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Abstract: Organic chemical reactions have been used to functionalize preformed conducting polymers
(CPs). The extensive work performed on polyaniline (PANI), polypyrrole (PPy), and polythiophene
(PT) is described together with the more limited work on other CPs. Two approaches have been taken
for the functionalization: (i) direct reactions on the CP chains and (ii) reaction with substituted CPs
bearing reactive groups (e.g., ester). Electrophilic aromatic substitution, SEAr, is directly made on
the non-conductive (reduced form) of the CPs. In PANI and PPy, the N-H can be electrophilically
substituted. The nitrogen nucleophile could produce nucleophilic substitutions (SN) on alkyl or acyl
groups. Another direct reaction is the nucleophilic conjugate addition on the oxidized form of the
polymer (PANI, PPy or PT). In the case of PT, the main functionalization method was indirect, and the
linking of functional groups via attachment to reactive groups was already present in the monomer.
The same is the case for most other conducting polymers, such as poly(fluorene). The target properties
which are improved by the functionalization of the different polymers is also discussed.

Keywords: conducting polymers; covalent modifications; solubility; electrophilic reaction; nucleophilic
substitution

1. Introduction

Conducting polymers (CP) [1] are modern materials that hold the promise of simulta-
neously possessing properties typical of metals (e.g., high electrical conductivity [2]) and
of non-conductive polymers: thermoplasticity [3], chemical stability in air [4], and good
mechanical properties [5]. It was quickly discovered that typical polymer and metal prop-
erties are mutually exclusive since the bulk conductivity of linear polymers requires orbital
overlapping between chains (strong interaction), leading to rigid and fragile materials with
high glass transition temperatures (Tg). Accordingly, there are no known applications
of CPs as massive electric conductors. However, they have been applied as flexible elec-
trical conductors in microelectronics [6] and are widely applied as “conductive inks” [7]
for micro- and nanotechnological applications. Moreover, it has been shown that other
properties—electrochromism, redox electroactivity, redox-driven ion exchange, remote
heating/blocking of electromagnetic radiation absorption, semiconductivity, interaction
with small molecules, charge storage, controlled light emission, etc., are technologically as
valuable as conductivity [1]. Indeed, conducting polymers can be used in different applica-
tions: electromagnetic shielding [8], electrochromic [9,10], electromagnetic actuators [11],
electrode materials of batteries [12,13] or supercapacitors [6], conducting hydrogels [14],
electrochemically driven ion exchangers [15], photothermal antitumoral/antibacterial ther-
apy [16–18], electrochemical sensors [19], etc. Moreover, being organic materials, they are
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more likely to be biocompatible and biodegradable than metals or semiconductors since no
toxic elements will be produced during degradation.

Being organic macromolecules, they also hold the promise of being easily interfaced
with by biological entities [20,21] since the CPs can, via well-known organic reactions,
covalently link biomolecules to the CP backbone. As we will see, the attached groups could
add other valuable properties, such as solubility in common solvents (including aqueous
solutions), fluorescence emission, additional charge storage, additional electrochromic
centers, complexing groups, improved wettability and stability, self-doping, etc. However,
the electrical conductivity of functionalized polymers is usually lower than that of the
base CP due to several factors: (i) Since charge carriers in p-doped CPs are cation radi-
cals, the attachment of negatively charged groups made it a self-doped polymer (i.e., has
fixed counterions linked to the chain which cannot be lost) but pin the charge carriers
to fixed locations, reducing their mobility [22]. Any groups which donate or withdraw
electrons from an aromatic ring could localize the charge [23]. (ii) Since CPs are made of aro-
matic rings linked in chains with extended conjugation, the presence of bulky substituents
induces steric effects, which diminish the ring-to-ring planarity decreasing extended conju-
gation and intrachain electronic conductivity [24]. Bulk electronic conductivity not only
requires high intrachain conductivity (related to extended conjugation and high charger
carrier mobility) but also interchain electron transfer related to π–π overlapping. The
presence of any group increases the chain-to-chain distance due to steric effects and de-
creases interchain conductivity. Therefore, polymer functionalization is likely to decrease
bulk polymer conductivity. On the other hand, additional properties (fluorescence, com-
plexation, hydrophobicity, self-doping) could be present in the functionalized polymer.
Moreover, significant improvements of intrinsic properties (electroactivity, redox coupled
ion exchange, electrochromism) are usually obtained. Therefore, the trade-off of some
conductivity loss is accepted. In most technological applications, electrical conductivity
is not the key parameter, while other properties and/or improved polymer processability
are more relevant. Extended conjugation along the chain also makes the CP rigid, which
could be useful in mechanical applications but strongly decreases the conformational en-
tropy in solution, making solubility thermodynamically unfavorable. A simple method of
processing CP films involves preparing solutions in specific solvents and then producing
film via solvent evaporation (spin coating, drop casting, etc.) [25]. However, unmodified
CPs are either insoluble (PT, PPy) or soluble in some special solvents (PANI in uncharged
forms (e.g., PANI(EB)), making them difficult to process. Additionally, having stiff chains
(due to the extended conjugation) makes them non-plastic, which does not allow the ther-
momechanical (e.g., extrusion) formation of films. Solutions of CPs can also be used to
produce CP nanoparticles by mixing the solution with an antisolvent which is miscible
with the CP’s solvent but does not dissolve it [26]. Dissolution of rigid polymers, like
CPs, is difficult because there is almost no entropic contribution. Unlike small molecules,
the number of particles of a high molecular weight polymer in solution is low and does
not contribute to entropy. Unlike flexible polymers (e.g., poly(styrene))—for which free
rotation in the C-C bond creates a number of different conformations, contributing to
entropy—rigid polymers have few conformations. Therefore, the solubility is determined
by enthalpy related to polymer–polymer (endothermic), polymer–solvent (exothermic),
and solvent–solvent (endothermic) interactions. When solvent–solvent enthalpy is large
(e.g., in water), few polymers are soluble.

A substituent attached to the polymer chain could increase solubility due to several
factors: (i) the steric effect of the substituent decrease chain-to-chain interactions, making
it energetically favorable to separate the chains; (ii) the attached functional group (e.g.,
–R–OH) could have specific interactions with the solvent (e.g., hydrogen bonding) which
increase solubility. The attachment of fixed charged groups (e.g. –SO3

−) decreases the
interaction between chains due to coulombic repulsion, increasing dissolution. Moreover,
the ionic charge has strong ion–dipole interactions with the polar solvent (water), increasing
solubility. In aqueous electrolytes, the presence of fixed charges requires compensation
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by mobile counterions. Soluble ions (e.g., Cl−) do not form ion pairs with the charged
chains but create an ionic region of solvated ions (double-layer region, rich in counterions
but containing coions) whose thickness is inversely related to the ionic force of the solu-
tion [27]. The process increases the solubility since the whole double layer is the hydration
sphere of the ions. If the charge of the attached group is negative, the group will interact
coulombically with the positive charge carriers (in p-doped CPs). This phenomenon, called
self-doping, implies that no mobile counterions are present and that the solubility decreases.
Elimination of the positive charge carriers (by a reduction in all CPs or deprotonation in
the case of PANI and PPy) implies the formation of the ionic double layer and increases
solubility. This is the reason that sulfonated polyaniline (SPAN), in its EB state is soluble in
ammonia solution. Solvent evaporation and decomposition of the ammonium salt (with
loss of NH3) produces thin films which are insoluble in acid media [12]. In some CPs (e.g.,
PANI) the analogy is closer since both CE and PANI are insoluble in water but are strongly
wettted by the solvent due to hydrogen bonding. In the case of cellulose, such interaction
affects strongly the properties of the fibers (plasticizing effect) [28]. In the case of PANI,
the electrical conductivity of films is strongly affected by the humidity level. The analogy
extends to the use of salt/solvent (e.g., Li+ salt/NMP) to avoid aggregation of cellulose [4]
or PANI chains [29,30]. Moreover, the solubility of cellulose in common solvents can be im-
proved through the use of acids or bases [4]. The same is true for PANI, for which solubility
has been induced by adding acid [31], and bases [32]. It is known that PANI forms strong
hydrogen bonds between neighboring chains [33] and with solvents [34]. PPy should
also be able to form hydrogen bonds, similarly to pyrrole [35]. Since thiophene monomer
units do not form hydrogen bonds, PT is insoluble. It is well known that substituted
celluloses (e.g., methylcellulose) are soluble in water, while the added functional group
(–OCH3) interacts more weakly with water than the group replaced (–OH) [36]. The role of
the added group is mainly to decrease the hydrogen bonding interchain interactions [37].
Since the conductive forms of the CPs are salts, the counterion can be bulky (impeding the
chain-to-chain interactions) and/or strongly interactive with the solvent, inducing the so-
called counter-ion-induced processability (solubility) [38]. However, reactions with highly
reactive reagents (e.g., SO3/H2SO4) could not only produce the desired functionalization
but also other reactions and even chain scission.

A drawback of polymer synthesis shared by functionalization is that macromolecular
byproducts cannot be separated, and will be present in the final materials. CPs are usually
applied as solid materials (film, pellets, particles, fibers, etc.). Therefore, functionalization
could be used to change not only bulk but also surface properties. Since CPs are mostly
insoluble (e.g., PPy and PT) or soluble in a few solvents (e.g., PANI), most reactions
are carried out heterogeneously. Therefore, the surface can be functionalized without
altering the bulk. In that way, the unmodified polymer with good bulk property (e.g.,
conductivity) is maintained but the surface property (e.g., wettability) is changed. Given its
large surface/bulk ratio, nano-objects (e.g., nanofibers) are particularly amenable to such
heterogenous modification.

However, one of the first reports of CP functionalization, the electrophilic sulfonation
of PANI, was carried out with the polymer dissolved in concentrated sulfuric acid, and
a bulk reaction occurred. Moreover, the unmodified polymer could be insoluble in the
solvent but still be soluble as a functionalized polymer. In this case, the reaction could
begin as heterogeneous (surface) but follows as homogenous (bulk). Judicious choice of
solvent allows choosing how the reaction occurs and which kind of product is obtained. On
the other hand, if bulk functionalization is desired and the product is insoluble, a solvent
that wets/swells the polymer is required. Since the diffusion coefficient (Do) inside can be
lower (Do < 10−12 cm s−1) [39] than in solutions (typical Do of ca. 10−5 cm2 s−1 [40], small
polymer particle size (the time for mass transport depends on the square of the diffusion
path) and high soluble reactant concentration could be used to minimize the effect of slow
mass transport inside the polymer.
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The reactions occurring with the main conducting polymer chain are related to the
two kinds of monomer units: aromatic rings (including heterocycles) and quinone-like
rings. The aromatic rings react via aromatic substitution (with H+ as leaving group) and the
quinone-like rings by nucleophilic addition. Both types of reactions maintain the extended
conjugation related to conductivity. Electrophilic (or radical) addition to ene bonds (e.g., in
poly(phenylenevinylene) molecules) will create sp3 carbons [41], destroying the extended
conjugation. Indeed, this is the cause of air degradation of polyacetylene, for which the
addition of water or oxygen causes loss of conductivity.

The surface of thin films of conducting polymer, often prepared by electropolymer-
ization, can be surface modified changing the surface properties. Additionally, the sur-
face of nano-objects made of CPs (nanospheres, nanofibers, nanoplates, etc.) could be
functionalized by the same reactions. In both cases, the methodology resembles the bio-
conjugate chemistry of biomolecules [42], in which the surface is modified without affect-
ing the bulk. The added functional groups could help stabilize the colloidal dispersion
of the nano-objects.

It should be mentioned that an alternative method of introducing functional groups
is the polymerization of monomers containing the desired functional group. First, the
synthesis of the functionalized monomer is usually difficult due to the inductive and
steric effects of the attached functional group on polymerization. Indeed, it has been
reported that anilines bearing strong electron-withdrawing groups (ortho and meta to the
amino group) could not be polymerized [43]. Copolymerization could help produce high-
molecular-weight polymers including some amount of functionalized monomer units [44].
However, if the functionalized monomer does not homopolymerize, its reactivity will be
lower than the unmodified monomer. Different comonomer reactivity induces other effects,
such as low comonomer (of low reactivity) incorporation, formation of block copolymers,
and compositional shift [45]. Obviously, homo- and copolymerization of functionalized
monomers produce bulk-modified materials and cannot be used to modify the surface of
films or nano-objects. The polymerization of previously functionalized monomers [46]
requires the functionalization of the monomer while leaving free the positions where the
chain formation occurs (at least one N–H and position 4 -para- to the amino group in
anilines) and both positions to the heteroatom (N in pyrrole and S in thiophene) in pyrroles
and thiophene. Therefore, substituents in positions 2, 3, 5, 6 in the ring and 1 in the N
could be attached in anilines. In the case of pyrrole, both the N and β positions in the
ring can be modified. For thiophene, both β positions (3 and 4) can be functionalized.
It should be noted that the α (2 or 5) positions on pyrrole and thiophene and the para
(4) position in aniline are the most reactive positions due to inductive and steric factors.
Therefore, substitution in the monomer through typical reactions (e.g., SEAr) will attach
the substituents to those positions, blocking the oxidative polymerization. Therefore, the
synthesis of substituted monomers is not simple. Since the mechanism of incorporation of
functional groups is quite different from that of postfunctionalization, this kind of work
will not be discussed in this review.

2. Covalent Functionalization of Conductive Polymers

The conducting polymers which have been post functionalized are shown in Scheme 1.
In the case of PT, modified polymers made via polymerization of the substituted

monomer poly(3-hexylthiophene) (P3HT) have been even more studied than PT. Another
substituted CP (poly(3,4-ethylenedioxithiophene), PEDOT) has also been studied and
modified extensively. While the modern conducting polymer field began with the discovery
of doping in polyacetylene, the low stability of this polymer caused interest to fade out.
While all published work is reviewed, the goal of the review is not to simply recount the
work but to try to understand the rationale behind the reactions used. Therefore, the results
will be divided by type of polymer, with a brief introduction on the organic chemistry nature
of the polymer chains. Then, the work in which one type of polymer is modified with the
same type of reactions will be discussed. Finally, published research on the functionalization
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of other conducting polymers for which modifications have been less widely applied will
be described for the sake of completeness. In each section, when available, the effect of
modification on technologically relevant properties is also briefly discussed.
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2.1. Polyaniline Functionalization

Polyaniline (PANI) is the most widely studied CP. It consists of chains of benzenoid
rings linked by amino groups (Scheme 1). The most stable form is emeraldine in its salt
form (PANI(ES), Scheme 2), which can be present in protonated form.
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Scheme 2. Different forms of PANI, which are interconverted by oxidation/reduction or protona-
tion/deprotonation.

There are two other forms of PANI: the fully reduced form (leucomeraldine, LEB) and
the fully oxidized form (pernigraniline, PN). Leucoemeraldine is made of diphenylamine
(aromatic amine) units, while pernigraniline consists of quinonimine (non-aromatic but
cyclic α,β-unsaturated) units. From the chemical point of view, emeraldine is made of
50% leucoemeraldine and 50% pernigraniline units. Diphenylamine units show typical
aromatic reactions (e.g., electrophilic aromatic substitution) while only ortho positions (to
any nitrogen) are available. (Scheme 3). Any electrophile could attack the aromatic ring,
which is activated by the presence of two N: linked to the ring. The N: share its non-bonded
electron pair, making the ring more reactive than that in benzene. In some cases (e.g.,
Cl2), Lewis acids could act as catalysts by creating the electrophile. On the other hand,
the electrophile could also attack the nitrogen, replacing the hydrogen. Therefore, some
reactions (e.g., Friedel–Crafts acylation or alkylation) could give mixed products. The more
reactive form of PANI is leucoemeraldine, in which all rings are aromatic. Emeraldine
has 50% aromatic rings, showing an intermediate reactivity. Pernigraniline should be
unreactive since it has 0% aromatic rings. Some of the reactants (e.g., HNO3) are also
oxidants and could convert the ES form in PN, inhibiting the reaction. In fact, a sulfonitric
mixture of HNO3 (65%)/H2SO4 (98%) in 1:1 relative amounts is usually used to clean up
CP films from glassware via oxidation and chain scission. While protective groups (e.g.,
acetyl) can be used to protect oxidizable amino groups in the nitration of anilines [47],
successful nitration of PANI by SEAr has not yet been achieved. Since –NO2 groups could
be converted into amino, amide, azo, hydrazo, and imine groups, ring-nitrated PANI
would be a quite useful precursor for a variety of functionalized PANIs. The reaction of
electrophiles in the nitrogen atom is usually reversible, and functionalized polymer chains
are recovered only under carefully controlled conditions.
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Moreover, diphenylamine has a N–H group that could be replaced (e.g., used as
nucleophiles in aliphatic nucleophilic substitution). Since the non-bonded electron pair
in the N is shared with the rings by resonance delocalization, the N–H in diphenylamine
units is a poor nucleophile (and base). However, using strong bases (e.g., hydride ion), it
is possible to convert the N–H to the amide (>N−) ion, which is an excellent nucleophile.
Additionally, using activated reactants (e.g., anhydrides), it is possible to substitute the H
in the N–H. Both the nitrogen and the ring are susceptible to electrophilic attack. Given
the fact that diphenylamine and quinonimine units can be converted between them via
oxidation/reduction (both chemical and electrochemical), the reactivity to one type of
reaction can be modulated by the oxidation state. Table 1 summarizes the typical reaction
in PANI functionalization.

Table 1. Summary of reactions used in PANI postfunctionalization.

Polymer (Form) % Funct Added Group Reaction Polymer Form Reactants Target Property Reaction Time
(Temperature) Ref.

PANI (EB) 50 –SO3
− SEAr Bulk SO3

−/H2SO4 Water solubility 2 h (r.t) [48]

PANI (EB) 50 –SO3
− SEAr Bulk SO3

−/H2SO4 Water solubility 2 h (r.t.) [49]

PANI PN/s 50 –SO3
− SEAr Bulk HSO3Cl

H2O Water solubility 5 h (80 ◦C)
4 h (100 ◦C) [50]

PANI(EB) 25 –SO3 SEAr Bulk Emeraldine
hydrogen sulfate 130 ◦C [51]

Aniline
(Echem polym.) 24–89 –SO3H SEAr Film FSO3H/can

Solubility in
wide range of

solvents
r.t. [52]

PANI LE 75 –SO3
− SEAr Bulk SO3

−/H2SO4 solubility 1 h (5 ◦C) [53]

PANI EB 50 –SO3
− SEAr Film SO3

−/H2SO4
Self-doping,

thermostability 3 h (25 ◦C) [54]

PANI–LE
(Reduced state) – NO2C6H4– CANQ Film NO2C6H4–

N2
+BF4

−

Spatial
functionalization

control
Var. [55]
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Table 1. Cont.

Polymer (Form) % Funct Added Group Reaction Polymer Form Reactants Target Property Reaction Time
(Temperature) Ref.

PNMANI 50–100 –SO3
− SEAr Bulk SO3

−/H2SO4 Ion exchange 1 h (25 ◦C) [56]

PANI EB 50 –Br SEAr (Halo-
genation) Bulk Br2/HBr Conductivity

increase [57]

PANI LE/EB Var. Amide NuSAc Echem film Anhydrides Film
modification Var. [58]

PANI EB 30 Aromatic amide
(with SO3H) SNAc Bulk o-sulfobenzoic

anhydride Water solubility 24 h (25 ◦C) [59]

PANI EB 47 –C3H6–
C6H4–SO3

− SN2 Bulk
(1) H-Na

(2) p-(3-BrC3H6)–
C6H4–SO3

−Na+

Water solubility
Self-doping

(1) 2 h (45 ◦C)
(2) 24 h (r.t.) [60]

PANI EB – pyrrolidinium CANQ Bulk pyrrolidine Synthesis 96 h (25 ◦C) [61]

PANI EB 20.7 C12H25SH CANQ Bulk Dodecanotiol Synthesis 6 min (25 ◦C) [62]

PANI EB 15–26 sulfonic acid
moiety CANQ Film

3-mercapto-1-
propanesulfonic
acid sodium salt
Acetic acid (cat)

Conductivity
Thermally
Stability

Self-doping

14 h (r.t.) [62]

PANI EB 38–121 butylthio group CANQ Film butane-1-thiol
Solubility in

wide range of
solvents

14 h (r.t.) [63]

PANI EB 50 SO3
2−/SO3H− CANQ Bulk SO3H− Self-doping 2 h (80 ◦C) [64]

PANI PN Sulfinic Anions CANQ Bulk C6H5SO2
− Modification 2 h (70 ◦C) [65]

PANI ES Var. Chloride Ions CANQ Bulk HCl Synthesis <1 h (5 ◦C) [66]

PANI (LE) Low
SNAr

activated aromatic
halides

SNAr Bulk

4-NO2–C6H4–Cl
2-NO2–C6H4–Cl

2,4-diNO2–
C6H3−Cl

Modification 2 h (70 ◦C) [67]

PANI (LE) Low –CO–CH3 SNAc Bulk Ethanoic
anhydride (neat) Solubility 2 h (25 ◦C) [67]

PANI Echem 25–100 SO3
2−/SO3H− CANQ Film –SO3H Controlled

modification Var. [68]

PANI Echem – –S–R–Ferrocene CANQ Film HOCH2CH2SH Linking of redox
groups 60–72 h (r.t.) [69]

PANI ES 100 –SO3H SEAr Bulk ClSO3H Interpolymer
complex 5 h (80 ◦C) [70]

P(2BrANI) 100 –PO3H2 SNAr film HPo(OEt)2
Pd0 (cat) Self-doping 2 days (120 ◦C) [71]

PANI brushes
linked by S-Me 50 –SO3H CANQ Polymer

brushes SO3
2− Sulfite

determination – [72]

P(ANI boronic
acid) 100 OH−

X–(halide)
ipso-

reaction Echem film –OH
–X Synthesis 10 min (25 ◦C) [73]

PPDA <100 –S–SO3
− CANQ Bulk S2O3

2− Solubility 6 h (0–5 ◦C) [74]

PPDA 25–50 N2H4 CANQ Bulk –NH–NH2 Reduction 12 h (0–5 ◦C) [75]

PANI (ES) 93–94 –SO3
- SEAr Bulk SO3/H2SO4

Crystalline
structure 6 h (25 ◦C) [76]

PANI (ES) 50 –SO3
− SEAr Bulk SO3/H2SO4 Synthesis 0.5–2 h (25 ◦C) [77]

PANI (ES) 0 none SEAr Bulk H2SO4 Synthesis 24 h
(100–150 ◦C) [77]

PANI (LE) – >N–(CH2)3–SO3
− SN2 Echem film propanesultone Self-doping

sensor at pH 7 12 h (r.t.) [78]

Poly(3-
ethynylaniline)-

co-ANI)
100 –C=C–SR Thiol-yne

click Bulk PEG-dithiol Linking
w/graphene 5 min (r.t.) [79]

PANI(ES) – –N–NO SEN Film NO+ Lithography 15 min (r.t.) [80]

PANI(ES) – –N–NO SEN Film NO+ Photolithography 15 min (r.t.) [81]

PANI(EB) 25 –N–tBOC SN Bulk t-BOC Photolithography 3 h (80 ◦C) [82]

The aforementioned reactions are summarized in Scheme 4:
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2.1.1. Electrophilic Substitution (SEAr) on Diphenylamine Rings
Electrophilic Aromatic Substitution in the Ring

Sulfonation of Polyanilines

Epstein et al. investigated the sulfonation of PANI (ES form) dissolved in H2SO4 (c.c.,
ca. 98%) using SO3 provided by fuming sulfuric acid [83]. The product (SPAN) has ca.
50% rings with one –SO3H attached. SPAN is soluble in basic media (where the cation
radicals deprotonate and the polymer becomes a negatively charged polyelectrolyte). It
is insoluble in acid media, where the fixed sulfonate groups compensate (self-dope) the
radical cations. In that way, the conductivity does not decrease abruptly at neutral pH, as
occurs with PANI. The conductivity is lower than that of the parent PANI (0.1 S cm−1 vs.
3 S cm−1) due to electronic (charge pinning by the –SO3

− groups) and steric (hindrance of
the bulky sulfonate group with the C–H of the neighboring ring) effects. The self-doping
nature allows use of the material in metal (e.g., lithium) rocking chair batteries (in which
Li+ produced in the cathode compensates the charge of the sulfonate in the anode), unlike
PANI, for which salt is formed during discharge, requiring large solvent volumes [84]. The
molecular weight of SPAN was measured using light scattering [30], showing a reduction
to that of the parent PANI, implying that the electrophilic sulfonation causes some chain
scission. The redox-coupled ion exchange is different than PANI, with two steps of proton
expulsion upon oxidation (LE to ES and ES to PN) [12,65,85]. Epstein et al. explored
different routes to the sulfonation of ES, including heating with ammonium sulfate and
treating with ClSO3H, showing that the homogenous reaction with fuming sulfuric acid
gives the best results [51]. Chen and Hwang showed the subtleties of self-doping in
SPAN [50]. While SPAN is soluble in basic media but not in water, when SPAN (EB) is
dialyzed and then converted in its completely self-doped form using an ion exchange
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membrane, it becomes soluble in water. Sahin et al. prepared sulfonated polyaniline via
electrochemical polymerization of aniline in a solution of FSO3H/ACN [52]. The FSO3H
acid act both as electrolyte and sulfonating agent. Up to 89% sulfonation is achieved.
Interestingly, the modified polymer is not only soluble in basic aqueous solution but also in
NMP and DMSO, revealing that the solubilizing effect of the –SO3

− group is not exclusive
to water.

Sulfonated polyaniline is likely the most widely used functionalized CP, being ap-
plied in anticorrosion coating [86], electrodes for stimulation of biological cells [87], elec-
trochromism [88], interlayer in OLEDs [89], non-covalent functionalization of graphene [90]
and carbon nanotubes [91], polymer electrolyte membranes [92,93], cathodes for batter-
ies [94,95], enzymatic electrochemical sensors [96], polymer blends [97], acid catalyst [98],
photovoltaic cells [99], composites with hydrogels [100], nanofiltration membranes [101],
and stabilizer of colloids [102].

Then, Epstein et al. sulfonated PANI in its leucoemeraldine state, obtaining a polymer
with a higher sulfonation degree (ca. 78% of the rings) [53,103]. The polymer (HSPANI) is
more soluble, and the conductivity is not affected by the pH (0–14). The conductivity is
higher than SPAN, suggesting that is the alternation of sulfonated and unsulfonated rings
that pin the charge in SPAN. The XPS study of HSPANI agrees with such a model [104].
Pyskhina et al performed exhaustive sulfonation with HSO3Cl, reaching up to 100% sul-
fonation [70]. Barbero et al. extended the sulfonation methods (from ES and LE forms) to a
N-substituted PANI: poly(N-methylaniline) (PNMANI) [56]. Products similar to SPAN and
HSPANI were obtained via reaction with fuming sulfuric acid achieving 50% sulfonation
(SPNMANI) and ca. 100% sulfonation (HSPNMANI). The redox-coupled ion exchange,
measured by PBD, showed proton expulsion in the two redox steps for the HSPNMANI
and proton expulsion/anion insertion for SPNMANI [56].

Two groups have recently revisited the sulfonation of PANI. Mendes et al. studied
different sulfonation routes of PANI [77] concentrated H2SO4 (100 and 150 ◦C for 24 h)
and fuming sulfuric acid (25 ◦C for 0.5–2 h). The authors concluded that PANI heated
with concentrated H2SO4 does not become sulfonated because sulfonation is reversible
and added groups are released. On the other hand, sulfonation is detected by FTIR when
fuming H2SO4 is used. Using DSC, the authors observe a broad endothermic band in PANI,
which they attribute to the hydrogen bonding interactions between neighboring chains. As
expected, the band decreases sharply in sulfonated polyaniline since hydrogen bonding is
hindered by the steric effect of –SO3

− substituents. Bhadra et al. sulfonated PANI (ES) for
6 h and obtained a PANI with 93–94% (according to elemental analysis and FTIR) sulfona-
tion (SPANI) [76]. They found via XRD that SPANI is more clearly crystalline (52.4%) than
PANI (37.3%) but with wider spacing between chains. A detailed Rietveld analysis of the
XRD data suggests that the sulfonic acid groups of two adjacent polymer chains are on the
same side and close to each other, likely due to the sulfonate (–SO3

−) acting as a counterion
of the radical cations (Ar–NH+–Ar). However, only 50% of sulfonates are required because
the polymer is in its emeraldine state (50% cation radicals of all N). Therefore, the excess
sulfonate could act as a counterion of protonated amine units (Ar–NH2

+–Ar) and/or form
intrachain H-bonding (six-member ring structure) between amine groups and sulfonic acid
groups of the same polymer chain as well as inter-chain H-bonding between sulfonic acid
groups of adjacent polymer chains and amines. The authors found a conductivity of PANI
of 0.073 S cm−1—low for PANI synthesized in solution (ca. 3 S cm−1 [69])—and 0.031/cm
for SPAN (lower than that HSPANI ca. 1 S cm−1 [69]). However, the ratio SPAN/PANI [R]
is ca. 43%, while that of HSPANI/PANI [69] is only 33%.

The main goal of PANI sulfonation was to produce a conducting polymer soluble in
aqueous solution. In fact, SPAN (ca. 50% of the rings sulfonated) shows good solubility in
basic aqueous solution but it is insoluble at pH > 5. In neutral–basic solution, PANI chains
are deprotonated and the CP is a polyelectrolyte, whereas ion–dipole interactions (of –SO3

−

with water) promote polymer solubility. When the PANI chains become protonated, the
sulfonate group compensates the positive charge and the polymer becomes charge neutral.
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Since the emeraldine base form of PANI is partially (50%) oxidized, 50% sulfonation is
required to balance the charge. Moreover, partially sulfonated PANI [51] is only weakly
soluble in basic media. The pH is higher than that of PANI(EB) protonation because the
negative charges in the sulfonate groups create a Donnan potential, making the internal pH
lower than the external pH. On the other hand, HSPANI (75–100% of the rings sulfonated)
is soluble even in acid media. There is always an excess (>50%) of sulfonate groups, which
allows solubilization of the polymer. The charge compensation process is called self-doping
because the polymer contains mobile polarons and fixed counterions. The Donnan potential
allows protonation of the quinonimine units and the creation of polarons, which render
the polymer conductive. While SPAN is only conductive in acid pH (>7) [48], HSPANI is
conductive up to pH 11 [53]. Another property affected is the ion exchange coupled with
the oxidation/reduction. The ion exchange in PANI in moderately acidic pH (<2) is as
shown in Scheme 2. The combination of charge compensation processes (anion insertion on
oxidation) with acid–base equilibrium implies that PANI(LEB) inserts two anions into each
of the four rings during oxidation to PANI(ES). PANI(ES) releases four protons and four
anions, from the tetramer unit, during oxidation to PANI(PNB). Therefore, PANI chains
exchange anions during oxidation/reduction.

The incorporation of one sulfonate group per ring changes both redox-coupled ion
exchanges (Scheme 5):
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SPAN (50% sulfonation) will only have a different ion exchange coupled in the first
oxidation step. In HSPANI, even the pernigraniline form is completely self-doped. In
nonaqueous media (e.g., LiClO4/ACN), HSPANI is a cation exchanger, not anion/proton
as in PANI. If a battery is built with HSPANI as anode and Li0 as a cathode, Li+ is produced
in the cahode and inserted into the anode during discharge. This is a so-called “rocking
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chair” battery. On the other hand, using PANI as an anode, anions are produced during
discharge in the anode and cations in the cathode. Therefore, large amounts of solvents are
needed to store the formed salt in a soluble form [12]. Since the sulfonic group is a strong
acid (pKa < 0), SPAN and HSPANI are polymeric acids. Such solid-state acids can be used
to build polyelectrolyte membranes [86] or as catalysts for organic chemistry reactions (e.g.,
transesterification to produce biodiesel) [92].

Bromination (–Br) of Polyaniline

Bromine (Br2) is highly reactive towards aromatics (SEAr), resulting in the polybromi-
nation of aniline in water [105]. Moreover, p,p′-substituted diphenylamines (such as PANI)
give dibromo(ortho)diphenylamine. Stejskal et al. brominated PANI (ES and EB forms) and
obtained modified polymers (up to 59% Br/N ratio). The conductivity decreased by ca. five
orders of magnitude between PANI and 59% brominated PANI. The ratio can be regulated
by the relative amount of Br2/PANI. SEAr of Br2 on PANI(ES) (or PANI(EB)) should give
only 50% bromination since quinonimine rings are not reactive in SEAr. However, since
HBr is produced during bromination, it is possible for Br- ions to add nucleophilically to
quinonimine units in PANI, explaining the slight excess (59%). While the brominated ring
in diphenylamine units would not be reactive enough for SNAr [106], the neighboring
quinonimine unit could act as an electron-withdrawing group. Moreover, catalysts (e.g.,
Cu complexes) could be used to promote SNAr on the PANI–Br moieties [107], making it
a possible precursor of a variety of functionalized PANIs. Indeed, pol(2-BrAni) has been
used to produce phosphonated polyaniline (Section 2.1.3). Bromination of the formed
polymer produces a material with higher electronic conductivity than those produced
by homopolymerization of 2-bromoaniline (or its copolymer with aniline). It seems that
postfunctionalized polymer chains retain the linear polymer chains of PANI, while poly-
merization of substituted anilines produced chains with other linking positions in the ring
(e.g., ortho) that break the extended conjugation.

Coupling with Diazonium Salts

The electrophilic attack of diazonium ion to aromatics is the most common method
of producing azo dyes [108]. The usual site of attack is the para position (due to steric
constraints in the ortho position), but if that position is blocked (as is the case in PANI), the
substituent could be linked to the ortho position (Scheme 6).
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Freund et al. [55] described the reaction of aryldiazonium salts on electrochemically
produced PANI. They obtained a nonconductive polymer and proposed a mechanism in
which the diazonium ion decomposes, forming the aromatic cation (and nitrogen). The
electrophilic cation attacks the nitrogen (see Section “Electrophilic Substitution in the N–H
Group”), forming a N-aryl-substituted PANI with triphenylamine units. The modified poly-
mer is electro-inactive, analogously to the polymer produced by oxidative polymerization
of 4-(phenylamino)benzenesulfonic acid [109]. The conditions used (acid media and room
temperature) favor degradation of the diazonium ion. On the other hand, using the typical
reaction conditions for the diazonium coupling—basic/neutral media and low temperature
(0–5 ◦C)—together with a N-substituted-polyaniline (poly(N-methylaniline) allows the
coupling of the diazonium ion with the polyaniline chain, forming azo bonds [110]. The
presence of azo (–N=N–) groups is confirmed with FTIR. Since p-aminobenzensulfonic
acid was used to make the diazonium ion, the polymer is soluble in basic media. On the
other hand, thin films of the modified polymer, deposited from solution, are insoluble and
electroactive in acid media, unlike the polymer made by DeArmitt et al. [109], suggesting
that the substitution occurs in the ring and not in the nitrogen. This is expected since
substitution in the nitrogen of PNMANI involves removal of the methyl group. However,
the procedure was extended under the same coupling conditions (buffered solution of pH
= 8, temperatures below 10 ◦C) by Acevedo et al., to the functionalization of PANI [111].
Both reaction mechanisms are shown in Scheme 6. While the cyclic voltammograms of the
modified polymer differs to that of PANI, no loss of electroactivity is observed. Moreover,
the effect of functionalization on the CV is similar to that observed in polyanilines bearing
electron-withdrawing groups linked to the ring [112]—that is, a decrease in the potential
difference between the PANI(LEB)-PANI(ES) and PANI(ES)-PANI(PNB) redox transitions.
The data differ from those described by Liu and Freund [55], who found electrochemical
deactivation upon treatment of PANI films with aryldiazonium salts. However, the reaction
conditions (acid media, ambient temperature) promote the decomposition of the diazonium
ion to form the aryl cation, which attacks the nitrogen.

Different diazonium salts produce similar modifications. The modified polymers
suffer degradative reduction with dithionite where the azo (–N=N–) group is converted
into amino (–NH2) groups. Therefore, a PANI bearing amino groups in the ring is produced.
The redox response is more similar to the one of unmodified PANI than when azo groups
are attached, likely due to the stronger inductive and steric effect of the azo group com-
pared to the amino group. The amino group could be converted into a variety of functional
groups (e.g., amide), but such developments have not been pursued. It is noteworthy
that emeraldine base was used as reactant, and diphenylamine rings are the only reactive
moieties towards diazonium ion attack. On the other hand, using LE as reactant will allow
the modification of every ring in PANI. Since the reaction is quite straightforward (aque-
ous solution, low temperature) is amenable to combinatorial functionalization. Different
aromatic amines can be diazotized and coupled with PANI. Additionally, azo dyes can
be made via reaction of diazonium salts with other primary aromatic amines. In that
way, azo dyes which can be diazotized into diazonium ions to react with PANI can be
produced. By changing the reactants (primary aromatic amines, Scheme 5) of the azo dyes,
single linkage combinatorial modification can be achieved. Those coupling agents (CA) are
primary aromatic amines (e.g., 4-aminobenzensulfonic acid) which can form diazonium
ions able to couple with other activated aromatic amines but cannot couple with themselves
or be attacked by diazonium ions. On the other hand, those called aromatic amines (AA)
can couple with other AA (or themselves) and be attacked by CAs. Therefore, there are
AAn-AAn dyes but not CAn-CAn. The reason is that CAs bearing electron-withdrawing
groups (e.g., –NO2) are unreactive with a weak electrophile as the diazonum ion. On
the other hand, the presence of electron withdrawing groups in the ring destabilizes the
positive charge of the ion, making it a better electrophile. To the diazotized dyes are added
the diazonium salts of CAs and AAs.
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Using just 6 aromatic amines (Scheme 7), it is possible to create 17 functionalized
polymers. Moreover, using aromatic primary diamines (e.g., benzidine), it is possible
to link any activated aromatic ring (e.g., 2-naphtol) with a primary aromatic amine (the
diamine itself or another primary amine (e.g., 2-aminobenzoic acid) which can be made into
a diazonium ion and coupled with PANI. In the work [113], 65 functionalized polymers
were produced, which constituted a large part of the known functionalized PANIs (Figure 1).
The modification efficiency depends on nature of the diazonium ion and it being in the
range 7–33%.
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Figure 1. Color coded 2D diagram of the effect of combinatorially added functional group on the
solubility in common solvents/solutions.
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The target properties were two: conductivity and solubility in common solvents.
A high-throughput screening procedure was developed where thin films of PANI were
chemically polymerized onto thin PE films. The thin (ca. 2 µm) weakly absorbing substrate
allows the measurement of the UV–visible and FTIR spectra of the conducting polymer
films (ca. 200 nm) via transmission and the measurement of conductivity [114]. In that
way, the success of the modification can be checked. By painting two contacts (silver
ink) at a known distance, the conductivity can be measured. As expected, all modified
polymers have lower conductivity than PANI due to electronic and steric effects. The
modification with diazonium ions from azo dyes produces lower conductivities than
with those diazonium ions from simple aromatic amines. By immersing a known area of
supported film in different solvents, the solubility can be assessed by the removal of the
film from the substrate. With those showing solubility, it was measured as highly soluble
(HS > 1% w/v) or soluble (1%> S > 0.1% w/v) [115].

Polymers functionalized with charged groups (–COO−, SO3
−) show good solubility

in basic aqueous and alcoholic media. Unexpected results were that the polymers modified
with nitro (–NO2) or even azobenzene groups (PANI-AA1-AA1) showed high solubility in
toluene, chloroform, and acetone.

The main goal of coupling with diazonium salts was to improve the solubility of PANI
in different solvents while decreasing polymer conductivity as little as possible. Using a
combinatorial approach to both synthesis and property screening allows the identification
of conducting polymers with high solubility in low polarity organic solvents (e.g., toluene)
via modification with azo dyes bearing nitro groups. The effect is difficult to predict
from structure–property relationships. The solubility allows the coating of solids using
those materials and the blending of the conductive polymer with dielectric polymers (e.g.,
polystyrene). Using azo dyes as added functional groups incorporates other properties,
such as additional absorption bands in the visible spectrum [115], photochromism [115],
and even the possibility of selective insolubilization of the functionalized polymer by
localized reductive degradation of the azo group [111]. PANI chains modified with azo
moieties bearing ionic groups (e.g. –N(CH3)4

+) are soluble in water and have aromatic rings
(both in PANI and CA). Therefore, they can form π–π interactions with the aromatic ring
in nanocarbons. Allowing its use to stabilize dispersions of multiwall carbon nanotubes
in water [116], and likely to occur with other nanocarbons (graphene, single wall carbon
nanotubes). The dispersed particles bear net charges and can be assembled electrostatically
in layer-by-layer multilayers [116]. Moreover, the ionic group could be locally removed via
reductive degradation [111] to produce 2D patterns of the nanocarbon or removed from
the whole multilayer to make it resistant to dissolution.

Electrophilic Substitution in the N–H Group

Amide Formation at the Nitrogen

The first functionalization of PANI was achieved by Wrighton et al. [58]. They pro-
duced PANI films electrochemically and made them react with different anhydrides (in
acidic ACN). The reactivity depends on the oxidation state of PANI. The reactivity goes in
the order: (F3CCO)2O > (C13CCO)2O > (H2ClCCO)2O > (HCl2CCO)2O > (H3CCO)2O. Lin
and Chen reacted PANI (EB dissolved in NMP) with sulfobenzoic anhydride [59]. The an-
hydride formed an aromatic amide with the diphenylamine nitrogen (Ar–NH–Ar), leaving
the sulfonate group linked to the benzene ring and able to self-dope the PANI chain. The
functionalized polymer is soluble in water and has a conductivity of ca. 7 × 10−4 S cm−1.
Barbero et al. reduced PANI(EB) to PANI(LE) with phenylhydrazine to increase the number
of reactive N–H groups [67]. Then, they reacted PANI(LE) with neat ethanoic anhydride
at 80 ◦C. A high (>80%) modification ratio can be achieved, and the product is soluble
in common solvents (e.g., CH2Cl2). However, the polymer has very low conductivity
and no electrochemical activity. It seems that substitution in the nitrogen with electron
withdrawing groups (e.g., –COR) of PANI decreases the conductive and redox properties.
Liu and Freund reacted aryldiazonium salts with PANI films (electrochemically produced)
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in acid media and ambient temperature [55]. The diazonium ion decomposes to form
a highly reactive (non-aromatic) aryl cation which substitutes at the nitrogen, forming
triphenylamines. The PANI film loss electroactivity on a degree related with the reaction
time, suggesting that the reaction occurs from the film/solution interface inwards. The
resulting polymer is similar to that produced by DeArmitt et al. via the polymerization of
diphenylamines [109]. Both polymers are electroinactive due to the steric effect of the bulky
aryl substituent, which hindered the planarity of the rings in the PANI chain, decreasing
extended conjugation.

Wrighton et al., modified electrochemically produced PANI films supported on a
special three electrode device, which acted as a transistor [58]. Therefore, the goal of the
modification was to modify the electronic properties of PANI. It was found that in situ
modification in the amine nitrogen drastically decreases conductivity. A similar effect was
observed by other researchers [55,67]. While the production of a whole non-conductive
film is of little interest, controlled functionalization of the external surface (e.g., making
it hydrophobic) could produce transistors with sensitivity to different chemical entities
(e.g., fatty acids) than PANI. Moreover, localized formation of non-conductive domains
(e.g., by mask-controlled reaction) could allow the drawing of conductive patterns in
non-conductive films to produce flexible electronic devices.

Tertiary Amine Formation at the Nitrogen

Hua and Chen produced a self-doped PANI substituted in the diphenylamine ni-
trogen [54]. Since the diphenylamine is a poor nucleophile, they first reacted PANI (EB)
with sodium hydride to form the amide (Ar2N−). Then, they reacted the amide with
p-(3-BrC3H6)–C6H4–SO3–Na+. The amide attacked the alkyl halide (SN2, forming a new
amine with a pendant group containing sulfonate. Therefore, the cation radical of PANI
backbone was self-doped by the sulfonate groups. The polymer is soluble in water and
has a conductivity of ca. 2 × 10−2 S cm−1. Barbero et al. used SNAr reaction to modify
PANI(LE) [67]. The reaction was performed with activated arylhalides (bearing –NO2
electron-withdrawing groups). The yields were low since diphenylamine is a poor nucle-
ophile. Raffa et al. reacted PANI (LE) films (prepared electrochemically) with propanesul-
tone [78]. The ring tension in propanesultone made it prone to nucleophilic attack by the
N–H groups in PANI (LE). The sultone ring was opened, and PANI became N-alkylated
with a pendant sulfonate group. Therefore, the PANI chains became self-doped and were
electroactive in neutral pH (unlike PANI), allowing the construction of an enzymatic sensor
active at pH = 7. Incorporation of ionic groups (–SO3

−) attached to PANI chains makes
the polymer electrically conductive at neutral pH with a modest loss of conductivity. It
should be remembered that PANI shows a five-orders-of-magnitude loss of conductivity
when exposed to neutral media. This property of functionalized polymers allows different
biological applications, such as in electrodes for sensors/actuators. Indeed, Raffa et al. [78]
produced an enzymatic electrochemical sensor using such an approach.

Reversible Formation of Nitrosamine

Salavagione et al. showed that nitrosonium ion (NO+), which is formed via the
protonation and dehydration of nitrous acid, electrophilically attacks the nitrogen of the
diphenylamine units, forming nitrosamines [80]. The nitrosamine of PANI is soluble in
common solvents (e.g., chloroform) and can be cast into films. However, it is unstable
in acid media, losing the NO and reverting to PANI. The reversible process was used to
create conductive patterns with chemical lithography using a spray of acid. In a more
detailed study, the authors studied the formation and decomposition of the nitrosated PANI.
Then, using a photoacid generator (PVC), it was possible to create conductive patterns by
photolithography of nitrosated PANI. The reversible nature of this postfunctionalization,
coupled with the solubility of nitrosated PANI in nonaqueous solvents, allowed the drawing
of 2D patterns of PANI on surfaces, which can be used in flexible electronics.



Polymers 2023, 15, 205 17 of 42

2.1.2. Nucleophile Addition on Quinonimine Units

While other reactions of CPs (e.g., SEAr) are not exclusive of CPs and could be
used to modify other polymers (e.g., polystyrene [117]), nucleophilic addition involves
α,β−unsaturated bonds, which are the backbone of the extended conjugation, giving CPs
their electronic properties (Scheme 8) [118]. Therefore, it is a reaction intrinsic to CPs.
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Han and Jeng discovered that a solvent of PANI (pyrrolidine) react with PANI by
nucleophilic attack [61]. They then observed a reaction with thiols (dodecanothiol and mer-
captoacetic acid). They observed that reaction with the nucleophile produces the reduced
form of PANI (a functionalized LE) and named the phenomena “concurrent reduction
and substitution reaction”. They extended the method to mercapropanesulfonic acid [62],
producing a self-doped polyaniline with higher conductivity than SPAN. Interestingly, they
used acetic acid as a catalyst.

Salavagione et al. synthetized a self-doped polyaniline (functionalized with –SO3
–

groups) via nucleophilic addition of sulfite ions to emeraldine salt and pernigraniline [64].
It was already found that the reactivity depends on the relative amount of quinonimine
units in the polymer. Therefore, PN is more reactive than ES, and LE is unreactive. At the
same time, it was found that decreasing the pH increases the reaction rate since protonated
quinonimine is more reactive to nucleophilic attack than deprotonated attack. Accordingly,
bisulfite is more reactive than sulfite. Obviously, this depends on the nucleophile since
amines would be protonated by the acidic pH. Moreover, the so-called “concurrent reduc-
tion” of Han et al. [61] is a result of the addition mechanism, which gives the LE form of
the functionalized PANI as product. If no oxidant is present, the reaction will stop when all
(50% of the aniline rings) are converted. However, an additional oxidant can be used to
reconvert the amine to quinonimine units. In addition to sulfite ions, related arylsulfinic
acids were used as nucleophiles. Finally, a complete set of nucleophiles, which included
acetoacetate and cyanide, were used to modify PANI. Kumar et al. prepared PANI polymer
brushes linked to the electrode by thiolate bonds [72]. Then, they reacted PANI short
chains with sulfite, changing the voltametric response. In that way, an integrative sensor
of sulfite was developed. However, given the reactivity of quinonimine with biologically
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relevant molecules, such as thiols and amines, the sensor could not be used in biological
matrixes or food (e.g., wine). It is noteworthy that the nucleophilic addition of sulfite ions
produces sulfonated polyaniline with different degrees of sulfonation (from 25% to 100%)
in an ecofriendly way (using water or ethanol as solvent) without corrosive/toxic reagents
(e.g., fuming sulfuric acid). Moreover, the less harsh conditions (50–70 ◦C at pH = 3) avoid
chain scission, as was shown by measuring the molecular weight of the polymer during
reaction [87]. However, it has seldom been used to produce sulfonated polyaniline in the
myriad of applications.

Han and Chen modified PANI through nucleophilic addition of fluoride ions in
MeOH [119]. They used reoxidation as a way to increase the substitution degree of PANI
from 25% (1 F per 4 rings) to 125% (5 F per 4 rings). It was observed that EB only produces
25% substitution while PNB produces 50%. Then, they reoxidated the functionalized
monomer in suspension electrochemically (ACN/LiClO4). However, the authors took
great pains to deprotonate the functionalized PANI, although it has been shown that
protonation increases the reactivity. Han et al. [120] used the technique to functionalize
PANI and obtain a butylthio-functionalized derivative which has higher conductivity than
the unmodified PANI. Han et al. used the butylthio-modified PANI to produce nanospheres,
which were then converted to graphitic nanospheres [121]. Levon et al. used nucleophilic
addition to modify PANI (a film produced electrochemically) via nucleophilic addition
of 2-mercaptoethanol [69]. Then, they attached a redox group (ferrocene) by linking it
with the –OH group. Laiff et al. used nucleophilic addition of thiols to modify the surface
of PANI nanofibers [122–124]. The nanofibers, functionalized with carboxylic or amide
groups, were used to immobilize biomolecules [125], including redox enzymes which were
electrically connected to the conducting nanofibers. Interestingly, the nanofibers whose
surface is modified with self-doping groups show electroactivity at neutral pH and can
be used to electrochemically detect ascorbic acid [126]. This result confirms the model
proposed before [127], which is interparticle resistance at high pH, which inhibits PANI
electroactivity but not bulk effects. Bongiovanni Abel et al. [26] modified PANI chains via
the nucleophilic addition of cysteamine. The thiol group is a better nucleophile and became
attached to the PANI chains. Then, dansyl chloride was reacted with the aliphatic amino
groups, rendering the PANI fluorescent. The extended cysteamine linker avoids quenching
of the naphthalene rings by the quinonimine units of PANI. Fluorescent PANI NPs are
made from the solution of the modified PANI chains in NMP via solvent displacement with
PVP as stabilizer.

Yslas et al. modified the surface of PANI via NCA of the aminiacid cysteine and made
the film compatible with two biological cell lines [128]. Neira-Carrillo et al. modified PANI
nanoparticles via NCA with cysteine [129]. The –COOH groups in cysteine induce the
crystallization of calcium-carbonate, producing biomaterials with photothermal activity.
Durgaryan et al. observed the addition of thiosulfate ions [74] and hydrazine [75] to a
polymer (produced by oxidative polymerization of p-phenylenedianine) with a structure
very similar to that of pernigraniline. It is likely that PN will give similar reactions with
those molecules and the related hydroxylamine and phenylhydrazine. Recently, Amaya
et al. investigated the phosphonilation of PANI in solution (NMP) by nucleophilic addition
of p(OEt)3 [130]. To improve the functionalization degree, they reoxidized the partially
modified PANI with persulfate ion, in line with the mechanism of nucleophilic addition.
However, they still used the terminology of substitution.

Nucleophilic conjugate addition (NCA) allows the incorporation of a variety of func-
tional groups in the bulk or on the surface of films (or nanoparticles) made of PANI. Again,
attaching ionic groups (e.g. –COO−) increases bulk polymer solubility while creating pH
dependent solubility. In acid media, the functionalized polymer is conductive and elec-
troactive but solubilizes in basic pH. As a solution, it can be used as ink in common printing
techniques (e.g., inkjet printing) to produce flexible electronics or electrochemical sensors.
The same effect is used to produce stable dispersions in water of PANI nanoparticles whose
surfaces were modified via NCA. In both cases, using functional groups which can be
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protonated/deprotonated allows control of the solubility. In that way, films of modified
PANI with carboxylic (–COOH) groups can be deposited from ammonia/water solution
(bearing –COO−NH4

+ groups), which—upon drying and gentle heating—revert to the acid
form and become insoluble. Moreover, using a photoacid generator, patterns of insoluble
conductive polymer can be drawn photochemically. In the case of PANI films, only the
surface can be modified. The functionalization of the surface of films or nanoparticles via
NCA allows changing of the interaction of the solid with biological entities. In that way,
the biocompatibility was improved [128] or an inorganic biomaterial was synthesized [129].
In the latter case, the molecule attached through NCA (cysteine) induces the formation
of the inorganic biomaterials (crystals of calcium carbonate), which are biocompatible
due to the inorganic matrix, while the PANI nanoparticles absorb NIR light, allowing
its use in photothermal therapy. Other properties incorporated into the surface of PANI
entities through NCA are additional redox groups (ferrocene) to films [69], fluorescence to
nanoparticles [26], and biomolecules to nanofibers [121].

2.1.3. Reactions on Preattached Reactive Groups

Since PANI has only some reactions in the polymer backbone, it is possible to produce
PANIs with attached reactive groups (by oxidative polymerization or copolymerization).
The approach has not been used as much as in the case of polythiophene, but some re-
actions have been studied. Amaya et al. used Pd0 as a catalyst to promote the SNAr
reaction of HPO2H2 with poly(2-bromoaniline) (produced by oxidative polymerization
of 2-bromoaniline) [71]. In that way, self-doped phosphonate polyaniline was produced.
Shoji and Freund produced a substituted PANI through the electrochemical polymeriza-
tion of 2-aniline boronic acid in presence of fluoride [73]. Then, the boronic acid moiety
was converted into –OH or –X (halogen). The poly(2-hydroxyaniline) could not be pro-
duced by polymerization of 2-hydroxyaniline (2-aminofenol), which produced a ladder
polymer [131].

Salavagione has copolymerized (chemically and electrochemically) aniline with
3-ethinylaniline to produce PANI bearing alkyne groups [79]. The modified PANI could
react with thiols through the “click” reaction thiol-yne [132]. In that way, very fast function-
alization of PANI with a variety of functional groups could be produced. A preliminary
test with PEG-dithiol shows that the copolymer is able to link to the PEG chains in a
fast way. Using NCA, it is possible to attach nucleophiles (e.g., thiols) which bear active
groups. In that way, an electroactive group (ferrocene) was attached to the surface of
electrochemically produced PANI films [69]. Moreover, the surfaces of nanospheres were
modified with cysteamine and a fluorescent group attached to them. The alkyl chain act
as spacer separating the fluorophore from the quinonimine units and limiting the redox
quenching [26]. Finally, a thiol (nucleophile) bearing a long (C10) alkyl chain with an active
group (–COOH) at the other end is attached to PANI nanofibers [121–123]. To the carboxylic
group, biomolecules (e.g., redox enzymes) are linked by protein bioconjugate reactions. In
that way, electrochemical enzymatic sensors can be built [125].

2.2. Polythiophene Functionalization

Polythiophene (PT) and its derivates are another class of conducting (π-conjugated)
polymers that allow chemical modifications similar to what was afore-described for PANI
and PPy. The basic structure of PT is represented in Scheme 9. As can be seen, this thermally
stable CP has the possibility of doping, which leads to electron delocalization of π-orbitals
along the polymer backbone, giving optical and electronic interesting properties [133]. The
remotion of electrons of PT conduces to the formation of polaron/bipolaron depending on
the number of removed electrons (one or two electrons) [134,135].
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However, in the last three decades, a wide variety of research evidenced the versa-
tility of PT for chemical functionalization post-polymerization by using several kinds of
organic reactions. Among others, halogenation, cyanation, azide functionalization, esteri-
fication, alkyl, and aryl substitution on the PT backbone were described in the literature.
Moreover, interesting modifications employing ferrocene, reduced-graphene oxide (RGO),
Si surfaces, and combination with other organic molecules were developed for several
kinds of applications. In the following paragraphs, the most representative and interesting
functionalization procedures for PT are enlisted (Table 2) and described.

Table 2. Summary of reaction conditions used in PT postfunctionalization.

Polymer (Form) %
Funct Added group Reaction Polymer

Form Reactants Target Property Refs

PT, P3MeT,
poly(2,2′-

bithiophene)
var. (25 to 80) Halide (Cl, Br) Nucleophilic

addition Film Cl−, Br− Solubility [136]

PT, P3MeT,
poly(2,2′-

bithiophene)
var. (25 to 80) CH3O– Nucleophilic

addition Film CH3O– Solubility [136]

P3MeT 50 –Br Nucleophilic
addition Film Et4N+Br−/ACN Solubility [137]

P3MeT 70 –Cl Nucleophilic
addition Film Et4N+Cl−/ACN Solubility [137]

poly(thiophene-
alt-fluorene) - Halide (Cl, Br) Nucleophilic

additI Film Et4N+Br−/CAN
Et4N+Cl−/ACN Modification [138]

P3HT 72 –Cl Nucleophilic
addIon Bulk Et4N+Cl−/ACN Modification [139]

P3HS and
P3HT-b-P3HS 49/65 –Cl Nucleophilic

addition Film
boron trifluoride-

diethyl ether
(BFEE)

Modification [140]
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Table 2. Cont.

Polymer (Form) %
Funct Added group Reaction Polymer

Form Reactants Target Property Refs

P3HT 96 –Cl Nucleophilic
addition Film AlCl3/MeCN

Changes in
optoelectronic

properties
[141]

PTF and PBT >70 –Cl Nucleophilic
addition Film Et4NX in thin

layered cell
Improving in

optical properties [142]

P3HT 93 –Br SEAr Bulk NBS Electrooptical
properties [143]

P3HT 98 –Cl SEAr Bulk NCS Electrooptical
properties [143]

P3HT 93 –NO2 SEAr Bulk Fuming sulfuric
acid

Electrooptical
properties [143]

Diazoted-P3HT 58 –CN SEAr Film copper (I) cyanide
Thermal stabil-
ity/Corrosion

inhibition
[144]

P3HT - –Br SEAr Film NBS
Modification for
other functional-

izations
[145]

P3HT var. (2 to 84) –Br SEAr Film NBS
Changes in

photovoltaic
properties

[146]

P3OT 64 pentafluorobenzene
(PFB) Lithiation (SNAr) Film Click reaction Energy transfer [147]

P3HT-Si5 - Azide moiety Nucleophilic
susbstitution Film

P3HT-Si5→
P3HTOH5
Bu4NN3

Thermal stability [148]

poly(azidomethyl-
EDOT) 90 alkyl Nucleophilic

susbstitution Film
Cu(CH3CI) PF6,

using ACN, TFH,
or benzonitrile

Modification [149]

PT - Dianiilines groups Amidation Film N-phenyl-1,4-
phenylenediamine

Solution
processability [150]

P3HT - –COOH Deprotonation Film

deprotonation of
P3T and

subsequent
reaction with CO2

Solubility [151]

P3HT 50–60 –MIM

Nucleophilic
substitution
(carbanion
formation +

hydrosilation)

Film

3-bromopropene,
methylimida-

zolium,
N-

methylimidazole

Solubility [151]

PT-E - –Amide Ester aminolysis Bulk PEI in N-methyl-2-
pyrrolidone Water solubility [152]

PT-Br 79 –ester group Nucleophilic
substitution Bulk/film Sodium hexanoate

in DMF

Ponderal and
microstructural

features
[153]

HT-PHT - –OH Protected
cross-coupling Bulk thienylzinc

compounds/THF Modification [154]

PT-ESTER >90 –OH Hydrolysis Bulk/film KOH/Methanol
Ponderal and

microstructural
features

[153]

2.2.1. Direct reactions on the Thiophene Ring
Nucleophilic Addition

In PT the so-called “overoxidation” process is a thoroughly studied phenomenon [155].
In fact, PT is not stable at the redox potentials used for its synthesis [156]. Early on, it was
recognized that the degradation reaction involves the nucleophilic attack of water (or OH–)
on the oxidized form of the polymer, giving a ring substituted by –OH, which oxidizes
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to >C=O [157]. Based on that information, Pickup and coworkers studied the addition of
nucleophiles (Cl–, Br–, CH3O–) to electrochemically oxidized PT, P3MeT, and poly(2,2′-
bithiophene) [136]. While they show experimentally clear nucleophilic addition on the
quinonoid form, producing the modified and reduced form, they discuss the phenomena
as substitution. The mechanism proposed to explain the experimental data (Scheme 1 in
Reference [136]) seems to be incorrect since it shows the oxidation (−2 e−) of the product
of the addition to the aromatic form (which is the reduced state). It is found that reaction
does not occur with I−. This is surprising since I− is a stronger nucleophile than Cl− or
Br−. However. at +1.4 VSSCE, I− converts into I2, which is not nucleophilic.

The electrochemically driven halogenation of PT derivatives was extensively studied
by Inagi et al. [137]. Initially, the authors assumed that the halide is converted into the
halogen, which electrophilically attacks electrophilically the polymer. However, the film is
in the same electrode (anode) in which the halide oxidation should occur. Therefore, it is ox-
idized to quinonimines which are not reactive in electrophilic aromatic substitution (SEAr).
The authors carried out a detailed study of the reaction mechanism, showing that elemental
halogens are unable to react in the conditions of the experiment, while conjugate nucle-
ophilic addition (NCA) is most probable mechanism [158]. A poly(thiophene-alt-fluorene)
synthesized via Suzuki–Miyaura coupling polymerization was exposed to tetraethylam-
monium chloride (Et4NCl) in acetonitrile, and electrochemical halogenation was made
during constant-current electrolysis [138]. The chlorination efficiently and selectively oc-
curred at the thiophene ring as revealed by EDAX and 1H NMR. When halogenation was
attempted to introduce bromine or iodine, the functionalization degree found was less
than chlorine (for bromine) and did not occur for iodine. This is the same order previously
found by Pickup et al. [136] for nucleophilic addition. The order of nucleophilicity is
I− > Br− > Cl− > F− [159], but the order of electrode potential (for the conversion of halide
into halogen) is F− > Cl− > Br− > I− [160]. At the high potential used (1.65 VNHE), I− is
converted into I2 and no reaction occurs. The lower reactivity of Br− vs. Cl− could be due
to steric effects since the attack is ortho to the N–H group.

The same halides also attach to poly(3-hexylthiophene) P3HT. The halide attach the
halide atom to the 4-position (only free) of the repeating 3HT ring [139]. In more recent
work, Inagi et al. compared the chlorination of P3HT to the selenophene-containing
(co)polymers –P3HS and P3HT-b-P3HS- [140]. The results indicated different degrees of
chlorination for each polymer. For homopolymers, P3HS resulted in 65% of chlorination,
whereas P3HT reached ca. 49%. In the case of P3HT-b-P3HS, 49% of selenophene rings
were chlorinated compared to the 30% of thiophene rings for the P3HT segment, which was
attributed to the crystallinity of the polymer. Moreover, when the process was performed
on a statistical copolymer (P3HT-s-P3HS), a similar trend was observed regarding the
selectivity of sites for Cl− attack. The use of a boron trifluoride-diethyl ether (BFEE) instead
of acetonitrile as an electrolyte during the chlorination highly improved the chlorination
of P3HT. This fact can be explained as being due to the decreases of oxidation potential
of P3HT in BFEE [161]. Additionally, it was demonstrated that Lewis acids (e.g., AlCl3)
can facilitate the nucleophilic addition of Cl− to P3HT (achieving higher chlorination
degree) and other π-conjugated polymers [141]. As in the case of BF3, the Lewis acid
dopes the CP and decreases the potential for formation of the quinone-like species, which
react with the nucleophiles. Additionally, AlCl3 increases the stability of P3HT because it
reacts react with water, which will act as a nucleophile, degrading the polymer. Other PT
derivatives such as poly(thiophene-alt-9,9-dioctylfluorene) (PTF) and poly(bithiophene-
alt-9,9-dioctylfluorene) (PBT) were successfully functionalized via nucleophilic addition of
halide using a thin-layer cell [142].

Electrophilic Aromatic Substitution (SEAr) on Polythiophenes

Li et al. functionalized P3HT using SEAr. They produce polymer chains with –Br
(using NBS), –Cl (using NCS) and –NO2 (using fuming nitric acid) as substituents in the
4-position of the thiophene rings [143]. Then, the –NO2 substituents, (made by the same
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method) were converted to –NH2 by reduction with iron powder in water. In this way,
the use of any catalyst or additives is avoided [162]. This methodology is considered
eco-friendly, nonhazardous, and cheap, among other advantages. However, it is surprising
that a –NO2 group linked to a solid reacts with another solid (Fe). It seems likely that local
corrosion of solid Fe generates Fe2+, which is the real reductant and is oxidized to Fe3+

by the –NO2 groups. The solid Fe could then reduce Fe3+ to Fe2+ in a shuttle mechanism.
The –NH2 group is then converted to diazonium ion (–N2

+) through reaction with nitrite.
Then, using Sandmeyer’s reaction, the diazonium ion is substituted with –CN using
copper (I) cyanide [144]. PT functionalization through electrophilic bromination was also
explored. For example, a post-polymerization strategy to functionalize the 4-position of
P3HT was reported [143,145]. The Br–P3HT was obtained with a high degree of bromination
through electrophilic reaction of the polymer solution in chloroform via the addition of
N-bromosuccinimide (NBS). In other studies, the authors suggested that bromination of
P3HT disturbs the delocalization of p-conjugated electrons on the P3HT backbone. Different
bromination degrees (2%, 11%, 22%, 37%, 66%, 84%, and 100%) of P3HT were correlated
with the delocalization of π-electrons in the polymer (intra- and interchain), which affect
the target properties of the conducting polymer (e.g. photovoltaic properties) [146]. In the
same way, recently, some authors employed brominated PT derivates, highlighting the
importance of the feasibility of the reaction as well as the great potential of the products to
build hybrid materials with potential applications in energy and solar cell devices [163].

Substitution of Lithiated Thiophene Rings

The use of lithiated heterocyclic rings (made via reaction of halogenated aromatics
with lithium) is a useful strategy to produce a variety of substituted heterocycles [164].
Swager and coworkers functionalized P3HT via lithium–bromine exchange for the intro-
duction of fluorine on the 4-position [145]. The fluorination was significantly higher (ca.
67% of fluorination degree) compared to other reported monomer-modification approaches.
The functionalization was easily made as follows: (i) lithiation of P3HT via reaction with
n-BuLi/THF and (ii) reaction with N-fluorobenzenesulfonimide (NFSI), corroborating the
modification using 19F NMR. Another interesting example of fluorinated PT derivate obten-
tion is the inclusion of pentafluorobenzene (PFB) as an end-group in poly(3-octylthiophene)
(P3OT) via in situ quenching of the polymerization [147]. The resulting functionalized
polymer allows reaction via nucleophilic aromatic substitution (SNAr) with common nucle-
ophiles (e.g., thiols, alcohols, amines, etc.) in mild conditions as well as the synthesis of
diblock polymers.

2.2.2. Reaction with Active Groups Present in Substituted Polythiophenes
Azide Moiety and Reaction with Alkynes

PT containing azide-functionalized chains can be typically prepared using strategies
that involve nucleophilic substitution of haloalkyl side chains with azide anions and also
by hydroxyalkyl chain azidation (e.g., Mitsunobu reaction) [148,165]. However, in order to
minimize the step reaction number and improve the yield, new strategies were developed.
For example, Nam et al. synthesize poly(3-hexylthiophene-stat-3-(6-azidohexyl)thiophene)
(P3HT-N5) by the polymerization reaction of a tert-butyldimethylsilyl (TBDMS)-protected
thiophene with subsequent desilylation and conversion of the alcohols to azides [148]. First,
regioregular random poly(3-hexylthiophene-stat-3-(6-(tert-butylmethylsilyloxy)hexyl)thiophene)
(P3HT-Si5) was synthesized by Grignard metathesis polymerization and then P3HT-OH5
was obtained by remotion of TBDMS using tetrabutylammonium fluoride. Finally, the –OH
groups were transformed to azide groups using Bu4NN3 in presence of triphenylphosphine
obtaining the product (P3HT-N5). For the functionalization of azide terminal moieties on
PT derivates, several reports have been available in the literature.
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Amide Functionalization of Carboxy Substituted PT

The incorporation of pendant dianiline groups on PT to improve the solution process-
ability can be achieved by a series of reactions. First, the copolymerization of alkylthiophene
with acetate-functionalized thiophene is obtained, followed by the hydrolysis of the car-
boxylic groups. Then, via amidation reaction with N-phenyl-1,4-phenylenediamine, the
oligoaniline groups are attached to the PT backbone, as was confirmed by NMR, FTIR, and
elemental analysis [150].

Zotti et al. reported PT-based copolymers obtained by anodic oxidation of 3,4-diamino-
or 3,4-dinitro-terthiophenes [166]. In this form, the –NH2 or –NO2 moieties are directly
linked to the conjugated backbone. The postfunctionalization of the polymeric films allows
or the conversion of the –NO2 to -amino groups by reduction with SnCl2 in ethanol/HCl.
Additionally, 3,4-diamino-2,2:5,2-polythiophene and 3,4:3,4-bis(ethylenedioxy)-3,4-dinitro-
2,2:5,2 -polythiophene are able to react with glyoxal in ethanolic solution by condensation
obtaining pyrazine rings. The postfunctionalization of the PT-based films provokes impor-
tant changes from the point of view of the electronic, including optical and electrochemical
properties, allowing modulation of them. Other strategies for the synthesis of a variety of
aminoalkylsulfanyl PT presenting water solubility were reported as a result of copolymer-
ization via Stille coupling [167].

Anionic and Cationic Moieties

In the last decade, the generation of cationic and anionic PT derivatives has been
explored. P3HT can be functionalized by attaching a carboxylic acid moiety (P3HT-COOH)
through formation of the carbanion, followed by the reaction with carbon dioxide [151]. On
the other hand, cationic functionalization of P3T can be achieved via a series of reactions [46].
First, allyl-functionalized P3T was obtained through reaction of the carbanion form of P3T
with 3-bromopropene. Second, P3T-Br was synthesized via catalyzed hydrosilation reac-
tion of the terminal double bonds present in P3T-allyl with 4-bromobutyldimethylsilane.
Finally, the polycationic-methylimidazolium-functionalized, branched P3T-MIM was syn-
thesized by a nucleophilic substitution reaction of P3T-Br with N-methylimidazole. This
imidazolium-functionalized product is promising for several technological applications
due to its role in forming ionic liquids. Furthermore, the authors highlighted the ver-
satility of the synthetic route to tune the alkyl spacer length and also the feasibility of
using different nucleophiles in order to obtain other classes of end groups. In a similar
manner, So et al. comprehensively reviewed the novel methodologies for the synthesis of
a wide range of cationic PT through approaches that involved branched polymers, poly-
electrolyte diblock copolymers, and post-polymerization functionalization of regioregular
poly(alkyl)thiophenes derivatives, among others [46]. An interesting work reported the
synthesis of cationic water-soluble PT grafted to reduced graphene oxide (RGO) sheets.
The procedure involves the quaternization of RGO-g-P3BPT using trimethylamine for the
formation of poly(3-(3′-thienyloxy)propyltrimethylammonium bromide) [168]. The syner-
gistic combination of the functionalized conducting polymer and the RGO is promising in
the field of antibacterial photothermal therapy. Another method involved the crosslinking
of modified PT-ester with branched polyethylenimine (PEI) via ester aminolysis reaction un-
der mild conditions in N-methyl-2-pyrrolidone (NMP) [152]. These cationic, water-soluble
PEI-crosslinked-PT derivates were used to build Cu2+ sensors. The synthetic methodology
is an alternative method to the conventional conversion of conjugated polymer with ester
group to water-soluble polymers through hydrolysis under basic conditions [169].

Reaction with other Carboxylic Functionalities

Using poly[3-(6-bromohexyl)thiophene] (P3T-6BrHex) as a start polymer, the synthesis
of a PT containing an ester group can be achieved. The method implies a single step for
functionalization using sodium hexanoate in DMF as solvent, and the final functionalized
polymer presents remarkable microstructural features [153]. Other researchers compared
the obtention of a PT derivative containing ester moieties (poly[3-(4-butanoyloxy) butylthio-
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phene]) through two different synthetic routes: the direct oxidative polymerization versus
the postfunctionalization of poly[3-(4-bromo)butylthiophene. While the nucleophilic sub-
stitution of sodium butyrate in the Br atom of the polymer resulted in excellent reaction
yield, the polymerization of 3-(4-butanoyloxy)butylthiophene monomer presents the ad-
vantage of versatility for the generation of other functionalized polyalkylthiophenes [170].
Through the covalent grafting of arenediazonium tosylate containing –COOH groups with
(poly(3,4-thylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), the introduction of
the carboxylic moiety on the CP can be made [171]. In this case, the diazo-cation acts as
a counterion of the sulfonic groups (cationic exchange), allowing the modification of the
pristine PEDOT:PSS thin films, changing its electrical and surface properties. More recently,
the covalent coupling of poly(3-thiophene acetic acid) (P3TAA) with a C-protected tripep-
tide was also reported to produce a bioconjugated conducting polymer [172]. Through
alkaline hydrolysis, a carboxylic-acid-deprotected tripeptide polythiophene conjugate can
be obtained [173]. Istif et al. produced aldehyde derivatives of thiophene [172], which
are polymerized into conductive polymer chains with aldehyde pendant groups. The
high reactivity of aldehydes allows producing conducting polymers with a variety of
functional groups attached to the chains. In addition to the functional groups linked to PT
chains, semiconducting oligomers of aniline can also be attached [174,175]. A thiophene
monomer, substituted with alkyl chains terminated in carboxyl (–COOH) groups is ami-
dated with amine (–NH2) terminated oligoanilines. While the conductivity of the polymers
is not as large as could be expected of a 3D network of conductive moieties, the physic-
ochemical properties of both conducting chains are observed. Bauerle described work
on post-polymerization functionalization of conducting polymers (poly(alkylthiophene)s)
substituted with replaceable ester groups [176]. The electrochemical properties of the films
can be tuned through the incorporation of different attached groups (e.g., ferrocene).

Reactions with Attached Hydroxyl (–OH) Groups

Poly[3-(10-hydroxydecyl)thiophene] can be synthesized via alkaline hydrolysis of
the ester group in its precursor. The most remarkable property is the high solubility in
a variety of solvents. The synthetic route allowed the full development of head-to-tail
(HH-TT) linkages [177]. McCullough et al. reported the inclusion of –OH in bromine
terminated HT-PHT [154]. The synthetic route involves the modification of the end group
modified at theω end through a cross-coupling reaction by using thienylzinc compounds.
Therefore, THP hydroxy group is protected but can then be deprotected to obtain the
–OH functionality at theω e end. In another work, Lanzi et al. achieved the regioregular
poly[3-(6-hydroxyhexyl)thiophene] (POH) through alkaline hydrolysis of the ester poly[3-
(6-bromohexyl)thiophene] [153].

Reaction with Miscellaneous Groups

Covalent functionalization with ferrocene redox groups on regioregular head-to-tail
P3HT was achieved via substitution of –Br functionality in poly[3-(ω–bromohexyl)thiophene].
The methodology implied the dissolution of ferrocenecarboxylic acid in THF (N2 atmo-
sphere) with the addition of 1,8-diazabicyclo[5.4.0]undec-ene at high temperatures (ca.
100 ◦C). A full spectroscopic characterization involving several techniques confirmed the
functionalization of the P3HT-Br [178]. The inclusion of a tetraphenylporphyrin (TPP)
in a poly[3-hexylthiophene-co-3-(6-bromohexyl)thiophene] (P(T6H-co-T6Br) copolymer
(in different molar contents of 80:20 and 75:25) was reported by Salatelli et al. [179]. The
reaction involved the replacement of bromine with TPP to obtain regioregular P(T6H-
co-T6TPP) in DMF/THF in presence of dibenzo-18-crown-6. The final product has po-
tential applications in solar cell devices due to the increase of the dye content without
decreasing the solubility of the material compared to previous reports. PT multilayer
films deposited on amine-terminated Si surfaces are also possible to generate due to the
formation of secondary amine bonds on the surface amino (–NH2) by nucleophilic reac-
tion [180]. The PT films should be functionalized with bromine groups. The covalent
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interaction can be confirmed using spectroscopic techniques (UV-Visible, XPS). Addi-
tionally, the layer-by-layer deposition can be monitored using atomic force microscopy.
Esterification reactions between graphene oxide (GO) and the alkoxy poly[3-(2-(2-(2-(2-
(diethanolamine)ethoxy)ethoxy)ethoxy)ethoxy)thiophene] (PD4ET) allowed the obtention
of PD4ET-g-GO [181]. The synthetic approach consisted of the dispersion of GO in thionyl
chloride, helped by ultrasonic and stirring, followed by the addition of the PT derivate
and triethylamine under the same conditions. The most important difference from previ-
ous reports is the fact that in this work, effectively covalent interactions between the two
components (PT and GO) were confirmed (by XPS, Raman, FTIR, XRD, among others).

The target property in PT functionalization is an improvement on the semiconducting
and optoelectronic properties for applications on OLEDs, solar cells, etc. The attached
groups could affect the conjugation length through the steric and/or inductive effect. More-
over, simple attached groups (e.g. –NH2) could be used to link more complex molecules
(e.g., phthalocyanines) with optoelectronic properties of their own, which are combined
with those of PT. Optoelectronic properties of PT improve by functionalization, specifically
the chemical stability under illumination for the fluorine-containing polymers.

2.2.3. Reactions with Substituted Poly(3,5-dioxythiophene) (PEDOT)

The most widely studied substituted poly(thiophene) is poly(3,5-dioxythiophene) (PE-
DOT) [182]. The unmodified monomer unit contains only highly inert ether groups [183],
making it a chemically stable polymer [184]. However, polymers made of dioxy rings with
pendant reactive groups can be produced and used as platforms for covalent postmodifica-
tion of PEDOT [185,186]. Specifically, “click” chemistry of active PEDOT chains [149,187–191]
allows the production of conductive polymers with properties tuned to the applications in a
simple manner. The functionalized polymers show tuned electronic [192], or electrochromic
properties [193]. Wu et al. transformed a chloromethyl-EDOT into an alkene group and
used the thiol-ene reaction to attach simple thiols (mercaptopropionic acid) or complex
moieties (proteins, aptamers) [194]. The polymer films, modified with bioactive macro-
molecules, show enhanced biological activity. Finally, functionalizable derivatives of EDOT
were polymerized in the solid state, and active PEDOT-based chains were produced [195].
However, to the best of our knowledge, the polymers were not used for postmodification.
Bauerle and coworkers developed a versatile methodology for the postpolymerization of
poly(azidomethyl-EDOT) films through reaction with terminal alkynes under mild het-
erogeneous conditions [149]. The approach overcomes limitations that appear when the
substituents reacted with the monomer prior to polymerization (monomer modifications).
The modification was carried out through click reaction of the PEDOT derivate in presence
of the alkynes and Cu(CH3CN)4 PF6, using ACN, TFH, or benzonitrile depending on
each alkyne. Successfully, the methodology allowed the inclusion of different functional
moieties, including alkyl chains, different electron acceptors, and electron donors [188].
Other authors functionalized a copolymer film P(EDOT-N3-co-3T) with 1-hexyne and
alkyne sulfonate via cycloaddition click reaction [191]. They used [Cu(NCMe)4]PF6 and
copper (powder) as catalysts and DMSO as solvent. As a result of the PT derivate func-
tionalization, tuning of the surface polarities and wettability properties of the films was
achieved. A similar approach was also carried out for the functionalization of poly(3-(3,4-
ethylenedioxythiophene)prop-1-yne) -poly(pyEDOT)- [196]. Additionally, starting from
azide-containing thiophene obtained via SN2 substitution and their subsequent electropoly-
merization, a poly(thiophene)-azide can be synthesized. Starting from this modified PT, a
glycosylated poly(thiophene)-lactose was obtained via click reaction with a disaccharide
(lactose). Evidence of the success during the functionalization was obtained using XPS
measurements and the contact angle technique, making the new modified CP substrate a
promising tool for biointerface applications [197].

The target properties of PEDOT are the electrochromism and the use of the polymer
as hole injection layer in OLEDs and solar cells. In the case of electrochomics, the attached
functional groups affect the energy of the HOMO to LUMO transition. In that way, the color
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of the dark/clear states can be changed. The ability to tune the color allows the production
of multicolor electrochromic pixels (red–green–blue) with the same base polymer (PEDOT).
On the other hand, as PEDOT has absorption on the near infrared (NIR) range, smart
windows which are transparent in the visible and switchable in the NIR allows to control
the heating/cooling by radiation of houses or satellites. PEDOT is an excellent material
for the hole injection layer [183]. Changing the absorption of that layer, it is possible to
produce OLED pixels of more defined colors when the emitting layer has multiple bands.
Moreover, both the electronic properties and the stability of the injection layer could be
improved by functionalization.

2.3. Polypyrrole Functionalization

The work on the postfunctionalization of PPy has been much more limited than that
on PANI or PT. It is summarized in Table 3.

Table 3. Summary of reaction used in polypyrrole postfunctionalization.

Polymer
(Form) Added Group Reaction Kind Reaction

Form Reactants Target Property Ref

P(Py-N3) Ferrocene Click Azide-yne Bulk Ethynylferrocene
Cu2+ (cat)

Electrochromic
properties [198]

Poly(T-Py(R-N3)-T) Ferrocene Click Azide-yne Echem film Ethynylferrocene Electrochromic [199]

PPy Aromatic
compounds

reduction
of aryl diazonium

salt

Echem
Film

Diazonium salt +
nBu4N+BF4

−
Sensing and

biological devices [200]

PPy –SO3
− SEAr

sulfonation Bulk HSO3Cl Water
solubility [201]

PPy –SO3
− (*) SEAr sulfonation Granules HSO3Cl Catalyst support [202]

PPy
nanoparticles

2-mercaptoethanol
ethanolamine NuA Latex

particles
Mercaptoacetic
Ethanollamine

Potential in
immobilization of

proteins
[203]

PPy Multiple NuA Film

DOT
CTA
MPS

ATPhe

Combinatorial
synthesis [204]

PPy PAMAM(G4)-
Ferrocene

Cation radical
addition (†) Film PAMAM G4 Biosensing [205]

PPy p-nitroazobenzene Film

MeCN solutions
containing 1 mM of
diazonium salt and

0.1 M TBABF4
−

Photoactivity [206]

* The authors claim that such a group is obtained but it is likely that sulfones or chlorosulfonates are present.
† See text for a discussion on the true nature of the reaction.

Camurlu et al. made clickable polypyrrole containing reactive azide groups [199].
The pyrrole monomer has a pendant alkyl chain terminated with an azide group (–N3).
The monomer is electrochemically polymerized to give films. The azide groups react in a
“click” fashion with alkynes to give cycles [207]. The polymer is reacted with ethinylfer-
rocene to give films with clear electrochromism. The same authors also made a clickable
poly(thiophene-pyrrole-thiophene) containing reactive azide groups [198]. First, they syn-
thesized a monomer containing a central pyrrol linked with two thiophenes. The pyrrole
unit has a pendant alkyl chain terminated with an azide group (–N3), which reacts in a
“click” fashion with ethinylferrocene to give a film with clear electrochromism.

Raicopol et al. used the well-known method of aryl radical formation through reduc-
tion of diazonium salts [208] to attach aromatics to PPy [200]. Given that reductive poten-
tials were used, the PPy was in its aromatic form and a Gomberg reaction occurred [209].
The main factor in the effective functionalization is the reduction potential of the diazonium
ion, which is related to the electronic effects of the group attached to the benzene ring.
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The method could be used to link reactive (e.g., –COOH) groups, which could then be
used to bioconjugate biomolecules. Raicopol et al. used the same method to attach a
p-nitroazoazobenzene moiety to PPy [206]. Since the azo group in p-nitroazobenzene can
change from trans to cis through light excitation, the UV–visible spectrum of the functional-
ized PPy changes upon irradiation. Jang et al. sulfonated PPy via electrophilic aromatic
substitution with chlorosulfonic acid [201]. After reaction, the chlorosulfonated PPy was
hydrolyzed by heating it in water (100 ◦C for 4 h). Then, the sulfonated PPy was further
doped with organic sulfonates (e.g., DBSA), which are known to help solubilize PPy in
organic solvents [210]. Some blends (e.g., PPy-SO3

−/DEHS) show up to 3% solubility in
water, with good (0.2 S cm−1) conductivity and good solubility in organic solvents.

Das et al. used the same procedure as Jang et al. [201] but did not heat the material
in water and wash it with methanol, likely forming methylsulfones or maintaining the
chlorosulfonate groups. The FTIR spectra could not distinguish between those groups.
The material is stable, and it is used in DMFC devices. Gustafsson et al. showed that PPy
reacts irreversibly with ammonia, changing the resistance and electronic spectra [211]. They
suggest that this could be a nucleophilic addition of ammonia and/or of OH− (produced
from ammonia and residual water). Based on such information, Bieniarz et al. showed that
strong nucleophiles are able to add to the oxidized form of PPy particles [203]. Therefore,
thiols or amines are able to add nucleophilically to PPy, in a similar way to PANI. However,
they failed to identify the reduced (and modified) form of PPy as the product of the
addition. They suggested that by linking mercaptoacetic acid to the PPy, it would be
possible to conjugate biomolecules via amide formation. It is noteworthy that PPy is the CP
of choice for biomedical applications [212], likely because it maintains good conductivity at
neutral pH (unlike PANI). However, biological fluids are full of thiols (cysteine, glutathione)
and aminoacids with amino active amino groups (e.g., lysine), which could irreversibly
react with PPy, changing its physical properties. Frontera et al. used similar reactions to
combinatorially modify films of PPy (supported on PE) with different nucleophiles [204].
Reactions were observed in all the thiols used. The physical properties (conductivity, water
contact angle) of the films modified by two nucleophiles together do not show values
intermediate to those of the films modified by each nucleophile alone but are larger or
smaller. Such synergic effects depart from the usual rules of combinatorial chemistry.

Miodek et al. modified electrochemically polymerized films of PPy [205]. They
subjected the PPy film to anodic potentials in the presence of a dendrimer (PAMAM G4).
They detected the immobilization of the dendrimer, which was then modified (using
bioconjugate peptide chemistry) with ferrocene and DNA strands. They assumed that the
aliphatic amino groups of PAMAM form radical cations which attack the PPy. However, at
the potentials involved (up to 1.1 VRHE), PPy is oxidized and could easily suffer nucleophilic
addition by the amino groups. Moreover, radical cations of aliphatic amines are unstable
(unlike aromatic ones) and easily produce carbocations [213].

The target property of PPy functionalization is its biocompatibility towards its appli-
cation biomedicine. Therefore, biomolecules and related molecules (e.g., mercaptoacetic
acid) were attached to the CP backbone. In a similar way, amino-terminated dendrimers
are linked to PPy, likely by NCA. All surface modifications increase the biocompatibility
and allow the linking of active biomolecules (e.g., enzymes). Since PPy is insoluble in
aqueous solutions and common organic solvents, the improvement of solubility by func-
tionalization is also an important goal. Surface reactions on nanoparticles of PPy which
attach ionic groups (e.g., sulfonate) allow the stabilization of high-solid dispersions of
nanoparticles towards producing conductive inks. Analogously, surface reactions on PPy
films allow changing of the wettability and related interactions, modulating biological cell
adhesion. For tissue growth, good cell adhesion is desirable, while the opposite is true
when the film is the coating of a biomedical device for which pathogenic biofilm formation
must be avoided.
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2.4. Functionalization of Other Conducting Polymers

Apart from the highly studied PANI, PT, and PPy, few studies of functionalization by
covalent postmodification of other conducting polymers have been published. The data
are summarized in Table 4.

2.4.1. Poly(acetylene)

The first “modern” conducting polymer is poly(acetylene) (PA) [214]. While PA is
highly reactive due to the conjugated C=C bonds, the addition reaction produces sp3

carbon in the chain. The extended conjugation is interrupted by those defects, drastically
decreasing the conductivity. On the other hand, each monomer unit contains two H, which
can hold substituent groups. Those groups can be then functionalized. A substituted PA
(poly(phenylacetylene)-PPA-) was synthesized through polymerization of derivatives of
4-ethynylbenzoic acid [215]. Those polymers containing activated ester groups are then
reacted with aromatic amines. A shift in the optical absorption bands, upon reaction with
amines, suggests an effect on the conjugated backbone of the polymers.

Table 4. Summary of reaction used in the postfunctionalization of other conducting polymers.

Conducting
Polymer Added Group Reaction Kind Reaction

Form Reactants Target Property Ref.

PA
(PPA) –CONHAr Amidation Bulk Aromatic amines Optical absorption [212]

PP
(P(p-dMeoBz)) –CN Nu

substitution Film CN- Electrochemical [213,215]

PPV –HN–R–NH2
Nu

substitution Bulk H2N–R–NH2 Cytocompatibility [216]

PPV
(MEH-PPV) Multiple

(i) DCC catalyzed
conjugation with –COOH

(ii) “click”
alkyne-azide

Bulk various Synthesis [217]

PPV
(MEH-PPV) -Phtalocyanine “click”

alkyne-azide Film Functionalized
phtalocyanine Solar cells [218]

PPV
(DOH-PPV) –X, Succinimide Electrophilic addition Bulk NBS

NCS
Fluorescence yield

Solubility [219]

PPV –HN–R–NH2 Silane chemistry Bulk diamines Gene therapy [220]

PPV –Si–O–Si–NR–NH2 Silane chemistry Silane
diamines Cell adhesion [221]

PPE OEG-oligopeptide Reactive group
(–COOH) Film OEG +

oligoppetide Gene therapy [222]

PFO PEG block Terminal group Bulk PEG Fluorescence
Emission [223]

PFO Monosaccharides Thioether Bulk Monosaccharides Biocompatibility [224]

PFO PEG “click” Diels-Alder Bulk Transcyclooctene Fluorescence [225]

PFO PEG “click” Diels-Alder Bulk Transcyclooctene
term. PEG

Fluorescence
3D crosslink [226]

P(FO-alt-T) –X (halogen) NCA EchemFilm X− (halide) Optical [226]

2.4.2. Poly(phenylene)s

Fabre and Simonet electropolymerized (alone or as a copolymer with 3-methylthiophene)
an activated (for SEAr) derivative of benzene (p-dimethoxybenzene) [217,218]. The cation
radicals produced by anodic oxidation of the polymer chains suffer nucleophilic attack by
CN−, which replaces one of the methoxy groups (–OCH3) to be removed as methoxide ion.
The reaction is a nucleophilic substitution of the cation radicals of dimethoxybenzene, which
also occurs in the monomer [219]. The replacement of the electron donating methoxide
(–OCH3) by the electron-withdrawing cyano (–CN) group increases the potential for the
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formation of polarons in the polymer. The cyano group could be easily transformed into
amine, carboxylic acid, or amide groups.

2.4.3. Poly(phenylenevinylene) (PPV)

Poly(phenylenevinylene) is a widely used semiconducting polymer [220]. Since it
contains an aromatic ring in each monomer unit, it can be functionalized by reactions of
activated groups linked to the aromatic ring. Since alkoxy derivatives of PPV (e.g., poly(2-
methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene, MEH-PPV) are widely studied as
optoelectronic materials, the alkyl chain can be used as linker to reactive groups for func-
tionalization. Duchateu et al. developed a general method of postfunctionalizing MEH-PPV
copolymers [217]. A MEH-PPV monomer in which the methoxy group has been replaced
by an alkoxy chain terminated in carboxylic groups was synthesized and copolymerized
with MEH-PPV monomer. Then, using DCC catalyzed conjugation vinyl, propynylphenyl
groups, methacrylate, and propargyl groups were attached. Additionally, MEH-PPV
copolymers with ATRP and dithiocarbamate initiator groups were produced. The propargyl
group was also used to further functionalization through “click” chemistry with an azide-
functionalized reagent. The method was used to attach Zn phtalocyanines to MEH-PPV
and broaden the optical absorption window of the base polymer [221]. On the other hand,
Holdcroft et al. treated a related polymer (poly(p-2,5-dihexyloxy−phenyelenevinylene)
(DHO−PPV)) with N-halosuccinimides (NXSuc) [222,227]. In addition to electrophilic
substitution on the aromatic rings of PPV, halogen and succinimide (in CHCl3) add to the
vinylene groups, forming sp3 defects. As expected, for high NXSuc/PPV ratios (>0.75),
the solubility increased but the fluorescence yield decreased dramatically due to the loss
of extended conjugation. However, for intermediate NXSuc/PPV ratios (0.5 to 0.75), the
solubility is improved, and the fluorescence yield is enhanced (up to 150%) due to exciton
confinement between defects and the reduction of intrachain quenching due to reduced
chain aggregation. Another approach is to synthesize block copolymers of phenyleneviny-
lene with vinylene moieties with pendant reactive groups (e.g., silane). The reactions
can be used to prepare surface active oligomers [223] or to modify the surfaces of nanos-
tructures [224]. Either the optoelectronic properties (e.g., luminescence), or the surface
properties of films (e.g., wettability) or nano-objects (e.g., colloidal stability) could be tuned
by polymer functionalization.

2.4.4. Poly(phenylene ethynylene)

Functionalized poly(phenylene ethynylene)s (PPEs) have been synthesized [225]. The
–COOH groups are separated from the conductive chain by oligo(ethylene glycol) (OEG)
spacers. A 14-mer peptide (Lys(DNP)-GPLGMRGLGGGGK) is attached to the spacer by
peptide bioconjugate reactions. The peptide quenches the fluorescence of the PPE. The
fluorescence is restored via treatment with trypsin which cut the oligopeptide, making the
polymer a fluorimetric sensor for proteases.

2.4.5. Poly(fluorene) (PFO)

Poly(fluorene) (PFO) is a semiconducting polymer used in optoelectronics [226].
Marsitzky et al. synthesized polyfluorene chains terminated in alcohol [228]. The PFO
block was then copolymerized with PEG to produce rod–coil block copolymers, which
produced organized systems with high fluorescence emission. Xue et al. used a thioether
approach to attach monosaccharides to PFO chains [229]. The resulting functionalized poly-
mers showed large solubility in water and allowed the interaction of biological systems and
semiconducting polymers. Kardelis et al. used “click” chemistry (inverse-electron-demand
Diels–Alder) with trans-cyclooctene (TCO) to functionalize a CP related to poly(tetrazine-
co-fluorene) (PFO) [230]. The polymer showed enhanced fluorescence intensity compared
to poly(tetrazine). Moreover, linear chains and a 3D foam can be produced by grafting
TCO-functionalized poly(ethylene glycol) chains. Finally, direct reactions on the fluorene
units have been used to modify PFO nanoparticles to produce fluorometric sensors of
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explosive nitro compounds (e.g., picric acid) [231]. Inagi uses electrochemically driven
NCA to functionalize an alternating copolymer of thiophene and fluorene [167], which
reacts in the thiophene unit adding halide groups (e.g. –Br), likely by nucleophilic addition.
The goal of the functionalization of PFO is improving its optoelectronic properties. Direct
linkage of groups to the fluorine unit changes the optical properties (e.g., fluorescence
emission) of the polymer.

3. Conclusions

Conducting polymer (CP) functionalization is an important field with a wide variety
of technological applications under development. Among the common CPs, functionalized
polyanilines and polythiophenes constitute most of the work. It is surprising that methods
for functionalized polypyrroles (PPys) are somewhat limited given the important role of
the polymer in biomedical applications, likely due to its good electroactivity/conductivity
at neutral pH. In that sense, functionalized PPys should be easily linked to biomolecules by
well-known bioconjugate chemical reactions. Work on other polymers (PA, PPV, PP, etc.) is
even more limited.

Direct reactions on the chain are usually used for the modification of polyanilines (PA-
NIs). The main goal is to improve the solubility in organic solvents and aqueous solutions to
be able to coat materials or cast films. In that sense, polyaniline sulfonated via electrophilic
aromatic substitution while dissolved in concentrated acid is likely the most widely applied
functionalized conducting polymer. The good electroactivity/conductivity in acid/neutral
aqueous solution and nonaqueous electrolytes of functionalized PANI allow its use in
different applications. Among them are uses as electrode material in electrochromic de-
vices, batteries, bioelectrodes, interlayers in OLEDs, enzymatic electrochemical sensors,
anticorrosion coatings, and photovoltaic cells. The high solubility in water and extended
π conjugation allow use in the noncovalent functionalization of graphene and carbon
nanotubes and as a stabilizer of their colloidal solutions. The strong acidic character of
the sulfonate group makes it useful in polymer electrolyte membranes and acid catalyst in
organic chemistry. Finally, its compatibility with other polymers is used to form composites
with hydrogels and nanofiltration membranes. It is remarkable that while use as an elec-
trode requires good conductivity (>0.01 S cm−1), other properties do not require it and are
typical of polyelectrolytes. Sometimes, it seems that the qualification “conducting polymer”
obscures the polymer nature of the material, which could give better properties. Another
conclusion that can be drawn from the data reviewed is that synthetic methods applied to
CP have not kept pace with the developments in modern organic chemistry. Most reactions
used have been known since the 19th century (e.g., SEAr sulfonation). It should be remem-
bered that the main chains of CPs contain aromatic (or heteroaromatic) rings, while most
modern organic chemistry deals with aliphatic reactions. Accordingly, they use solvents
(e.g., cc. H2SO4) and reactants (e.g., SO3), far from acceptable in modern (green) chemistry.
Nor have novel experimental methods (microwaves, ultrasound, mechanochemistry) been
used. However, in the few studies of reactions with CPs bearing reactive groups (e.g.,
ethynyl), modern reaction methods (e.g., “click” reactions) are used. In fact, a green alter-
native for the synthesis of sulfonated polyaniline exists—this is the nucleophilic addition,
which could be made in water with nontoxic sulfite. However, it is seldom used to produce
sulfonated polyaniline for technological applications. Moreover, unlike SEAr sulfonation,
NuA can be performed heterogeneously, allowing the modification of the surface of films
or nano-objects without affecting the inner part of the polymer object. This is a capability
that also set this method apart from the alternative method of producing functionalized
PANIs, which is oxidative homopolymerization of previously functionalized monomers.
It should be mentioned that in several cases, it has been shown that the properties (e.g.,
electronic conductivity) of equivalent polymer chains (e.g., poly(2-bromoaniline)) are quite
different when produced using postfunctionalization (e.g., SEAr bromination of PANI)
rather than polymerization of the functionalized monomer. It seems that the real polymer
chains are quite different in each case and that the postfunctionalized polymer is closer



Polymers 2023, 15, 205 32 of 42

to the linear polymer chain. In the case of polythiophene, some direct reactions with the
polymer chain were studied, but the main line of work implies functionalization of PT
chains already bearing reactive groups (e.g., –COOR). Those polymers are produced via
homopolymerization or copolymerization of already functionalized monomers. It is not
clear why the polymerization of substituted anilines (ortho or meta) is more difficult than
substituted (3-) thiophenes or pyrroles, but this is where the experimental evidence leads.
The functionalization of such precursors uses all the breadth of modern organic chemistry.
Its main goal is not solubility, which has already been solved with monomer functionaliza-
tion (e.g., P3HT), but better electronic properties and interaction with the media. In that
sense, electrochromic, semiconducting materials working both in “clean” conditions and
inside biological systems have been developed using postfunctionalized PTs. In the case
of PPy, only some of these methods have been applied. Postfunctionalization reactions
seem to depend more on the presence of the reactive group than on the rest of the molecule
attached. Therefore, parallel reactions with different reactants bearing the same reactive
moiety can be easily performed in combinatorial fashion. The method has been applied
only twice, first by coupling combinatorially synthesized azo dyes to PANI (one dye per
polymer) and then by reacting multiple nucleophiles to the same PPy chain. Both methods
show promise in the fast creation of functionalized polymer libraries. The synergic effect
observed in the physical properties (conductivity, wettability) when multiple thiols were
used to modify the same polymer remains to be explained.

The model described in the introduction, which assumes that common reactions
exist for different CPs, has not been fully studied. There are reactions (e.g., nucleophilic
addition to oxidized CP chains) that are known to work in all materials. Others (e.g., SEAr,
especially coupling with diazonium salts), despite only having been demonstrated fully for
PANI, are known to work for pyrrole and thiophene monomers and should work on them.
Finally, the powerful method of producing polymers with reactive groups, which has been
extensively used in PT and related polymers, should be extended in full to PPy, for which
polymerization of substituted monomers is a simple task. In the case of PANI, the difficult
polymerization of functionalized anilines hindered the use of substituted monomers to
produce reactive precursor polymers. However, poly(2-bromoaniline) has been used as
precursor of phosphonated PANI. One problem common to polymer functionalization
in general is the lack of characterization techniques that could identify the new bonds
formed. In general, only attachment of the added group is verified, usually not even
quantitatively. Since NMR is difficult to apply to solid (usually insoluble) polymers, other
spectroscopies (FTIR, Raman) must be applied. Quantitative identification of functional
groups can be made with XPS, but the technique is unable to detect the position of the
attack, and even the band assignment is only based on known compounds. Even FTIR
shows shifts due to neighboring group effects. The use of model compounds, which can
be analyzed using NMR and FTIR, is an interesting approach that was used in the early
work of Wrighton et al. [52] and seldom utilized in later studies [55]. The use of modern
mass spectroscopy (e.g., MALDI-TOF) could be relevant to identify the new entities formed
by functionalization.

4. Patents

Barbero: C.A.: Miras, M.C., Salavagione, H.J. Polianilinas nitrosadas. Procesos de pro-
duccion, soluciones y peliculas, Argentine Patent (INPI), Nr. AR021531B1, 3 December 1999.
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Abbreviations

AA Aromatic amines
ACN Acetonitrile
ATPhe 4-aminotiophenol
CA coupling agents
CE Cellulose
CP conducting polymer
CTA cysteamine
DEHS di-(2-ethylhexyl) sulfosuccinate
DMF Dimethylformamide
DMFC Direct methanol fuel cell
DMSO Dimethylsulfoxide
Do Diffusion coefficient
DOT Dodecanotiol
DSC Differential Scanning Calorimetry.
EChem Electrochemical
FTIR Fourier-Transform Infrared Spectroscopy
GO Graphene oxide
HSPANI highly sulfonated polyaniline (75–100%)
MALDI-TOF Matrix assisted laser desorption/ionization-Time of Flight
MEH-PPV poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene
MPS mercaptopropansulfonate
NBS N-bromosuccinimide
NCA Nucleophilic conjugate addition
NCS N-chlorosuccinimide
NFS N-fluorosuccinimide
NMP N-methylpyrrolydone
NMR Nuclear Magnetic Resonance
Nu NucleiphileNucleophile
NXSuc N-halosuccucinimide
OEG oligoethyleneglycol
OLED Organic lifghtlight emitting diode
P3HT poly(3-heylthiophene)
P3MeT poly(3-methylthiophene)
P3OT poly(3-octylthiophene)
PAMAM G4 polyamidoamine dendrimer 4th generation
PANI (EBA) polyaniline (emeraldine base form)
PANI (ES) polyaniline (emeraldine salt form)
PANI (LEB) polyaniline (leucoemeraldine base form)
PANI (PNB) polyaniline (pernigraniline base form)
PANI polyaniline
PBD probe Beam Deflection
PEDOT poly(ethylenedioxythiophene)
PEG poly(ethyleneglycol)
PEI poly(ethyleneimine)
PFO poly(fluorene)
PNMANI poly(N-methylaniline)
POH poly[3-(6-hydroxyhexyl)thiophene]
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PPDA poly(p-phenylenediamine)
PPV poly(phenylenevinylene)
PPy polypyrrole
PSS poly(styrene sulfonate)
PT polythiophene
PVC poly(vinylchloride)
RGO Reduced graphene oxide
SEAr Electrophilic aromatic substitution
SEN Electrophilic substitution in the nitrogen
SNAc Nucleophilic substitution in the acyl group
SNAl Nucleophilic substitution in the alkyl group
SNAr Nucleophilic aromatic substitution
SPAN Sulfonated polyaniline (ca. 50%)
t-BOC tert-butoxycarbonyl
Tg Glass transition Temperature
THF Tetrahydrofurane
TPP tetraphenylporphyrin
VNHE Volts vs. Normal Hydrogen Electrode
VRHE Volts vs. Reversible Hydrogen Electrode
VSSCE Volts vs. Saturated salt calomel electrode
XPS X-ray Photoelectron Spectroscopy
XRD X-ray diffraction
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