
Citation: Zhang, X.; Zhao, M.; Cho, J.

Effect of Disparity in Self Dispersion

Interactions on Phase Behaviors of

Molten A-b-B Diblock Copolymers.

Polymers 2023, 15, 30. https://

doi.org/10.3390/polym15010030

Academic Editors: Nikolaos

Politakos and Apostolos

Avgeropoulos

Received: 31 October 2022

Revised: 7 December 2022

Accepted: 9 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Effect of Disparity in Self Dispersion Interactions on Phase
Behaviors of Molten A-b-B Diblock Copolymers
Xinyue Zhang, Mingge Zhao and Junhan Cho *

Department of Polymer Science & Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu,
Yongin, Gyeonggi-do 16890, Republic of Korea
* Correspondence: jhcho@dankook.ac.kr; Tel.: +82-31-8005-3586

Abstract: Phase behaviors of molten A-b-B diblock copolymers with disparity in self dispersion
interactions are revisited here. A free energy functional is obtained for the corresponding Gaussian
copolymers under the influence of effective interactions originating in the localized excess equation
of state. The Landau free energy expansion is then formulated as a series in powers of A and B
density fluctuations up to 4th order. An alternative and equivalent Landau energy is also provided
through the transformation of the order parameters to the fluctuations in block density difference
and free volume fraction. The effective Flory χ is elicited from its quadratic term as the sum of the
conventional enthalpic χH and the entropic χS that is related to energetic asymmetry mediated by
copolymer bulk modulus. It is shown that the cubic term is balanced with Gaussian cubic vertex
coefficients in corporation with energetics to yield a critical point at a composition rich in a component
with stronger self interactions. The full phase diagrams with classical mesophases are given for the
copolymers exhibiting ordering upon cooling and also for others revealing ordering reversely upon
heating. These contrasting temperature responses, along with the skewness of phase boundaries, are
discussed in relation to χH and χS. The pressure dependence of their ordering transitions is either
barotropic or baroplastic; or anomalously exhibits anomalously both at different stages. These actions
are all explained by the opposite responses of χH and χS to pressure.

Keywords: diblock copolymer; Landau analysis; weak segregation regime; upper order-disorder
transition; lower disorder-order transition; barotropicity; baroplasticity

1. Introduction

Block copolymers have been of great importance for the past several decades be-
cause of their self-assembly into arrays of ordered nanoscopic structures such as lamellae,
hexagonally packed cylinders, body-centered cubic spheres, double gyroids, other network
structures, and Frank-Kasper phases [1–4]. Block copolymers are used in diverse areas and
applications such as elastomers, surface modifiers, blend compatibilizers, and templates
for directing structured materials towards data storage, nanolithography, and nanopattern
transfer [5–9]. Block copolymers in selective solvents can be useful for drug delivery, cancer
theranostics, nanoreactors, and stimuli-responsive materials [10,11].

It is well known from phenomenological studies on the corresponding incompressible
copolymer systems that their phase behaviors are to be determined by the total number
of monomers or chain size N, the component volume fractions φ, and the effective Flory
interaction parameter χ [12]. However, the copolymer behaviors are considered to be
much more complicated than the simple incompressible picture. It is typical that block
copolymers exhibit ordering upon cooling, which is referred to as the upper order-disorder
transition (UODT) [3,13]. Ordering of block copolymers upon heating has also been
found, which is referred to as the lower disorder-order transition (LDOT) [14–19]. Some
copolymers have been shown to reveal immiscibility loops [20–23] with both LDOT and
UODT. These two types of temperature dependences of the ordering behaviors are driven
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by different mechanisms. The UODT has an enthalpic origin because it is driven by
unfavorable energetics. On the contrary, the LDOT is of an entropic origin that is divided
in three-fold ways [24]. Firstly, for copolymers with directional interactions between
different monomers, there is entropic penalty in forming such directional pairs. Thus,
increase in temperature allows those pairs less to phase separate less [25–27]. Secondly, the
disparities in self dispersion interactions or compressibilities between component blocks
lead to phase separation to gain more entropy through volume increase [24]. Thirdly,
some polymer mixtures without directional interactions or compressibility differences
exhibit phase separation because of entropic penalty arisen by asymmetry in monomer
structures [28–31].

Block copolymers exhibiting either UODT or LDOT respond to pressure in two differ-
ent ways. Firstly, their ordered region is enlarged upon pressurization, which is referred to
as barotropicity. The unfavorable energetics are augmented by pressurization as a result
of the densification of such interactions. Many UODT-type block copolymers such as
polystyrene-b-polybutadiene (PS-b-PBD) and PS-b-polyisoprene (PS-b-PI) fall into this
category in their responses to pressure [32–36]. Some strongly interacting LDOT-type mix-
tures exhibits barotropicity due to this densification effect [37]. The transition temperatures
change typically by ~20 K over 100 MPa in the absolute sense. Secondly, the ordered
region is shrunken upon pressurization, which is observed for some copolymers with
substantial disparities in their compressibilities. This phenomenon is referred to as baro-
plasticity [35,38,39]. Some UODT-type copolymers such as PS-b-poly(n-hexyl methacrylate)
(PS-b-PnHMA) [35] and PS-b-poly(ethyl hexly acrylate) (PS-b-PEHA) [40] are baroplastic.
LDOT and loop-type block copolymers from PS and ethyl to n-pentyl polymethacrylates
also exhibit this property [21,35,39]. The change in transition temperatures varies from ten
to several hundred kelvin over 100 MPa in the absolute sense.

Over the years, we have sequentially developed sequentially the random-phase ap-
proximation theory [41–43], Landau analysis [44–46], and self-consistent field theory [47–49]
for A-b-B block copolymers of all possible types exhibiting UODT, LDOT, barotropicity,
and baroplasticity. Narrowing our attention down to Landau approach, the Landau free
energy was first obtained as a series in powers of two order parameters, which are A
and B density fluctuations, in a direct way [44]. Later in a separate study, an alternative
Landau free energy was formulated through the transformation of order parameters [45,46].
The copolymer, with equal self-dispersion interactions for A and B blocks, reveals it is
Landau free energy mathematically identical to that of the incompressible counterpart by
Leibler. However, an effective Flory χ is shown to carry molecular parameters. Therefore,
the symmetric copolymer exhibits a critical point (CP) that is pressure dependent [45,46].
It was argued that the copolymer with disparity in self dispersion interactions yields its
Landau energy possessing the nonvanishing and negative cubic term, and the second-order
transition is nullified even at the symmetric composition [44,46]. This energetic disparity
gives asymmetry in densities or average intermonomer distances for different block do-
mains. The notion that the copolymer phase transition is fully of first order seemed to be in
harmony with other known facts. For the liquid-solid transition and isotropic-nematic tran-
sition in liquid crystals, their Landau free energy expansions usually possess nonvanishing
cubic vertex coefficients [50]. These transitions are only of first order. Here, we revisit the
phase behaviors of molten A-b-B diblock copolymers in the weak segregation regime. In
the course of formulating the Landau free energy, it is understood that the effective cubic
order term is more intricate than previously studied. It is shown that our Landau energy
with the deepened conception resurrects the CP, whereas its location is dependent on the
disparity in self dispersion interactions. The Landau free energy is derived in two different
ways; one is in a direct way with the two order parameters, and the other is through the
transformation of the order parameters. Using these two equivalent free energies, the
theoretical calculation of the copolymer phase behaviors and transitions are to be compared
with experimental results.
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2. Theory
2.1. Free Energy Density in the Bulk State

Our system of interest is A-b-B diblock copolymer chains made of A and B monomers
in volume V. There are nc such chains, where each j-block possesses Nj tangent spheres
having the identical diameter σ. The close packed volume of j-blocks in the system is given
as Vj = ncNjv∗, where v∗ = πσ3/6 is the monomer volume. Then, the close packed volume
fraction of j-block is given as φj = Vj/ ∑ Vk= Nj/Nc, where Nc =NA + NB is the copolymer
chain size. The overall packing density η is given by η = ∑ Vj/V, and the packing density
of j-block is equal to ηj = φjη.

The Helmholtz free energy A of the copolymer melt is given as the sum of ideal Aid
and non-ideal Ani as A = Aid + Ani [41,46,47]. The former Aid is given below:

βAidv∗
V

=
η

Nc
ln

ηK
Nc

(1)

where β = 1/kBT as usual, and K is the molecular constant that does not affect any
thermodynamic properties. The latter Ani is subdivided into Ani = AHSC + Unb, where
AHSC implies the excluded volume contribution by hard sphere chains, and Unb represents
dispersion (van der Waals) interaction energy between nonbonded monomers. The first
contribution AHSC is formulated from Baxter’s integral equation theory for adhesive hard
spheres under Chiew’s connectivity constraint [51–53]. Mathematically stated,

βAHSCv∗
V

=
3
2

[
η

(1− η)2 −
(

1− 1
Nc

)
η

1− η

]
− η

Nc

[
ln(1− η) +

3
2

]
(2)

The second contribution Unb is obtained from the Bethe-Peierls-type mean-field en-
ergy [54] of locally packed nearest-neighbors around a chosen monomer. There are AA,
AB, and BB pairs, whose contact energies are represented by εAA, εAB, and εBB, respectively.
Then, Unb can be written as

βUnbv∗
V

=
1
2
· β ·∑

ij
φiφjεij · u(η) · η =

1
2
· β ·∑

ij
ηiηjεij ·

u(η)
η

(3)

The density dependence of Unb is determined by u(η) =4[(γ/C)4η4− (γ/C)2η2] with
γ = 1/

√
2 and C = π/6. We denote the free energy A per unit volume as a ≡ A/V, and

its nonideal part as ani ≡ Ani/V.

2.2. Series Expansion of Free Energy Functional

The free energy density functional for an inhomogeneous A-B diblock copolymer melt
is written in general as [47]

βAinhv∗

V
=

η

Nc
ln

ηK
Nc
− η

Nc
ln
(

1
V

∫
d
→
r · q(→r , 1)

)
+

1
V

(∫
d
→
r · βani(

→
r )v∗ −∑

j

∫
d
→
r · iωj(

→
r ) · ηj(

→
r )

)
(4)

where ani(
→
r ) is the localized ani to give the effective short-ranged interactions. The function

ωj(
→
r ) indicates the external potential conjugate to the local j-density ηj(

→
r ). In Equation (4),

q is the end-segment distribution function of Gaussian A-b-B chains subject to ωjs which
transmits the influence of the local interactions to the chain conformations to describe
microphase segregated state.

Fluctuations in various field variables are defined by ∆ηj(
→
r ) ≡ ηj(

→
r ) − ηj and

∆ωj(
→
r ) ≡ ωj(

→
r ), where the spatial average of ωj is shifted to zero. Then, the loga-

rithm of Q (≡ 1/V ·
∫

qd
→
r ) in Equation (4) can be expanded as a series in powers of ωjs up

to 4th order as
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ln Q = ln
[

1
V

∫
d
→
r · q(→r , 1)

]
= ln Q +

4

∑
n=2

(−1)nNc

n!V

∫ n

∏
l=1

d
→
k l

(2π)3 · G
(n)0
i1,...,in(

→
k 1, . . . ,

→
k n)ωi1(

→
k 1) . . . ωin(

→
k n) (5)

where Q is defined by Q = Q
(
ωj → 0

)
, and G(2)0

ij , G(3)0
ijk , and G(4)0

ijkl are the proper Gaussian correla-

tion functions. It is common to replace G(2)0
ij with S0

ij. Equation (5) is written in Fourier form with scatter-

ing vectors
→
k s. In our A-b-B copolymer system, S0

AA(
→
k ) = ηN · d1(φA, x) is used for AA correlations

with its gyration radius RG, where d1(φA, x) = 2/x2 · (e−φAx + φAx− 1) is the modified Debye

function and x ≡ k2R2
G. Likewise, S0

BB(
→
k ) = ηN · d1(1− φA, x) is used for BB correlations. The re-

maining AB correlations is described by S0
AB(
→
k ) =ηN/2 · [d1(1, x)− d1(φA, x)− d1(1− φA, x)].

Now, the free energy is written below as

βAinhv∗
V ≈ η

Nc
ln ηK

Nc
+

4
∑

n=2

(−1)n Nc
n!V ·

∫ n
∏
l=1

d
→
k l

(2π)3 ·G
(n)0
i1,...,in

(→
k 1, . . . ,

→
k n

)
ωi

(→
k 1

)
. . . ωin

(→
k n

)
+ 1

V

(
βaniv∗V + 1

2 ∑
i,j

∫ d
→
k

(2π)3 ·βDija·v∗∆ηi(
→
k )∆ηj(−

→
k )

)
− 1

V

(
∑
j

∫ d
→
k

(2π)3 ·ωj(
→
k ) · ∆ηj(−

→
k )

) (6)

where Q is absorbed into K and ani indicates ani in the homogeneous state. The symbol
Dija denotes the second-order derivatives of ani as Dija ≡ ∂2ani/∂ηi∂ηj to give the effective
local interactions in two-body level. For compressible systems, the Gaussian correlation
functions are diluted by η because of free volume.

The Landau free energy is formulated from Equation (6) by replacing ∆ηj(
→
k ) and

ωj(
→
k ) with their ensemble averages. For simplicity, we will use the same symbols for

their averages. To minimize the Landau free energy, it is required that δ(Ainh/V)/δωj = 0,

which yields the relations between ωj(
→
k )s and ∆ηj(

→
k )s. The Landau free energy is then

re-written as a series in powers of ∆ηj(
→
k )s as follows:

βAinhv∗
V = η

Nc
ln ηK

Nc
+ βaniv∗ + 1

2!V ∑
ij

[∫ d
→
k 1

(2π)3
d
→
k 2

(2π)3 Γ(2)
ij

(→
k 1,
→
k 2

)
∆ηi

(→
k 1

)
∆ηj

(→
k 2

)]
+ 1

3!V ∑
ijk

[∫ d
→
k 1

(2π)3
d
→
k 2

(2π)3
d
→
k 3

(2π)3 Γ(3)
ijk

(→
k 1,
→
k 2,
→
k 3

)
∆ηi

(→
k 1

)
∆ηj

(→
k 2

)
∆ηk

(→
k 3

)]
+ 1

4!V ∑
ijkl

[∫ d
→
k 1

(2π)3
d
→
k 2

(2π)3
d
→
k 3

(2π)3
d
→
k 4

(2π)3 Γ(4)
ijkl

(→
k 1,
→
k 2,
→
k 3,
→
k 4

)
∆ηi

(→
k 1

)
∆ηj

(→
k 2

)
∆ηk

(→
k 3

)
∆ηl

(→
k 4

)]
+ O

(
∆η5

j

) (7)

The second-order vertex function Γ(2)
ij is identical to S−1

ij , which is given by the sum

of Gaussian S0−1
ij and effective interaction fields. The higher-order vertex functions are

obtained as the combination of Gaussian correlation functions, which can be found else-
where [12,44,46]. It should be recognized that all the vertex functions require ∑ ki = 0.

2.3. Formulation of Landau Free Energy
2.3.1. Method I: Direct Way

Owing to the covalent bonds between A and B blocks, A-b-B diblock copolymer
melts exhibit phase separation only on a nanometer scale. These nanoscale mesophases
are diverse, but here we consider only the classical ones such as 3-dimensional body-
centered cubic spheres (BCC), 2-dimensional hexagonally packed cylinders (HEX), and
1-dimensional lamellae (LAM). The quadratic form of the free energy functional expansion
yields the characteristic wavenumber k∗ at its minimum, which in turn gives the periodicity
of the repeating structures with the domain size D as D = 2π/k∗. These nanostructures are

determined by n characteristic scattering vectors
→
K js, whose magnitudes are

∣∣∣∣→K j

∣∣∣∣ = k∗.
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Lamellar mesophase possesses one base vector
→
K1 = k∗ · (1, 0, 0) with n = 1. Meanwhile,

HEX mesophase possesses three base vectors,
→
K1 = k∗ · (1, 0, 0),

→
K2 = k∗ ·

(
−1/2,

√
3/2, 0

)
,

→
K3 = k∗ ·

(
−1/2,−

√
3/2, 0

)
along with n = 3. The last BCC mesophase possesses six

base vectors,
→
K1 = k∗/

√
2 · (1, 1, 0),

→
K2 = k∗/

√
2 · (−1, 1, 0),

→
K3 = k∗/

√
2 · (0, 1, 1),

→
K4 = k∗/

√
2 · (0, 1,−1),

→
K5 = k∗/

√
2 · (1, 0, 1),

→
K6 = k∗/

√
2 · (1, 0,−1), along with n = 6.

Following Leibler’s seminal analysis [12,44], the integral in Equation (7) is approxi-

mated to the finite sum of integrands at
→
K j. Each ∆ηi(±

→
k 1) is now treated as a plane wave

with its amplitude
(
1/
√

n
)
ς j and phase angle ±ϕ(i) as ∆ηi(±

→
k 1) =

(
1/
√

n
)
ςie±iϕ(i). The

free energy expansion is greatly simplified to yield the following form as a series in powers
of ς js up to 4th order:

β∆A =
(
ΓAAς2

A − 2ΓABςAςB + ΓBBς2
B
)

−
∣∣αAAAς3

A − 3αAABς2
AςB + 3αABBςAς2

B − αBBBς3
B

∣∣+ δijkle−iπ·cB(ijkl) · ςiς jςkςl
(8)

where the necessary treatment of the vertex coefficients of Equation (7) for the three
mesophases is given in the Appendix A. In Equation (8), Einstein’s summation convention
is used when necessary. It is seen that the permutation of indices of αAAB and αABB yields
the identical vertex function values. The cubic coefficients αijks for LAM, HEX, and BCC
are given respectively as follows:

αLAM
ijk = 0; αHEX

ijk =
12

3!
(√

3
)3 Γijk(1); αBCC

ijk =
48

3!
(√

6
)3 Γijk(1) (9)

In Equation (9), a number h is put into the bracket to indicate the relative angles between

the three scattering vectors
→
k 1,

→
k 2, and

→
k 3, where its definition is h ≡

∣∣∣∣→k 1 +
→
k 2

∣∣∣∣2/(k∗)2.

Then, the right triangular arrangement of those vectors yields
∣∣∣∣→k 1 +

→
k 2

∣∣∣∣ = ∣∣∣∣→k 3

∣∣∣∣ and h = 1.

The quartic coefficients δijkls are obtained as

δLAM
ijkl =

3!
4!

Γijkl(0, 0) (10)

δHEX
ijkl =

18

4!
(√

3
)4

[
Γijkl(0, 0) + 4Γijkl(0, 1)

]
(11)

δBCC
ijkl =

36

4!
(√

6
)4

[
Γijkl(0, 0) + 8Γijkl(0, 1) + 2Γijkl(0, 2) + 4Γijkl(1, 2)

]
(12)

The set of numbers (h1, h2) in Equations (10)–(12) indicates the relative angles between the

four scattering vectors
→
k 1,
→
k 2,
→
k 3, and

→
k 4. We define h1 and h2 as

∣∣∣∣→k 1 +
→
k 2

∣∣∣∣2 ≡ h1 · (k∗)2 and∣∣∣∣→k 1 +
→
k 4

∣∣∣∣2 ≡ h2 · (k∗)2, respectively. Then, it can be shown that
∣∣∣∣→k 1 +

→
k 3

∣∣∣∣2 = (4− h1 − h2) ·

(k∗)2. The Landau free energy is to be minimized with respect to ςA and ςB to determine the
equilibrium mesophase at a given set of composition, temperature, and pressure.
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2.3.2. Method II: Transformation of Order Parameters

Now, let us express our Landau free energy in a more familiar form through the
transformation of the order parameters [45,46]. The new order parameters are denoted as
ψ1

(→
r
)

and ψ2

(→
r
)

, which are defined by the following matrix equation:

[
ψ1
ψ2

]
=

[
(1− φA)/η −φA/η

1 1

][
∆ηA
∆ηP

]
=
[
Mij
][∆ηA

∆ηP

]
(13)

Using this equation, ψ1

(→
r
)

is given as ψ1 = (∆ηA − ∆ηP)/2η at φA = 1/2. Thus, the
profiles of phase segregating A and B blocks are joined to yield a composite profile in phase
with A block. The other order parameter ψ2

(→
r
)

is determined to be
ψ2 = ∆ηA + ∆ηP = −∆η f , which implies the negative fluctuations in free volume fraction.
Upon this transformation, the new vertex functions Γs are obtained from the original vertex
functions Γs as

Γ(n)
i1 ...in

(→
k 1, . . . ,

→
k n

)
ψi1

(→
k 1

)
· · ·ψin

(→
k n

)
= Γ(n)

i1 ...in

(→
k 1, . . . ,

→
k n

)
∆ηi1

(→
k 1

)
· · ·∆ηin

(→
k n

)
(14)

Then, Γs are equated to

Γ(n)
j1 ...jn = Γ(n)

i1 ...in M−1
i1 j1
· · ·M−1

in jn (15)

where Einstein’s summation convention is used for this tensorial equation.
We will consider nanoscale mesophases, whose structures are defined by characteristic

scattering vectors
→
k 1 ∈

{
±
→
Kn

}
. Regular geometric morphologies are represented by the

order parameter ψ1 that is treated as a plane wave as ψ1(±
→
Kk) =

(
1/
√

n
)
ζ1e±iϕk(1). The

remaining ψ2 is separated into two parts as −ψ2 = ∆η f= −ψ2c − ψ2i, where the former
indicates the excess free volume in phase with the more compressible constituent and the
latter represents the excess free volume at the interfaces between domains. While ψ2c is

parametrized as ψ2c(±
→
Kk) =

(
1/
√

n
)
ζ2ce±iϕk(2c), ψ2i should have 1/2 period to locate the

interfaces as ψ2i(±2
→
Kk) =

(
1/
√

n
)
ζ2ie±iϕk(2i).

Taking the proper mathematical procedure given in the Appendix B, this alternative
Landau free energy is formulated as

β∆A = Γ11ζ2
1 + 2Γ12ζ1ζ2c + Γ22ζ2

2c + Γ22(2k∗)ζ2
2i −

∣∣∣anζ3
1 + b1ζ2

1ζ2c

∣∣∣+ c4ζ2
1ζ2i + dnζ4

1 (16)

where the coefficient an is given respectively for LAM, HEX, and BCC by

aLAM
n = 0; aHEX

n = 12/
(

3!33/2
)
· Γ111(1); aBCC

n = 48/
(

3!63/2
)
· Γ111(1) (17)

The coefficient b1 is given respectively by

bLAM
1 = 0; bHEX

1 = 12/
(

3!33/2
)
·
(
3Γ112(1)

)
; bBCC

1 = 48/
(

3!63/2
)
·
(
3Γ112(1)

)
(18)

for LAM, HEX, and BCC. The coefficient c4 respectively becomes

cLAM
4 = 2/3! ·

(
3Γ112(4)

)
; cHEX

4 = 6/
(

3!33/2
)
·
(
3Γ112(4)

)
; cBCC

4 = 12/
(

3!63/2
)
·
(
3Γ112(4)

)
(19)

The quartic coefficient dn is given as

dLAM
n =

3!
4!

Γ1111(0, 0) (20)
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dHEX
n =

18

4!
(√

3
)4

[
Γ1111(0, 0) + 4Γ1111(0, 1)

]
(21)

dBCC
n =

36

4!
(√

6
)4

[
Γ1111(0, 0) + 8Γ1111(0, 1) + 2Γ1111(0, 2) + 4Γ1111(1, 2)

]
(22)

for LAM, HEX, and BCC, respectively.
Differentiating Equation (16) with respect to ζ2c and ζ2i, and then nullifying those

derivatives yield the following conditions:

ζ2c = −
Γ12

Γ22
ζ1 ±

b1

2Γ22
ζ2

1; ζ2i = −
c4

2Γ22(2k∗)
ζ2

1 (23)

where + and − signs are assigned to anζ1 + b1ζ2c > 0 and anζ1 + b1ζ2c < 0, respectively.
Replacing ζ2c and ζ2i with Equation (23), the free energy becomes in general

β∆A =

(
Γ11 −

Γ2
12

Γ22

)
ζ2

1 −
∣∣∣∣an −

b1Γ12

Γ22

∣∣∣∣ζ3
1 +

(
dn −

b2
1

4Γ22
−

c2
4

4Γ22(2k∗)

)
ζ4

1 ≈
(

Γ11 −
Γ2

12

Γ22

)
ζ2

1 −
∣∣∣∣an −

b1Γ12

Γ22

∣∣∣∣ζ3
1 + dnζ4

1 (24)

Equation (20) is our final suggestion of the alternative Landau free energy to find
the equilibrated ordered state as its minimum. It can be seen that the effective cubic and
quartic coefficients of the free energy contain not only the Gaussian correlation functions
but also interaction-dependent Γij. The vertex coefficient Γ22 implies the bulk modulus of
the copolymer melt [42]. Thus, the effective quartic coefficient in Equation (24) is further
approximated to simply dn.

2.4. Spinodals and Effective Flory χ

The quadratic form A2 of the Landau free energy in Equation (9) can be expressed in
the matrix form as

βA2 = ΓAAς2
A − 2ΓABςAςB + ΓBBς2

B =
[
ςA ςB

][ ΓAA −ΓAB
−ΓAB ΓBB

][
ςA
ςB

]
(25)

The phase stability requires the positive definiteness of A2. The spinodals are then
defined as the border line of stability to require det

[
Γij

]
= 0 at k∗ or

ΓAA/ΓAB = ΓAB/ΓBB (26)

The same situation occurs in our alternative Landau free energy in Equation (24),
where the spinodals are determined by

Γ11 − Γ2
12/Γ22 = det

[
Γij

]
/Γ22 = 0 (27)

These two different equations for spinodals are simply equivalent because
det
[
Γij

]
= η2det

[
Γij

]
.

The essence of the phase behavior of diblock copolymer melts is concentrated on
effective Flory χ parameter. In our previous works [42,46], χ was properly elicited from the
spinodals to consist of two contributions as χ = χH + χS. The former χH of our χ indicates
the conventional enthalpic contribution gotten from Γ11 in the following way. There are
Gaussian and non-Gaussian parts in Γ11/η as

Γ11/η = η(ΓAA − 2ΓAB + ΓBB) = η
(

S0−1
AA − 2S0−1

AB + S0−1
BB

)
+ ηβv ∗ (DAAani − 2DABani + DBBani) (28)
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where the latter non-Gaussian ones give χH as

χH = −1
2

βv ∗ (DAAani − 2DACani + DCCani)η = β · 1
2

∆ε · |u(η)| (29)

The symbol ∆ε (=εAA + εBB − 2εAB) implies the exchange energy between εij’s. Unlike
incompressible situations, χH possesses density dependence because of u(η). Meanwhile,
Γ12 (=η/2 ·

(
ΓAA − ΓBB

)
) is analyzed to be

Γ12 =
η

2
βv ∗ (DAAani − DBBani)=

1
2

β(εAA − εBB) · η
du
dη

(30)

where εAA − εBB indicates disparity in self dispersion interactions between constituent
blocks. The remaining vertex function Γ22 (=∑ Γij/4) is the average of Γij. It was shown

in our previous works [42,46] that Γ22 ≈ BT/η2, where BT (≡ η ∂P/∂η)T) is the bulk

modulus of the copolymer. Therefore, Γ2
12/Γ22∝ [εAA − εCC]

2/BT dominantly. As Γ2
12/Γ22

is always positive, it hampers phase stability. The latter χS of our χ represents the entropic
contribution to phase stability as

χS =
1

2η
· Γ2

12

Γ22
(31)

which is associated with volume fluctuations [42,46]. In general, a component with larger
εjj has a stronger cohesive energy and thus smaller compressibility (larger ηφj→1) than the
other. Therefore, χS vanishes for the copolymers with the same εjjs or compressibility. The

determinant det
[
Γij

]
can then be re-written as

det
[
Γij

]
=

1
η2 det

[
Γij

]
=

Γ22
η

{
η
(

S0−1
AA − 2S0−1

AB + S0−1
BB

)
− 2χ

}
(32)

This χ is capable of predicting all types of block copolymer phase behaviors.
In response to pressure, χH and χS behave in the opposite way to each other. Upon

pressurization, the increased η augments χH , whereas the increased BT diminishes χS.
In the case that |εAA − εBB|→0, χS/χ→0 and χH becomes a dominating contribution
to χ. Therefore, pressurization leads the system to a deeper segregation, which is the
conventional behavior or barotropicity. In the case that |εAA − εBB|/εAA is more sizable,
χS/χ gets more substantial. The applied pressure enhances BT , and then χS as well as χ is
suppressed by BT , which is the baroplasticity.

3. Discussions
3.1. Symbolic Arguments on Critical Point

A critical point (CP) or continuous transition point occurs when the spinodal line
meets the ODT and OOT lines. The partial minimization of the free energy in Equation (8),
with respect to ςB is obtained by ∂∆A/∂ςB = 0, which yields ςB = (ΓAB/ΓBB)ςA + O

(
ς2

B
)
.

When approaching its CP, ςB → (ΓAB/ΓBB)ςA and higher-order terms can be ignored.
Putting this ςB back into the free energy yields the following symbolic equation:

β∆A = τς2
A + ας3

A + δς4
A (33)

where τ ≡ ΓAA − Γ2
AB/ΓBB (∝ det

[
Γij

]
) serves as an effective temperature. The condition

that τ > 0 indicates the disordered state, above the spinodals for the conventional UODT-
type copolymers but below the spinodals for LDOT-type copolymers. The situation that
τ < 0 implies the ordered state. The remaining effective coefficients α and δ are given by

α ≡ −
∣∣∣∣∣αAAA − 3αAAB

ΓAB
ΓBB

+ 3αABB

{
ΓAB
ΓBB

}2
− αBBB

{
ΓAB
ΓBB

}3
∣∣∣∣∣ (34)
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and

δ ≡ δAAAA − 4δAAAB
ΓAB
ΓBB

+ 2{δAABB + δABAB + δABBA}
{

ΓAB
ΓBB

}2
− 4δABBB

{
ΓAB
ΓBB

}3
+ δBBBB

{
ΓAB
ΓBB

}4
(35)

where it is perceived that δAABB = δBBAA, δABAB = δBABA, and δABBA = δBAAB. In other
cases, such as δABBB or δAAAB, the vertex functions under the permutation of indices are
equivalent. It will be seen that δ is dominated by δAAAA and δBBBB. A CP is obtainable if
the cubic coefficient α vanishes. It is clearly seen in Equation (34) that the energetics come
into play in finding the CP through Γijs.

In case of using the alternative Landau free energy, the same symbolic expression for
the free energy is understood as

β∆A = τζ2
A + αζ3

A + δζ4
A (36)

where the effective coefficients are given as

τ = Γ11 −
Γ2

12

Γ22
; α = −

∣∣∣∣an −
b1Γ12

Γ22

∣∣∣∣; δ ≈ dn (37)

Our alternative Landau free energy in Equation (24) suggests that a CP is obtainable
if an − b1Γ12/Γ22 = 0 along with the condition that Γ11 − Γ2

12/Γ22 = 0 or det
[
Γij

]
= 0. It is

also observed that the energetics play their role in finding the CP due to Γ12 and Γ22.
The mathematical structure of the effective cubic term in either Equation (34) or

Equation (37) demonstrates the existence of CP for an A-b-B copolymer with or without
disparity in εjjs unlike liquid-solid and nematic-isotropic transitions. The continuous
transition for the copolymer with a finite chain size is of course to be destroyed due to
concentration fluctuations to that turn to a weak first-order transition [55]. Nonetheless, this
mean-field analysis is amenable and neat. It is still of importance because the mean-field
behaviors are restored if Nc → ∞ [56]. Furthermore, our Landau free energy works as the
starting point for any fluctuation correction analyses.

3.2. Temperature Dependence of Ordering Transitions
3.2.1. UODT System

In this section, we use the Landau free energy in Equation (8) or Equation (24) to
discuss various phase behaviors of molten A-b-B copolymers through numerically deter-
mining equilibrium mesophases and their stability. Consider first the phase behaviors
of PS-b-PBD, which is quite a typical UODT-type block copolymer. In order to probe
its phase behavior, our equation-of-state model requires three homopolymer parameters:
the self-interaction parameter εjj, monomer diameter σj, and chain size Nj. The sets of
homopolymer parameters for PS and PBD are given in Table 1, where a composite pa-
rameter Njπσ3

j /6Mj carrying the ratio of Nj to molecular weight Mj is provided. So, Nj

can be determined from the experimental molecular weight of a polymer or Nj is directly
given. Cross interactions between different polymers are characterized by εij, which is
an adjustable parameter and determined by fitting the phase behaviors of a given block
copolymer system or those of the corresponding blends. The ratio εij/

(
εiiεjj

)1/2 for PS-b-
PBD is determined to be 0.99565 from fitting binodal points of PS/PBD blends [41,57] and
also the ordering transitions of PS-b-PBD [41,45,58,59].
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Table 1. Molecular Parameters for PS and other polymers that form A-b-B copolymers.

Parameters PS PBD PVME PI PEHA

σi (Å) 4.039 4.039 3.900 a 4.350 a 3.840 a

εii/k (K) 4107.0 4065.9 3644.8 4057.7 3755.7
Niπσ3

i /6Mi
(cm3/g) b 0.41857 0.49395 0.42906 0.50209 0.48564

εij/
(

εPSεjj

)1/2 - 0.99565 1.00264 0.99680 0.99880

a This discrepancy in monomer diameters is resolved by adopting the conventional Lorentz mixing rule as
σ =

(
σi + σj

)
/2. b This composite parameter gives the ratio of the chain size Ni to molecular weight Mi .

The characteristic squared wavenumber x∗ (=
(

RGk∗
)2) obtained at the minimum of

det
[
Γij
]

gives the information on the domain size. In Table S1 of Supplemental Materials
(SM), x∗ for PS-b-PBD is tabulated against φA. It is seen from this table that x∗ is symmetric
to φA = φPS for the typical UODT systems such as PS-b-PBD, with little to no disparity in
self dispersion interactions εjjs.

Prior to the actual phase behaviors, let us briefly take a look at a hypothetical A-
b-B diblock copolymer with Nc = 400, where each block has the same homopolymer
parameters as those of PS and εij = 0.99565

(
εiiεjj

)1/2. The exchange energy then becomes
∆ε/k = 35.73 K. In Table S2 of SM, Γijs are tabulated for this copolymer at some selected

φAs. As is seen in this table, ΓAA = ΓAB = ΓBB at φA = 0.5. In this case, Γ12 = 0 due to
εAA = εBB. Its phase behavior at ambient pressure is identical to that of the incompressible
A-b-B copolymer melt discussed by Leiber. In Table S3 of SM, Γijks are tabulated against the
composition φA. It is noted that Γiii is negative and large in its magnitude, whereas ΓAAB
or ΓABB is positive and mostly small. It is shown that ΓAAA = ΓBBB and ΓAAB = ΓABB
at φA = 0.5. Therefore, α in Equation (34) is nullified at this composition to yield the CP,
where Nχc = 10.49487. In case of PS-b-PBD with Nc = 400, there is a small difference in
εjjs between PS and PBD with |εPS − εPBD|/εPS = ~0.01. The exchange energy for this
copolymer is ∆ε/k = 35.66 K. Based on Γijs tabulated for PS-b-PBD in Table S4 of SM, Γijs
are not identical at φA = φPS = 0.5. Therefore, α cannot vanish at φA = 1/2. The CP of
PS-b-PBD is found to be at φA = 0.50095 (>1/2) and at Ncχ = 10.49494 because of the small
disparity in εjjs.

Using the alternative Landau free energy in Equation (24), the CP of PS-b-PBD system
turns out to be φA = 0.50095, which is identical to the one using Equation (8) at least up
to 9 decimal places. These results prove the equivalence of our two different Landau free
energies even though the first method does not provide the profile for the free volume
fraction. It needs to be mentioned that the threshold or maximum of the spinodals for
PS-b-PBD copolymer is located at φA = 0.50069, which is slightly moved to the copolymer
with more PBD than at the CP. The shift of the CP is more vivid in the next copolymer
exhibiting LDOT.

Starting from the CP of PS-b-PBD copolymer melts, all the transition points at ambient
pressure are to be determined by minimizing the Landau free energy given in Equation (8).
Using the vertex coefficients as given in Tables S3 to S7 of SM, various transition points
are obtained by numerically solving both ∂∆A/∂ςA = 0 and ∂∆A/∂ςB = 0. In Figure 1a,
the transition temperatures are plotted against φA. Because of the small |εPS − εPBD|, the
phase diagram is almost symmetrical. The phase diagram can also be drawn in terms of
the well-known relevant parameter for phase segregation, i.e., Ncχ, as shown in Figure 1b.
As was mentioned in the previous section, the effective Flory χ is a composite function of
various molecular parameters as χ = χH + χS. In Table 2, Ncχ along with χH and χS for
the symmetric PS-b-PBD copolymer with Nc = 400 is tabulated at the selected temperatures
and at 0.1 MPa. In this system, χ is almost equal to χH . This typical UODT-type copolymer
shows the decreasing tendency of χ as χH ∼ 1/T, as seen in this table.
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Figure 1. Phase diagram for molten PS-b-PBD with Nc = 400 plotted against PS (A) volume fraction
φA in terms of: (a) absolute temperature and (b) the relevant parameter Ncχ. The disparity in εjjs is
|εPS − εPBD|/εPS = 0.010 and the exchange energy is ∆ε/k = 35.66 K. As this disparity is quite small,
the phase boundaries are almost symmetrical with the CP at φA = 0.50095. The arrows indicate BCC
mesophase in the narrow region between ODT and spinodals.

Table 2. The relevant parameter Ncχ and its two contributions, χH and χS, evaluated at selected
temperatures for symmetrical PS-b-PBD with Nc = 400 a.

T (K) χH χS Ncχ

350 0.04573 4.40866 × 10−5 18.31053
400 0.03905 4.57456 × 10−5 15.63757
450 0.03382 4.71030 × 10−5 13.54714
500 0.02962 4.82407 × 10−5 11.86625
550 0.02616 4.92196 × 10−5 10.48438
600 0.02327 5.00868 × 10−5 9.32755
650 0.02081 5.08801 × 10−5 8.34431

a Pressure is fixed to 0.1 MPa.

In drawing Figure 1, the Landau free energy in Equation (8) is used. If we use
the Landau free energy given in Equation (24), where there is only one order parameter
amplitude to determine through solving ∂∆A/∂ζ1 = 0, we get almost the identical phase
diagram. The spinodals from the two methods are perfectly identical. The ODT from
disorder to BCC is different only by ~0.01 K between the two methods. The calculated
differences in OOTs from the two methods are ~0.0007 K and ~0.102 K for BCC-HEX and
HEX-LAM OOTs, respectively.

3.2.2. LDOT System

Our second system is a molten diblock copolymer from PS and poly(vinyl methyl ether)
(PVME). The corresponding PS/PVME blend is a widely studied blend system that reveals
the miscibility between PS and PVME and also the lower critical solution temperature
behavior [60]. The origin of their miscibility is considered to be the weak hydrogen bond
between the aromatic hydrogen (C-H) and ether oxygen (-O-) [61]. In analyzing copolymer
phase behavior, all the molecular parameters for PS-b-PVME are given in Table 1. The
cross interaction εij for this copolymer is determined to be εij/

(
εiiεjj

)1/2 = 1.00264 from the
binodal points of the corresponding PS/PVME blends, where this εij yields ∆ε/k =−6.637 K
and the calculated transition temperatures are similar to the experimental values [41,44,60].
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The characteristic squared wavenumber x∗ (=
(

RGk∗
)2) for PS-b-PVME is tabulated

against φA = φPS in Table S1 of SM. Unlike the typical UODT systems such as PS-b-PBD, it
is seen from this table that x∗ is slightly asymmetric to φA. The ratio of x∗φA=0.9 to x∗φA=0.1 is
shown to be x∗φA=0.9/x∗φA=0.1 = 1.0011, which implies that the domain size of the copolymer
richer in PS is shrunken compared with that richer in PVME.

The effect of disparity in self dispersion interactions appears drastically in PS-b-
PVME, which exhibits |εPS − εPVME|/εPS = 0.113. Since εPS > εPVME, PS is denser and
less compressible than PVME. PS and PVME are compatible with ∆ε < 0 due to the
aforementioned weak H-bonds between them. In Table 3, we listed the theoretical χ for PS-
b-PVME with Nc = 20,000 at φA = 1/2 as a function of temperature while fixing pressure to
0.1 MPa. It is seen that the energetic χH ∝∆ε/T is negative and decreases with temperature.
However, there is comparable entropic χS∝ [εAA − εCC]

2/BT , which is always positive and
grows with temperature. As a result of these two competing actions, the copolymer is in
the disordered state at lower temperatures but reveals nanoscopic phase separation upon
heating or LDOT caused by compressibility difference. The phase separation induced in
this way requires a large chain size to suppress the combinatorial entropy. In Figure 2,
the spinodal points (red line) are plotted against φA. It is seen that the spinodal line
is seriously asymmetric because of the substantial disparity in εjjs. More precisely, the
threshold or minimum of the spinodal line is skewed towards more compressible PVME-
rich side at φA = ~0.305. This phenomenon is caused by the fact that the positivity of χS
always hampers phase stability, which is stronger in the side rich in more compressible
PVME. However, this minimum is not the CP. The calculated CP using the free energy
in Equation (8) is found to be φA = 0.50974, rich in less compressible component PS. This
action is caused by the fact that εPS > εPVME. The stronger binding of PS monomers in
turn yields that ΓAA < ΓAB < ΓBB, as seen in Table S4 of SM. The system rich in denser
component has smaller volume. Therefore, at the CP with a continuous transition, the
copolymer system strives to search the composition of comparable volumes of the two
components. Henceforth, the critical composition should be φA > 1/2 in order to add more
volume of less compressible and denser component. This result is in sharp contrast to the
phase behavior of the corresponding blend, where the threshold point in the spinodal line is
indeed the CP. Using the Landau free energy in Equation (24) yields the CP of PS-b-PVME
at φA = 0.50974, which is identical to that from Equation (8) up to six decimal places.

Table 3. The relevant parameter Ncχ and its two contributions, χH and χS, evaluated at selected
temperatures for symmetrical PS-b-PVME with Nc = 20,000 a.

T (K) χH χS Ncχ

425 −0.00668 0.00656 −2.46405
450 −0.00622 0.00664 8.46668
475 −0.00581 0.00672 18.30529
500 −0.00544 0.00680 27.21505
525 −0.00510 0.00687 35.32983
550 −0.00479 0.00693 42.76065

a Pressure is fixed to 0.1 MPa.

Starting from the CP of PS-b-PVME copolymer, all the transition points at ambient
pressure are to be determined again using the vertex coefficients as in Tables S2–S7 of SM.
Because of the asymmetry in x∗, the δijkls for the copolymer is minutely different from these
given in those tables when approaching both extremes at φA → 0 and φA → 1 . Figure 2a
displays all the phase boundaries as well as spinodals for PS-b-PVME in terms of the
absolute temperature. The substantial disparity in εjjs between PS and PVME forces all
those lines to skew, as seen in this figure. In Figure 2b, the phase diagram is redrawn in
terms of Ncχ, which is quite slanted for molten PS-b-PVME. To get the data in Figure 2,
the Landau free energy in Equation (8) is used. Even if the free energy in Equation (24)
is used instead, it is observed that we still get almost the identical phase diagram. The
spinodals from the two methods are perfectly identical. The ODT from disorder to BCC
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for the copolymer at φA = 0.1 using Equation (8) is different by ~0.2 K from that using
Equation (24). The calculated difference in OOTs from BCC to HEX using the two methods
for the copolymer at the same composition is found to be ~0.2 K. The predicted HEX-LAM
OOTs using Equations (8) and (24) are 1040.074 K and 1056.842 K, respectively. In this
case, ∆T reaches 16.8 K. However, the agreement between the two methods is satisfactory
considering that the difference is less than 2% even in this unreachable temperature region.
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Figure 2. Phase diagram for molten PS-b-PVME with Nc = 20,000 plotted against PS (A) volume
fraction φA in terms of: (a) absolute temperature and (b) the relevant parameter Ncχ. The disparity
in εjjs is sizable as |εPS − εPBD|/εPS = 0.113 and the exchange energy is ∆ε/k = −6.637 K. In this
situation, the phase boundaries are skewed towards more compressible PVME side, but with the CP at
φA = 0.50974. The arrows indicate BCC mesophase in the narrow region between ODT and spinodals.

The compressible nature and disparity in εjjs for PS-b-PVME gives the difference
in the order parameter amplitudes. The ratio ςA/ςB is shown to be ~1.04 for ODT and
BCC-HEX OOT for the copolymer at φA = 0.1. At other compositions, ςA/ςB > 1, which
reflects the fact that PS is denser than PVME. As the transition temperature is further
increased in case of HEX-LAM OOT for the copolymer at the same composition, ςA/ςB
is increased to become ~1.11. The density difference between PS and PVME should grow
with thermal expansion.

3.3. Pressure Dependence of Ordering Transitions

In this section, we discuss the responses of diblock copolymers to pressure. The first
system to consider is PS-b-PI copolymer, whose ordering transition temperatures have
been reported by Hajduk et al. [33,62]. The requisite molecular parameters are also given
in Table 1. It is seen in this table that |εPS − εPI |/εPS = 0.012, which is similar to that for
PS-b-PBD. The cross interaction parameter εSI =0.99680(εPSεPI)

1/2 is determined from
fitting the CP (388 K) of PS/PI blend with molecular weights of 2117 and 2594, reported by
Rudolf and Cantow [63], and adjusted by comparison with the ODT data for PS-b-PI with
Mw = 8000/8500 [33]. Figure 3a depicts the two contributions to χ against pressure for
PS-b-PI at φA = φPS = 0.442 and at T = 365 K. As is now expected from |εPS − εPI | for this
copolymer, Flory χ is mostly given by χH along with O(χS) ∼ 10−5. The enthalpic χH
increases upon pressurization. Although χS goes in a reverse way due to the bulk modu-
lus of the copolymer, the effective Flory χ follows χH to be strengthened by the applied
pressure. In Figure 3b, all the transition points for the copolymer at the same composition
are plotted as a function of P. The pressure coefficient, ∆Ttrs/∆P, of the ordering transi-
tion is predicted to be ~15 K/100 MPa, which describes well the experimental value of
~17 K/100 MPa for the copolymer with Mw = 16,500 or Nc = 327.4 [33]. This type of pressure
response is barotropicity, as already mentioned.
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Figure 3. Pressure responses of (a) χH as well as χS at T = 365 K and (b) various transitions for
molten PS-b-PI with Nc = 327.4 (Mw = 16,500) at φA = φPS = 0.442. The symbols in plot (b) indicate
the experimental ODT data measured by Hajduk et al. The arrows indicate the proper axes for χH

and χS.

Our next system is the copolymer from PS and poly(ethyl hexyl acrylate) (PEHA).
The PS-b-PEHA diblock copolymer exhibits a completely reverse response to pressure, as
was measured using light scattering (cloud points) and small angle neutron scattering [40].
This copolymer is a member of baroplastic systems, whose nanoscopic phase separation
and pressure response were first studied by Mayes and co-workers [38]. Again, all the
necessary molecular parameters for PS and PEHA are given in Table 1. It is seen in this
table that |εPS − εPEHA|/εPS = 0.086, which is quite larger than that for PS-b-PBD. The
cross-interaction parameter of εS−EHA =0.99880(εPSεPEHA)

1/2 is the optimized one to fit
the phase behavior of PS-b-PEHA with Mw = 23,000 or Nc = 529.581. In Figure 4a, we
display χ and its two contributions, χH and χS, for the copolymer at φA = φPS = 0.42 and at
T = 445 K. It is observed in this figure that χS is near 20% of χH at ambient pressure. As
pressure is increased, the enthalpic χH is increased due to densification. The entropic χS is
suppressed by the applied pressure to have χS/χH~ 0.12 at P = 100 MPa. As a result, the
effective χ becomes a decreasing function of pressure. Figure 4b depicts all the transition
temperatures for the copolymer at this composition. The decrease of its ODT is predicted
to be ∆Ttrs/∆P = −16 K/100 MPa, which matches well with the scattering result [40].
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Figure 4. Pressure responses of (a) χH and χS along with Ncχ at 445 K, and (b) various transitions for
molten PS-b-PEHA with Nc = 541.8 (Mw = 23,000) at φA = φPS = 0.42. The symbols in plot (b) indicate
the experimental ODT data for the copolymer measured by Lee et al. The arrows indicate the proper
axes for χH , χS, and Ncχ.
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Our third system is the diblock copolymer from poly(ethyl ethylene) (PEE) and
poly(dimethyl siloxane) (PDMS). The PEE-b-PDMS copolymer is one of UODT-type block
copolymers. However, its response to pressure is abnormal in the sense that the copolymer
reveals the retreat of its ordering temperatures in the low pressure region and then resur-
gence of the transition temperatures in the high pressure region [46,64]. This anomalous
pressure response of the copolymer can be understood by the subtle balance of χH and
χS. In describing the copolymer, the necessary molecular parameters are given in Table 4.
The key elements there are |εEE − εDMS|/εEE = 0.108 and εEE−DMS = 0.99654(εEEεDMS)

1/2,
determined by fitting the phase behaviors of symmetric PEE-b-PDMS with Mw = ~10,700.
Using these parameters, ∆ε is unfavorable as ∆ε/k = 27.158 K. Figure 5a depicts the effective
χ along with its two contributions, χH and χS, plotted against pressure for PEE-b-PDMS
at φA = φPEE = 0.52 and at 352.5 K. At ambient pressure, it is seen that χS is near 20% of
χH , and at 100 MPa χS drops to near 10% of χH just as in the case of PS-b-PEHA. How-
ever, unlike PS-b-PEHA, the increase of χH is more rapid, so that χS becomes just 5%
of χH at 200 MPa. Therefore, χH regains the control of the phase behaviors. The transi-
tion temperatures of this copolymer are shown in Figure 5b against pressure from 0.1 to
200 MPa. In this figure, the baroplastic, followed by barotropic responses of PEE-b-PDMS,
are clearly demonstrated in agreement with the experiment.

Table 4. Molecular parameters for PEE-b-PDMS systems.

Parameters PEE PDMS

σi (Å) 3.590 a 3.952 a

εii/k (K) 2819.60 2514.50
Niπσ3

i /6Mi (cm3/g) 0.47823 0.41778
εAB/(εAAεBB)

1/2 0.99654
a This discrepancy in monomer diameters is resolved by adopting the conventional Lorentz mixing rule as
σ =

(
σi + σj

)
/2.
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The symbols indicate the experimental ODT data for the copolymer at φA = 0.50 measured by
Schwahn et al. The arrows indicate the proper axes for χH , χS, and Ncχ.

We have revisited the Landau free energy for A-b-B diblock copolymer melts with
diverse types of phase behaviors from the viewpoint of their response to temperature
or pressure. Being analytical with one harmonic for order parameters, the present work
deals with the classical nanostructures. For the equilibration of other mesophases, it is
necessary to use our self-consistent field theory for the copolymers, which was developed
a few years ago [47–49]. All of our works are based on the restricted chain model with
the identical monomer diameters σjs. This restriction can be alleviated to allow for the
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variation of σjs. The present mean-field Landau energy with its correct cubic term exhibits
continuous transitions or CPs, whose locations are dependent on disparity in εjjs. When the
concentration fluctuations are involved, such mean-field CPs are known to be destroyed to
yield the weak first-order transition [55]. The necessary fluctuation correction in one-loop
order was suggested by Fredrickson and Helfand [56] for the corresponding incompressible
A-b-B diblock copolymer systems utilizing Brazovskii’s Hamiltonian form. One of the
present authors also introduced the similar approach for the copolymer melt in case of small
|εAA − εBB| [65]. In Appendix C, we provide the fluctuation correction analysis starting
from our Landau free energy in Equation (24).

4. Conclusions

Nanoscopic phase behaviors of molten A-b-B diblock copolymers within general dis-
parity in self dispersion interactions are revisited through Landau approach. A continuum
space molecular equation of state is first considered to describe such copolymers in the bulk
state. A free energy functional is obtained for the inhomogeneous copolymer as that for the
corresponding Gaussian chains under the influence of effective two-body interactions from
the localized excess equation of state. The free energy functional in the weak segregation
regime is then expanded directly as a series in powers of two order parameters, which
are fluctuations in A and B block densities (〈∆ηA〉 and 〈∆ηB〉), up to 4th order. The order
parameters are treated as the sum of plane waves with their amplitude and phase angles.
The Fourier-transformed momentum integral for the Landau free energy is approximated

to the finite sum of terms at the scattering vectors
→
k , whose lengths are the characteristic

wavenumber k∗ signifying the domain sizes of ordered mesophases. A completely alter-
native Landau free energy is obtained after the transformation of the order parameters
to fluctuations in block density difference (∼ 〈∆ηA − ∆ηB〉/2η) and negative free volume
fraction (−

〈
∆η f

〉
). It is shown that those two different Landau free energies are equivalent

to yield almost identical ordering transition temperatures.
The analysis of spinodals from the quadratic term of the Landau energy, which are

perfectly identical for the direct and alternative ones, leads to effective Flory χ as the
sum of the conventional enthalpic χH for exchange energy (∝ ∆ε|u(η)|) and entropic χS
representing disparity in self dispersion interactions mediated by copolymer bulk modulus
(∝ [εAA − εCC]

2/BT). The cubic term of the Landau free energy is shown to be balanced
with all the Gaussian cubic vertex coefficients Γijk in corporation with Γij to yield its critical
point (CP) depending on asymmetry in self dispersion strengths. The quartic terms of the
Landau free energy are given mainly by the Gaussian quartic vertex coefficients Γiiiis at the
proper combinations of the scattering vectors pertinent to the given mesophases.

Taking PS-b-PBD and PS-b-PVME as model systems, the responses of the copolymers
to temperature are first discussed. The former copolymer exhibits typical ordering transition
upon cooling (UODT), whereas the latter copolymer reveals the reverse ordering transition
upon heating (LDOT). The phase boundaries for these copolymers are fully determined
by numerically minimizing the Landau energy. The PS-b-PBD copolymer with quite
close self-dispersion interactions for both blocks gives a symmetric phase diagram. This
phenomenon can be understood because χ ≈ χH and χS << 1, in this case. The copolymer
phase behaviors at ambient pressure are almost identical to those of the incompressible
A-b-B copolymer. In contrast, PS-b-PVME copolymer possesses quite sizable disparity
in self dispersion interactions. The substantially large χS in this copolymer develops
phase segregation tendency upon heating because of the diminished bulk modulus. The
phase boundaries are skewed towards the side rich in more compressible PVME. While
PS-b-PBD possesses its CP near the symmetric composition, PS-b-PVME pushes its CP
towards the copolymer rich in denser component to match domain volumes to fulfill a
continuous transition.

The responses of A-b-B copolymers to pressure are investigated by taking PS-b-PI,
PS-b-PEHA, and PEE-b-PDMS as model systems. The PS-b-PI copolymer is barotropic,
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which is typical for many block copolymers. In this case, χ is dominated by χH , which is
augmented by pressurization due to the increased density. On the contrary, the PS-b-PEHA
copolymer is baroplastic with more sizable χS. Pressurization suppresses χS because of the
copolymer bulk modulus, and the decrease in χS affects the total χ more than the increase
in χH . Anomaly is observed for the PEE-b-PDMS copolymer, because it is baroplastic at
lower pressure region and then barotropic in higher pressure region. The reason for this
complicated pressure response is because there is a subtle competition between χH and χS,
which prevails between the two switches at different stages of pressurization.
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Appendix A. Landau Free Energy in a Direct Way

In this appendix, we provide the detailed procedure in deriving the Landau free
energy given in Equation (8). The general integral form of the free energy in Equation (7)

is approximated to the finite sum of integrands at n characteristic scattering vectors
→
K js

signifying a given structure, where
∣∣∣∣→K j

∣∣∣∣ is equal to its characteristic structural wavenumber

k∗. The quadratic form A2 of the free energy functional in Equation (7) is then given by

βA2 =
1
2

∫
d
→
k 1Γij

(→
k 1,−

→
k 1

)
∆ηi(

→
k 1)∆ηj(−

→
k 1) ≈

1
2 ∑
→
k 1∈{±

→
Kn}

Γij

(→
k 1,−

→
k 1

)
∆ηi(

→
k 1)∆ηj(−

→
k 1) (A1)

There are only 2n such cases. Each ∆ηi(±
→
k 1) is treated as a plane wave with its

amplitude
(
1/
√

n
)
ς j and phase angle ±ϕ(i) as ∆ηi(±

→
k 1) =

(
1/
√

n
)
ςie±iϕ(i). Then,

Equation (A1) turns to

βA2 = ΓAA

(→
k 1,−

→
k 1

)
ς2

A + 2ΓAB

(→
k 1,−

→
k 1

)
ςAςBei[ϕ(A)−ϕ(B)] + ΓBB

(→
k 1,−

→
k 1

)
ς2

B (A2)

https://www.mdpi.com/article/10.3390/polym15010030/s1
https://www.mdpi.com/article/10.3390/polym15010030/s1
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It is found that all the Γijs are positive, as seen in Tables S2 and S3 of SM. The mini-
mization of Equation (A2) gives

βA2 = [ΓAA(k
∗) ς2

A − 2ΓAB(k
∗)ςAςB + ΓBB(k

∗)ς2
B

]
(A3)

where the phase angles need to satisfy ϕ(A)− ϕ(B) = π.
Let us discuss how to obtain higher-order terms in Equation (8) of the main text.

This is where the present work takes a step forward with the deepened conception from
the previous study [44]. The cubic form A3 of the free energy functional has the vertex
functions of all possible combinations of indices i, j, and k. The same parametrization of

∆ηi(
→
k 1) and approximating A3 to the finite sum of integrands give

βA3 =
1
3! ∑
→
k i∈{±

→
Kn}

Γijk

(→
k 1,
→
k 2,
→
k 3

)
ςiς jςk(√

n
)3 ei(ϕa(i)+ϕb(j)+ϕc(k)) (A4)

One should bear in mind that the scattering vectors
→
k 1,
→
k 2, and

→
k 3 satisfy

→
k 1 +

→
k 2 +

→
k 3 = 0 not to nullify Γijk(h). These vectors should then form a right triangle to have h = 1.
The given vertex functions change their signs according to indices. However, the sum of
phase angles cannot be decided by their signs, because the sums are not fully indepen-
dent. All those sums can be determined relative to ∑ ϕm(A) ≡ ϕa(A) + ϕb(A) + ϕc(A)
as follows:

ϕa(i) + ϕb(j) + ϕc(k) = ϕa(A) + ϕb(A) + ϕc(A)− π · cB(ijk) = ∑ ϕm(A)− π · cB(ijk) (A5)

where cB(ijk) is the number of B among indices i, j, and k. Inserting Equation (A5) into
A4 yields

βA3 =
1
3! ∑
→
k i∈{±

→
Kn}

ei(ϕa(A)+ϕb(A)+ϕc(A)) · Γijk(1)
ςiς jςk(√

n
)3 e−i·πcB(ijk) (A6)

where Γijk(h) is evaluated at h = 1. The minimization of Equation (A6) leads in general to

βA3 = −
∣∣∣αAAAς3

A − 3αAABς2
AςB + 3αABBςAς2

B − αBBBς3
B

∣∣∣ (A7)

where αijk is given in Equation (9) of the main text. It should be remembered that there

is no way to have h = 1 for Γ(3)
ijk of LAM mesophase. In BCC mesophase, forming a right

triangle takes only 4 cases such as (
→
K1,−

→
K3,−

→
K6), (

→
K1,−

→
K4,−

→
K5), (

→
K2,−

→
K4,

→
K6), and

(
→
K2,−

→
K3,

→
K5) in order to have h = 1.

The quartic form A4 of the free energy functional is originally made of vertex functions
of all possible combinations of indices i, j, k, and l as

βA4 =
1
4! ∑
→
k i∈{±

→
Kn}

Γijkl

(→
k 1,
→
k 2,
→
k 3,
→
k 4

)
ςiς jςkςl(√

n
)4 ei(ϕ1(i)+ϕ2(j)+ϕ3(k)+ϕ4(l)) (A8)

where ∑
→
k i = 0 must be satisfied by the integrand. The sums of phase angles are resolved

by those of the second and third order terms. However, unlike A3, the mesophase ge-
ometry is directly used for A4. Still, the values of these sums are determined relative to
∑ ϕl(A) ≡ ϕa(A) + ϕb(A) + ϕc(A) + ϕd(A) for pure A correlations as follows:

ϕa(i) + ϕb(j) + ϕc(k) + ϕd(l) = ∑ ϕl(A)− π · cB(ijkl) (A9)
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where cB(ijkl) is the number of B among indices i, j, k, and l. Then, A4 is obtained as

βA4 =
1
4! ∑
→
k i∈{±

→
Kn}

ei(ϕa(A)+ϕb(A)+ϕc(A)+ϕd(A))Γijkl(h1, h2)
ςiς jςkςl(√

n
)4 e−i·πcB(ijkl) (A10)

We need to count all the possible cases in accord with LAM, HEX, and BCC mesophases,
which are given below in detail.

LAM:
In regards to the quartic form A4 for lamellae, the only possible option to have

the vanishing ∑
→
k i is

→
k 1 −

→
k 1 +

→
k 1 −

→
k 1 = 0 or (h1, h2) = (0, 0). This condition leads to

∑ ϕi(A) = ϕa(A)− ϕa(A) + ϕa(A)− ϕa(A) = 0. Then, the quartic form A4 is expressed as

βA4 =
3!
4!

Γijkl(0, 0)ςiς jςkςle
−iπ·cB(ijkl) (A11)

where all such cases are included.
HEX:
For the quartic form A4 of HEX mesophase, the only possible sets of (h1, h2) are (0,0)

and (0,1). After counting all such case, we have

βA4 =
18

4!
(√

3
)4

[
Γijkl(0, 0) + 4Γijkl(0, 1)

]
ςiς jςkςle

−iπ·cB(ijkl) (A12)

It should be noted that (h1, h2) = (0, 0) and (0, 1) respectively require one
→
Ka (ϕa − ϕa + ϕa − ϕa = 0 and two

→
K js forming either 60◦ or 120◦ between them

(ϕb − ϕb + ϕc − ϕc = 0).
BCC:
The quartic form A4 of the free energy for BCC is given by

βA4 = 36
4!(
√

6)
4

{
Γijkl(0, 0)ei(ϕa(A)−ϕa(A)+ϕa(A)−ϕa(A))+

8Γijkl(0, 1)ei(ϕb(A)−ϕb(A)+ϕc(A)−ϕc(A)) + 2Γijkl(0, 2)ei(ϕd(A)−ϕd(A)+ϕe(A)−ϕe(A))+

2Γijkl(1, 2)
(

ei(ϕ1(A)+ϕ2(A)−ϕ3(A)−ϕ4(A)) + ei(ϕ1(A)−ϕ2(A)−ϕ5(A)−ϕ6(A))
)}

ςiς jςkςle
−iπ·cB(ijkl)

(A13)

There are only one
→
Ka required for (0,0) contribution (ϕa − ϕa + ϕa − ϕa = 0) and two

→
K j’s required for (0,1) and (0,2) contributions (ϕb − ϕb + ϕc − ϕc = 0) to βF4. In the case of the

(0,1) contribution, two
→
K j’s form either 60◦ or 120◦ between them. In the other case of the (0,2)

contribution, two
→
K j’s should be selected to form the right angle. However, there are four

→
K j’s

necessary to describe (1,2) contribution to βF4, as they are clearly expressed in Equation (A13).
Using the result that ϕ1(A)− ϕ3(A)− ϕ6(A) = ϕ2(A)− ϕ4(A) + ϕ6(A) = 0 or π, we have

ϕ1(A) + ϕ2(A)− ϕ3(A)− ϕ4(A) = ϕ1(A)− ϕ3(A)− ϕ6(A) = 0 (A14)

or

ϕ1(A) + ϕ2(A)− ϕ3(A)− ϕ4(A) = ϕ1(A)− ϕ3(A)− ϕ6(A) + π = 2π (A15)

The same argument applies to the other set of phase angles in Equation (A13), because
ϕ1(A)− ϕ4(A)− ϕ5(A) = ϕ2(A)− ϕ4(A) + ϕ6(A) = 0 or π. Then, we have

ϕ1(A)− ϕ2(A)− ϕ5(A)− ϕ6(A) = ϕ1(A)− ϕ4(A)− ϕ5(A) = 0 (A16)

or
ϕ1(A)− ϕ2(A)− ϕ5(A)− ϕ6(A) = ϕ1(A)− ϕ4(A)− π − ϕ5(A) = 0 (A17)
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Therefore, we have the final expression for the quartic form A4 as

βA4 =
36

4!
(√

6
)4

[
Γijkl(0, 0) + 8Γijkl(0, 1) + 2Γijkl(0, 2) + 4Γijkl(1, 2)

]
ςiς jςkςle

−iπ·cB(ijkl) (A18)

where e−iπ·cB(ijkl) gives 1 or −1 depending on cB(ijkl) as before.
The Landau free energy is given by β∆A = βA2 + βA3 + βA4 to have its final and

general form in Equation (8) for each mesophase with the two amplitudes ςA and ςB.

Appendix B. Landau Free Energy through Transformation of Order Parameters

In this appendix, we provide the mathematical procedure to formulate our alternative
Landau free energy in a more familiar form through the transformation of order parameters.
The transformed order parameters, ψ1

(→
r
)

and ψ2

(→
r
)

, are defined in the main text, where
the former is a composite density profile in phase with A block and the latter indicates the
negative fluctuations in free volume fraction. Upon this change of variables, the new vertex
functions Γs are obtained from the original vertex functions Γs by Equation (15).

We will consider nanoscale mesophases, whose structures are defined by character-

istic scattering vectors
→
k 1 ∈

{
±
→
Kn

}
. Those regular geometric morphologies are repre-

sented by ψ1 as the sum of plane waves. The remaining ψ2 is separated into two parts as
−ψ2 = −ψ2c − ψ2i, where −ψ2c indicates the excess free volume at the interfaces between
domains and −ψ2i represents the excess free volume in phase with the more compressible
constituent. These order parameter parts are parametrized as given in the main text.

The quadratic form A2 of the free energy expansion can be written as

βA2 ≈
1
2 ∑
→
k 1∈{±

→
Kn}

Γij

(→
k 1,−

→
k 1

)
ψi(
→
k 1)ψj(−

→
k 1) = Γ11ζ2

1 + 2Γ12ζ1ζ2cei(ϕ(1)−ϕ(2c)) + Γ22ζ2
2c + Γ22(2q∗)ζ2

2i (A19)

where the integral is approximated to the finite sum of the integrand at the characteristic

wavevectors. Since
→
k j −

(
2
→
k j

)
6= 0, there is no mixed term such as ψ1ψ2i.

We will discuss how to obtain higher-order terms in Equation (16) of the main text.
This is where the present work takes a step forward with the deepened conception from
our previous studies [45,46]. The cubic form A3 is suggested in the following way. The fluc-
tuations in free volume is considered to be small. Therefore, the only possible contributions
in our 4-field theory are given by ψ1ψ1ψ1, ψ1ψ1ψ2c, and ψ1ψ1ψ2ias

βA3 = 1
3! ∑
→
k 1∈{±

→
Kn}

Γ111(1)ψ1

(→
k 1

)
ψ1

(→
k 2

)
ψ1

(→
k 3

)
+ 1

3! ∑
→
k 1∈{±

→
Kn}

(
Γ112(1) + Γ121(1) + Γ211(1)

)
ψ1

(→
k 1

)
ψ1

(→
k 2

)
ψ2c

(→
k 3

)
+ 1

3! ∑
→
k 1∈{±

→
Kn}

(
Γ112(4) + Γ121(4) + Γ211(4)

)
ψ1

(→
k 1

)
ψ1

(→
k 2

)
ψ2i

(
2,
→
k 3

) (A20)

The number h inside the bracket of Γijk indicates the relative angles between
→
k 1,
→
k 2,

and
→
k 3. Therefore, h = 1 implies that those three vectors form a right triangle, whereas

h1 = 4 means that
→
k 1 =

→
k 2 and

→
k 3 = −2

→
k 1. Equation (A20) is re-written with the

parametrized order parameters as

βA3 = 1
3!(
√

n)
3 ∑
{
→
K a ,
→
Kb ,
→
K c}

Γ111(1)ζ3
1ei(ϕa(1)+ϕb(1)+ϕc(1)) + 1

3!(
√

n)
3 ∑
{
→
K a ,
→
Kb ,
→
K c}

(
3Γ112(1)

)
ζ2

1ζ2cei(ϕa(1)+ϕb(1)+ϕc(2c))

+ 1
3!(
√

n)
3 ∑
{
→
K a ,
→
K a ,−2

→
K a}

(
3Γ112(4)

)
ζ2

1ζ2iei(ϕa(1)+ϕa(1)−ϕ(2i)) (A21)



Polymers 2023, 15, 30 21 of 26

where Γ112 = Γ121 = Γ211 is used above. In the same way, the quartic form A4 of the free
energy is only given by ψ1ψ1ψ1ψ1 as

βA4 =
1
4! ∑
→
k i∈{±

→
Kn}

Γ1111

(→
k 1,
→
k 2,
→
k 3,
→
k 4

)
ψ1

(→
k 1

)
ψ1

(→
k 2

)
ψ1

(→
k 3

)
ψ1

(→
k 4

)
=

1

4!
(√

n
)4 ∑
{
→
K a ,
→
Kb ,
→
K c ,
→
Kd}

Γ1111(h1, h2)ζ
4
1ei(ϕa(1)+ϕb(1)+ϕc(1)+ϕd(1)) (A22)

and other combination of the order parameters are ignored. In Equation (A22), the

relative angles between
→
k js are described by h1 and h2 defined in the main text.

Let us try to minimize the free energy term by term starting with A2. The A block is as-
sumed to be less compressible. Then, Γ12 ∼ Γ11 − Γ22 < 0, which requires
ϕ(1)− ϕ(2c) = 0. The ψ1 and ψ2c is then totally in phase with each other. The quadratic
form A2 is now written as

βA2 = Γ11ζ2
1 + 2Γ12ζ1ζ2c + Γ22ζ2

2c + Γ22(2k∗)ζ2
2i (A23)

Later, this relation between phase angles affects the sums of phase angles for the cubic
and quartic forms of the free energy. The higher-order free energy terms are structure
dependent. Therefore, we probe three classical structures including LAM, HEX, and BCC
mesophases.

LAM:
Lamellae possess only one characteristic wave vector

→
K1. Since it is only possible to

form ∑
→
k i = 0 with

→
k 1,

→
k 1, and −2

→
k 1, the cubic form A3 of the Landau free energy is

solely given by ψ1ψ1ψ2i as

βA3 =
1

3!
(√

1
)3 ∑
→
k i∈{±

→
Kn}

(
3Γ112(4)

)
ζ2

1ζ2ie
i(ϕa(1)+ϕa(1)−ϕ(2i)) =

2
3!
(
3Γ112(4)

)
ζ2

1ζ2i (A24)

It is shown that Γ112 at h = 4 is negative, which requires that ϕ(1) + ϕ(1)− ϕ(2i) = 0.
The coefficient in Equation (A24) is cLAM

4 in Equation (16) of the main text.
The quartic form A4 of the Landau free energy for LAM is given by

βA4 =
1

4!
(√

1
)4 ∑
→
k i∈{±

→
Kn}

Γ1111(0, 0)ζ4
1ei(ϕ(1)−ϕ(1)+ϕ(1)−ϕ(1)) =

3!
4!

Γ1111(0, 0)ζ4
1 = dLAM

n ζ4
1 (A25)

where only (h1, h2) = (0,0) is possible for our choice of wave vectors.
HEX:
The cubic form A3 of the Landau free energy for HEX consists of

βA3 = 1
3!(
√

3)
3 ∑
→
k i∈{±

→
Kn}

Γ111(1)ζ3
1ei(ϕ1(1)+ϕ2(1)+ϕ3(1)) + 1

3!(
√

3)
3 ∑
→
k i∈{±

→
Kn}

(
3Γ112(1)

)
ζ2

1ζ2cei(ϕ1(1)+ϕ2(1)+ϕ3(2c))

+ 1
3!(
√

3)
3 ∑
→
k i∈{±

→
Kn}

(
3Γ112(4)

)
ζ2

1ζ2ie
i(ϕa(1)+ϕa(1)−ϕ(2i)) (A26)

For the first two parts, the situation is a bit complicated. It should be noticed that
Γ112(1)’s and Γ112(4)’s are all negative. However, Γ111(1) changes its sign, which leads to
two different cases. In case that Γ12 < 0 and Γ111(1) < 0, ϕ1(1) + ϕ2(1) + ϕ3(1) = 0 and
ϕ1(1) + ϕ2(1) + ϕ3(2c) = −ϕ3(1) + ϕ3(2c) = 0 in minimizing the free energy. Consider
the opposite case that Γ12 < 0 and Γ111(1) > 0. If we choose ϕ1(1) + ϕ2(1) + ϕ3(1) = π
for Γ111(1) first, then ϕ1(1) + ϕ2(1) + ϕ3(2c) = −ϕ3(1) + π + ϕ3(2c) = π for Γ112(1). If
we choose ϕ1(1) + ϕ2(1) + ϕ3(2c) = 0 for Γ112(1) first, then ϕ1(1) + ϕ2(1) + ϕ3(1) =
−ϕ3(2c) + ϕ3(1) = 0 reversely for Γ111(1). In all these cases, it is seen that ϕ1(1) + ϕ2(1) +
ϕ3(2c) = ϕ1(1) + ϕ2(1) + ϕ3(1). Owing to the negativity of Γ112(4), it is gotten that
ϕa(1) + ϕa(1)− ϕ(2i) = 0. Summarizing all, A3 should be as follows:
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βA3 = 1
3!(
√

3)
3 ∑
{
→
K a ,
→
Kb ,
→
K c}

ei(ϕa(1)+ϕb(1)+ϕc(1)) ·
(
Γ111(1)ζ3

1 + 3Γ112(1)ζ2
1ζ2c

)
+ 6

3!(
√

3)
3

(
3Γ112(4)

)
ζ2

1ζ2i

= − 12
3!(
√

3)
3

∣∣Γ111(1)ζ3
1 + 3Γ112(1)ζ2

1ζ2c
∣∣+ 6

3!(
√

3)
3

(
3Γ112(4)

)
ζ2

1ζ2i

(A27)

where the last expression is the outcome of minimizing A3. The coefficients in Equation (A27)
are aHEX

n , bHEX
1 , and cHEX

4 in Equation (16) of the main text. It should be emphasized that
there is a chance to have Γ111(1)ζ1 + 3Γ112(1)ζ2c = 0, if Γ111(1) > 0.

The quartic form A4 is considered to contain only the contribution by ψ1 as

βA4 = 1
4! ∑
→
q i∈{±Qn}

Γ1111

(→
q 1,
→
q 2,
→
q 3,
→
q 4

)
ψ1

(→
q 1

)
ψ1

(→
q 2

)
ψ1

(→
q 3

)
ψ1

(→
q 4

)
= 1

4!(
√

n)
4

{
∑

(0,0)
Γ1111(0, 0) ζ4

1ei(ϕa(1)−ϕa(1)+ϕa(1)−ϕa(1)) + 1

(
√

n)
4 ∑
(0,1)

Γ1111(0, 1)ζ4
1 ei(ϕb(1)−ϕb(1)+ϕc(1)−ϕc(1))

} (A28)

It can be seen that ϕa(1)− ϕa(1) + ϕa(1)− ϕa(1) = 0 for (h1, h2) = (0,0) contribution
and also ϕb(1) − ϕb(1) + ϕc(1) − ϕc(1) = 0 for (h1, h2) = (0,1) contribution. Therefore,
A4 becomes

βA4 =
18

4!
(√

3
)4

[
Γ1111(0, 0) + 4Γ1111(0, 1)

]
ζ4

1 = dHEX
n ζ4

1 (A29)

by counting all such cases for HEX mesophase.
BCC:
BCC mesophase requires the correct combinations from the six base vectors. The cubic

form A3 is given as

βA3 = 1
3!(
√

6)
3 ∑
→
k i∈{±

→
Kn}

Γ111(1)ζ3
1

{
ei(ϕ1(1)−ϕ3(1)−ϕ6(1)) + ei(ϕ1(1)−ϕ4(1)−ϕ5(1)) + ei(ϕ2(1)−ϕ4(1)+ϕ6(1)) + ei(ϕ2(1)−ϕ3(1)+ϕ5(1))

}
+ 1

3!(
√

6)
3 ∑
→
k i∈{±

→
Kn}

3Γ112(1)ζ3
1ζ2c

{
ei(ϕ1(1)−ϕ3(1)−ϕ6(2c)) + ei(ϕ1(1)−ϕ4(1)−ϕ5(2c)) + ei(ϕ2(1)−ϕ4(1)+ϕ6(2c)) + ei(ϕ2(1)−ϕ3(1)+ϕ5(2c))

}
+ 1

3!(
√

6)
3 ∑
→
k i∈{±

→
Kn}

3Γ112(4)ζ3
1ζ2iei(ϕa(1)+ϕa(1)−ϕ(2i))

(A30)

Regarding the first two parts, we need to do the same argument as that for HEX
mesophase. In any cases, it is obtained that ϕa(1)+ ϕb(1)+ ϕc(2c) = ϕa(1)+ ϕb(1)+ ϕc(1).
The cubic form A3 can then be written as

βA3 = 1
3!(
√

6)
3 ∑
{
→
K a ,
→
Kb ,
→
K c}

{
ei(ϕ1(1)−ϕ3(1)−ϕ6(1)) + ei(ϕ1(1)−ϕ4(1)−ϕ5(1)) + ei(ϕ2(1)−ϕ4(1)+ϕ6(1)) + ei(ϕ2(1)−ϕ3(1)+ϕ5(1))

}
[Γ111(1)ζ3

1

+3Γ112(1)ζ2
1ζ2c] +

1
3!(
√

6)
3 ∑
{
→
K a ,
→
Kb ,
→
K c}

3Γ112(4)ζ2
1ζ2iei(ϕa(1)+ϕa(1)−ϕ(2i)) (A31)

The sums of phase angles in the first bracket should go to either 0 or π simultaneously
in order to minimize Equation (A31). The phase angles associated with Γ112(4) sum up to 0
due to Γ112(4) < 0. Summarizing all, we have the same type of formula for BCC as that for
HEX as

βA3 = − 48

3!
(√

6
)3

∣∣∣Γ111(1)ζ3
1 + 3Γ112(1)ζ2

1ζ2c

∣∣∣+ 12

3!
(√

6
)3 · 3Γ112(4)ζ2

1ζ2i (A32)

where the coefficients in Equation (A32) are aBCC
n , bBCC

1 , and cBCC
4 in Equation (16) of the

main text.
The quartic form A4 for BCC mesophase is given by
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βA4 = 1
4!(
√

6)
4

[
∑

(0,0)
Γ1111(0, 0)ζ4

1ei(ϕa(1)−ϕa(1)+ϕa(1)−ϕa(1)) + ∑
(0,1)

Γ1111(0, 1)ζ4
1ei(ϕb(1)−ϕb(1)+ϕc(1)−ϕc(1))

+ ∑
(0,2)

Γ1111(0, 2)ζ4
1ei(ϕd(1)−ϕd(1)+ϕc(1)−ϕc(1)) + ∑

(1,2)
Γ1111(1, 2)ζ4

1

{
ei(ϕ1(1)+ϕ2(1)−ϕ3(1)−ϕ4(1)) + ei(ϕ1(1)−ϕ2(1)−ϕ5(1)−ϕ6(1))

} (A33)

The sums of phase angles become zero for (h1, h2) = (0,0), (0,1), and (0,2). For (h1, h2)
= (1,2) contributions, we provide a table to show all the results for those sums.

Table A1. Sum of phase angles associated with Γ1111(1, 2).

Case ϕ1(1) + ϕ2(1) −ϕ3(1) −ϕ4(1) a ϕ1(1) −ϕ2(1) −ϕ5(1) −ϕ6(1) b

ϕa(1) + ϕb(1) + ϕc(1) = 0 ϕ1(1) + ϕ2(1)− ϕ3(1)− ϕ4(1)
= ϕ1(1)− ϕ5(1)− ϕ4(1) = 0

ϕ1(1)− ϕ2(1)− ϕ5(1)− ϕ6(1)
= ϕ1(1)− ϕ5(1)− ϕ4(1) = 0

ϕa(1) + ϕb(1) + ϕc(1) = π
ϕ1(1) + ϕ2(1)− ϕ3(1)− ϕ4(1)

= ϕ1(1) + π − ϕ5(1)− ϕ4(1) = 2π
ϕ1(1)− ϕ2(1)− ϕ5(1)− ϕ6(1)

= ϕ1(1)− ϕ5(1)− ϕ4(1)− π = 0

a This sum is given from
→
K1 +

→
K2 −

→
K3 −

→
K4 = 0 out of the six base vectors of BCC. b This sum is given from

→
K1 −

→
K2 −

→
K5 −

→
K6 = 0

Using this table, A4 is given as

βA4 =
36

4!
(√

6
)4

{
Γ1111(0, 0) + 8Γ1111(0, 1) + 2Γ1111(0, 2) + 4Γ1111(1, 2)

}
ζ4

1 = dBCC
n ζ4

1 (A34)

where all such cases are corrected counted.
The Landau free energy is given by β∆A = βA2 + βA3 + βA4 with the three ampli-

tudes ζ1, ζ2c, and ζ2i. Differentiating ∆A with respect to ζ2c and ζ2i and then nullifying
those derivatives give Equation (23). Replacing such ζ2c and ζ2i into ∆A yields the final
mathematical expression of our alternative Landau free energy in Equation (24).

Appendix C. Free Energy Expansion through Fluctuation Correction in
One-Loop Order

Diblock copolymers belong to Brazovskii universality class. In the mean-field picture,
they possess their CP depending on disparity in self dispersion interactions. However, the
effect of concentration fluctuations is known to destroy the mean-field CP to yield weak
first order transition, as was revealed by Brazovskii [55]. A simplified fluctuation correction
analysis adopted by Fredrickson and Helfand for incompressible diblock copolymers [56]
is then applied to the compressible Landau energy, especially our alternative version in
Equation (24). The free energy expansion β∆A is first divided by η as

β∆A
η

=

(
Γ11
η
− Γ2

12

ηΓ22

)
ζ2

1 −
∣∣∣∣ an

η
− b1Γ12

ηΓ22

∣∣∣∣ζ3
1 +

dn

η
ζ4

1 (A35)

which is cast back to the integral expression as

β∆A
η
≈

4

∑
n=2

1
n!

∫
Γ′n

(→
k 1, . . . ,

→
k n−1

)
· ψ1

(→
k 1

)
. . . ψn−1

(→
k n−1

)
ψn

(
−

n−1

∑
l=1

→
k l

)
(A36)

where

Γ′2(k
∗) =

Γ11
η
− Γ2

12

ηΓ22
(A37)

and the remaining effective vertex coefficients, Γ′3 and Γ′4, are obtained in the corresponding
fashion. The order parameter ψ1 is rewritten with the more general order parameter
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ψ1 + ψ̃1, where ψ1 is the mean and ψ̃1 the fluctuation part. An average external potential
M, which is conjugate to ψ1 + ψ̃1, can be given from the functional differentiation of the
free-energy expansion with respect to either ψ1 or ψ̃1. After Brazovskii’s approximate
closure relation [55] is employed, the inspection of M yields the following self-consistent
equation for a function S−1, which is the correction to Γ′2 owing to the fluctuation effects as

S−1
(k) = Γ′2(k) + Γ′4(k

∗)ψ
2
+

1
2

Γ′4(k
∗) ·

∫
d
→
k 1S(

→
k 1) (A38)

Because of the profound minimum of Γ′2 at k∗, it is expanded around k∗ up to the
quadratic order as Γ′2(k) = Γ′2(k∗) + c(k− k∗)2, where the symbol c indicates c = 1/2 ·
∂2 Γ′2/∂k2

)
k∗

. This expression for Γ′2 is put into Equation (A38) to yield S−1
(k) = S−1

(k∗) +

c(k− k∗)2, which helps us to evaluate an ultraviolet divergent integral
∫

d
→
k 1S(

→
k 1) as

∫
d
→
k 1S(

→
k 1) = (3x∗/Ncπ)/

√
S−1

(k∗) · c̃ (A39)

The new symbol c̃ is given by c̃ = Ncx∗/3 · ∂2 Γ′2/∂x2
)

x∗
, where x = k2R2

G as before.

The corresponding x∗ is then evaluated at k∗. The S−1 at k∗ then becomes

S−1
(k∗) = Γ′2(k

∗) + Γ′4(k
∗)ζ2 +

Γ′4(k∗) · 3x∗/2π

Nc

√
S−1

(k∗) · c̃
(A40)

where ζ is the amplitude parameter of ψ1. The desired free energy with the inclusion of
fluctuation correction is now given from the integration of the approximate expression for
M as

β∆A
η

=
1

2Γ′4

(
S−2

(k∗)− S−2
D (k∗)

)
+

3x∗/2π

Nc
√

c̃

(√
S−1

(k∗)−
√

S−1
D (k∗)

)
−
∣∣∣∣ an

η
− b1Γ12

ηΓ22

∣∣∣∣ζ3 +

(
dn

η
− Γ′4

2

)
ζ4 (A41)

where S−1
D represents S−1 in the disordered state, and can thus be obtained if ζ in Equation (A40)

is taken to be zero.
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