2%.

Sample Concentration
of α-TCP, %

First Heating Run Second Heating Run
Tm, ◦C ∆H, J/g Tm, ◦C ∆H, J/g

PHB 0 176 79.6 174 76.8
PHB-α-TCP 3 176 80.7 174 75.0
PHB-α-TCP 10 177 71.5 175 68.1
PHB-α-TCP 20 177 68.7 175 67.7
PHB-α-TCP 30 176 68.0 173 66.5
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As can be seen from Table 2, the melting point of PHB changes slightly with the
introduction of the additive, and the melting enthalpy decreases with the introduction of
the additive. From the point of view of the organization of the supramolecular structure, the
melting point allows us to estimate the size of the crystallites forming the crystalline phase
of PHB. The enthalpy of melting can characterize the total fraction of the crystalline phase
that passes into the melt when heated. PHB is known as a semi-crystalline polymer, which
is characterized by secondary crystallization after production by pressing, watering, and
3D printing [43]. ES makes a significant contribution to the formation of the supramolecular
structure of a semi-crystalline polymer [14]. In the case of PHB, ES allows for the fixing of
the sections of the crystalline phase along the orientation axis of the fiber in the presence of
balance of electrical conductivity and viscosity of the forming solution [47]. In addition,
the presence of additives that can act as crystallization centers, especially flat morphology,
has a positive effect on the formation of the supramolecular structure, which has been
repeatedly observed on various modifying additives [48].

The role of α-TCP in the formation of the supramolecular structure of PHB in ES is
clearly visible on the curves of DSC (Figure 6). So, in the case of the first heating, significant
differences are not observed due to the role of the conditioned structure obtained by ES.
However, at the second heating, the contribution of the production method is removed, and
the contribution of the α-TCP could be observed [49–51]. The low-temperature shoulder of
PHB in the range of 155–165 ◦C should be attributed to an irregular and poorly organized
crystalline fraction of PHB, which melts at a lower temperature [52]. The fraction of this
fraction will depend largely on secondary crystallization and the presence of crystallization
centers and will also affect the mechanical properties of the material and the rate of
biodegradation. Of course, a less organized crystal fraction undergoes bioresorption faster,
since it is more accessible [53]. As can be seen from the second heating, the low-temperature
shoulder is increasingly differentiated with an increase in the concentration of α-TCP, which
indicates a significant effect of the additive on the crystallization process.

This effect is clearly visible when assessing the degree of crystallinity of PHB (Figure 7).
Thus, there is a decrease in the degree of crystallinity by more than 20%, which is due to a
significant proportion of the additive in the material.
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These assumptions are consistent with the results of the RXD analysis, which allowed
us to estimate the supramolecular structure of the PHB. XRD curves of PHB-α-TCP materi-
als are shown in Figure 8. According to the results of the XRD analysis, it was found that
the main phase is PHB (Poly(3-hydroxybutyrate) ICDD Card. № 00-049-2212.) With the
introduction of α-TCP, the appearance of reflexes corresponding to α-tricalcium phosphate
is observed (ICDD Card. № 01-070-0364). With increasing concentration, the intensity of
reflexes of the corresponding tricalcium phosphate increases.
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XRD patterns of PHB-based materials demonstrate Bragg reflections corresponding to
the orthorhombic crystal lattice (P212121) [54], which indicates that there is no contribution
of α-TCP to the formation of the chain. The characteristic peaks for PHB are 020 and
110 [55]. Thus, the ratio of peaks varies slightly and decreases from 0.65 for pure PHB to
0.5 for PHB-α-TCP with 20% of the additive, which indicates a possible small increase in
the formation of PHB crystalline structure in the b-direction [56], but at the same time it
corresponds to the decrease in the proportion of the crystalline phase.

3.4. Mechanical Properties

Tensile stress–strain curves of PHB-α-TCP are shown on Figure 9, and tensile strength
of PHB-α-TCP is given on Figure 10. It must be noted that PHB-based fibrous materials are
usually fragile and have low mechanical properties [57,58]. The addition of α-TCP had a
significant effect on the strength of materials, reducing it by almost by a half (Figure 10). In
general, this result is consistent with the changes seen in the DSC and FTIR. The crystallinity
decreases; the crystal structure becomes less perfect; large inclusions of α-TCP lead to
rapid destruction of materials in areas where the fibers contain the largest inclusions of
the additive.
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The process of deformation of a nonwoven material based on PHB represents destruc-
tion at the moment when the most durable fibers passing through the entire system do not
withstand the load and are destroyed [58]. The stress–strain curves (Figure 9) also show
the breaks of individual, less durable fibers, which do not lead to the destruction of the
entire system. It should be noted that in the case of 20%, the shape of the curve changes
significantly, where we see more abrupt discontinuities, which indicate that the number of
fibers loaded with large α-TCP particles is significantly greater than in the case of 10%.
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Figure 10. Tensile strength of composite materials with different contents α-TCP.

In this case, the mechanism of rupture of the PHB-α-TCP matrices is of interest.
Previously, we have established how the mechanical deformation of nonwovens electrospun
materials based on PHB occurs [59]. First of all, the most stressed areas of the fibrous
structure are torn [60]. In general, two aspects of the fibrous structure in such materials
contribute to the strength properties of the entire material: macrodefects by which the
material can tear (thickening, gluing, and snagging of fibers) and the ability of fibers to move
freely relative to each other. In addition, the supramolecular structure and the degree of its
filling with modifying additives also make a significant contribution. Figure 11 shows the
places of rupture of fibrous materials. Yellow arrows show accumulations of a calcium source.
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Figure 11. SEM images of (a) PHB; (b) PHB + 10% α-TCP; (c) PHB + 20% α-TCP (yellow arrows show
accumulations of a calcium source).

It should be noted that under the same molding conditions, the thickness of the
fibrous layer differs, which is due to the contribution of the additive to the molding
properties. It is also important that the rupture, as can be seen from microphotographs,
occurs independently of these defects, since we see the passing fibers through which the
rupture occurs.

Nevertheless, it is important to note that a decrease in mechanical properties is not a
problem for these composites, since their use in orthodontics does not require high strength
indicators but are based mainly on the ability to control the structure and control the
loading of the fibers with calcium carrier particles.
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4. Conclusions

The fibrous nonwoven material based on a poly-3-hydroxybutyrate (PHB) biopoly-
meric matrix with a high concentration of α-tricalcium phosphate (α-TCP) filler (0, 3, 10, 20,
and 30%) was successfully produced. The composite may be used in regenerative medicine,
particularly in the field of dentistry and implantology due to its high biocompatibility,
bioresorbability, and osteoinductive properties. Based on the results obtained from the
study, it can be concluded that the introduction of α-TCP into PHB using the electrospin-
ning method (ES) has both positive and negative effects on the composite material. Positive
effects are as follows:

- Improved supramolecular structure, with the addition of α-TCP allowing better
control of its crystallinity, results in enhanced mechanical properties and structural
integrity.

- The presence of α-TCP in the composite material enables a controlled release of calcium,
making it a potentially suitable osteoconductive material for applications in living
organisms.

- α-TCP acts as a crystallization center, positively affecting the formation of the supramolec-
ular structure in the nonwoven fibrous material, which could lead to improved prop-
erties of nonwoven material and controlled time of resistance to biodegradation or
bioresorption.

Negative effects are the formation of pear-shaped defects, large inclusions, that can
potentially affect the structural integrity of the composite and appearance of thicker fibers,
causing a decline in the average fiber diameter and, consequently, a decrease in mechanical
properties. But it is important to stress that such effects have a very low impact on the
general operational properties in the case of the creation of osteoconductive material.

It was found that the introduction of high concentrations of α-TCP can significantly
affect the supramolecular structure of the PHB, providing a noticeable decrease in the
degree of crystallinity of the material, while maintaining the basic parameters of the
crystalline structure, which will allow the effective control of the rate of bioresorption of
the implanted material and, as a consequence, the control of the rate of α-TCP output. It
is important that the obtained materials have high porosity and a high degree of surface
development, which is certainly an important aspect in the design of effective materials for
regeneration and restoration.

Given its unique combination of properties, this composite material has the potential to
revolutionize multiple industries and contribute significantly to advancements in medicine
and environmental sustainability. However, further research is necessary to optimize its
properties for specific applications, ensuring its safe and effective use.
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