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Abstract: Shape-memory polymers tend to present rigid behavior at ambient temperature, being
unable to deform in this state. To obtain soft shape-memory elastomers, composites based on a
commercial rubber crosslinked by both ionic and covalent bonds were developed, as these materials
do not lose their elastomeric behavior below their transition (or activation) temperature (using ionic
transition for such a purpose). The introduction of fillers, such as carbon black and multiwalled
carbon nanotubes (MWCNTs), was studied and compared with the unfilled matrix. By adding
contents above 10 phr of MWCNT, shape-memory properties were enhanced by 10%, achieving
fixing and recovery ratios above 90% and a faster response. Moreover, by adding these fillers, the
conductivity of the materials increased from ~10−11 to ~10−4 S·cm−1, allowing the possibility to
activate the shape-memory effect with an electric current, based on the heating of the material by the
Joule effect, achieving a fast and clean stimulus requiring only a current source of 50 V.

Keywords: shape-memory elastomers; shape-memory effect; smart rubbers; ionic elastomers; XNBR;
soft polymers; MWCNT

1. Introduction

Smart materials, often known as functional materials, have the capacity to adapt to
external environmental conditions and experience physical change. Among them are shape-
memory materials, which can recover their original shape from a deformed (temporary)
shape after being exposed to various external stimuli [1]. Different families of materials have
been used to experiment with this effect. Shape-memory alloys demonstrate great memory
properties for some applications but have some limitations regarding their deformation
capabilities and density. In this sense, polymeric materials used as shape-memory polymers
(SMPs) are interesting due to their low density and great deformation capacity to adapt
to different shapes, with elastomers being the most promising material to obtain high
deformation capacity [2]. A thermal stimulus is the most common stimulus to activate
shape change [3,4], but it causes some application issues, as the heating of materials can
be difficult to achieve or slow depending on the final temperature due to the electrical
insulation of most polymeric materials. For this reason, research efforts have been made
to investigate other activation stimuli, such as light [5], electric [6,7], magnetic fields [8,9],
water [10,11], and humidity [12].

There is an increasing demand for soft actuators [13,14], so, in recent years, different
approaches have been made to obtain polymers that preserve an elastic nature in their
temporary shapes, including an interpenetrating crystallizable thermoplastic network with
an elastomeric matrix [15], liquid crystalline elastomers [16], and blends of elastomers
and small molecule additives [17]. The most popular approach to create elastic behavior
in order to deform material into a different shape is the introduction of a dual network,
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where at least one of them presents a thermal transition, such as glass transition or melting
temperature [18]. However, polymers present rigid behavior at ambient temperature, being
unable to deform in this state.

Different routes have been proposed to convert elastomers into these functional ma-
terials. Natural rubber has been used by Katzenberg et al. [19] and Heuwers et al. [20] in
order to obtain shape-memory properties, where crystallization under deformation was the
responsible mechanism for fixing the temporary shape. Pantoja et al. employed another
approximation by the introduction of fatty acid salts on an elastomeric natural rubber
matrix [21]. In these cases, the final materials exhibited elastomeric behavior at ambient
temperature, but they became rigid in their temporary shapes until their original shapes
were recovered.

Other approaches include the use of noncovalent supramolecular interactions, such
as multiple hydrogen bonding [22], hydrophobic interactions, π–π stacking, metal–ligand
coordination [23], and ionic interactions [24]. Among the latter group, different ionomers
featuring the shape-memory effect have been reported [25]. Weiss et al. [26,27] designed
elastomeric ionomers of sulfonated ethylene propylene diene rubber (SEPDM) with low-
molar-mass fatty acids or their salts (e.g., zinc stearate). Xie et al. [28,29] investigated
the shape-memory properties of a thermoplastic polymer perfluorosulfonic acid ionomer
(PFSA), Nafion™, with ionic clusters in a semicrystalline matrix, and Zheng et al. fabricated
rubber composite films, which are fabricated via the film formation of carboxylic styrene bu-
tadiene rubber (XSBR) latex and citric acid (CA) solution [30]. Salaeh et al. also introduced
the ionic network of a PVDF/XNBR blend by incorporating ZnO [31]. All these materials
presented rigid behavior at room temperature, as their shape-memory fixing mechanism
was based on crystallization. To solve this, in a previous study conducted by our group,
ionic elastomers based on a carboxylated nitrile rubber (XNBR) were obtained, where
ionic transition was the switching mechanism of the shape-memory effect and elastomeric
behavior was preserved in all ranges of temperature [32]. These materials possess strong,
physically crosslinked networks featuring the phase separation of ion-rich domains, where
trapped polymer chains around ionic associations act as reinforcing points [33]. Never-
theless, this system presented some limitations. The dynamic nature of ionic crosslinks
translates into the loss of mechanical properties at high temperatures. To minimize the loss
of temporary shape fixing with time due to stress relaxation mechanisms, a relatively low
number of covalent crosslinks (0.5 parts per hundred of rubber (phr) of dicumyl peroxide
(DCP) vs. 4 phr of MgO) was added. The presence of the covalent crosslinks enhances
shape recovery up to 90%, but it has a negative effect on the recovery ratio of the material
(less than 85%), as ionic crosslinks are not completely fixed/frozen in time.

Moreover, although these elastomeric materials have some properties that are superior
to those of shape-memory metal alloys, they have poor intrinsic mechanical properties
limiting their possible applications in multiple scenarios. Therefore, to improve these
mechanical properties while trying to preserve the elastic nature of the network, different
methods have been extensively studied, such as higher crosslinking, changing deformation
conditions, and adding fillers to the polymer matrix.

Reinforcing fillers can improve the mechanical behavior of the material with an evident
enhancement of Young’s modulus, strength, and toughness [34]. This enhancement has
also been successfully investigated in shape-memory polymers [35]. Moreover, for shape-
memory composites, fillers can perform a secondary function as crosslinking agents. In
this case, they not only reinforce but also improve shape-memory properties. Fillers that
improve the thermal conductivity of the polymer matrix can have a positive effect on the
thermal-activated shape-memory effect. Besides the reinforcement effect, the addition
of electrically conductive fillers, such as carbon black [36], carbon nanotubes [37], and
graphene [38–40], to the isolating polymeric matrix broadens the applicability of these
materials, with the highlight of enabling or enhancing athermal stimuli-active effects, such
as the electroactive shape-memory effect by Joule heating [41]. These composites have
a wide variety of applications, such as antistatic materials, electromagnetic interference
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protection materials, sensors, actuators, and drivers [42]. Conductive elastomers have been
the focus of considerable research over the past two decades due to foreseeable applications
in technologies as diverse as biological and chemical sensors, antistatic coatings, and
electromagnetic shielding [43,44].

Among the conductive fillers mentioned above, carbon black (CB) is one of the most
commonly used conductive fillers due to its superior characteristics, such as its high elec-
trical conductivity, chemical stability, and low cost [45]. However, normally, a very high
content of CB (~15–30 wt%) is required to reach the conductive percolation threshold in a
polymeric matrix, which can complicate its processing or cause a drop in its mechanical
properties, further increasing its cost [36]. Additionally, the high content of reinforcing
fillers sometimes leads to negative results in some vulcanization properties, such as com-
pression set and the loss of hysteresis (or heat accumulation). Therefore, new reinforcing
fillers with a relatively high specific surface area and/or aspect ratio have been introduced,
for example, nanoclays and carbon nanotubes (CNTs) [46]. With these fillers, due to the
high surface area of nanomaterials, the filler content required for any property can be
markedly decreased, while good dynamic mechanical properties of the rubber can still be
preserved. As such, a balance between processability and static and dynamic mechanical
properties is possible. These polymer nanocomposites have become the preferred choice
of polymer researchers for the design of lightweight compounds [47,48]. Moreover, the
incorporation of nano-reinforcements significantly increases thermal stability [49]. CNTs,
due to their exceptional mechanical properties and other functional properties of great
interest, have become prime candidates for many novel applications [50–52]. Multiwalled
carbon nanotubes (MWCNTs) have attracted more attention due to their low production
cost and high performance. With the addition of MWCNTs, it has been possible to induce
electrical conductivity in various elastomers, such as PU/PLA polymer blends [53], the
styrene–butadiene–styrene (SBS) block copolymer [54], and polyethylene and EVA blends,
with a percolation threshold of 3 wt% of MWCNTs [55]. Electroactive shape-memory
materials provide the possibility of having an additional stimulus, as they are connected to
a closed electrical circuit without the need to physically access the material, and the possi-
bility of having precise control in the activation. All of this facilitates their use as sensors
and actuators, where electricity is an easily implementable stimulus [56,57]. Percolation
threshold for having conductivity in elastomeric samples needs higher MWCNT contents.
Bernal-Ortega et al. achieved good electrical properties above 10 phr for natural rubber
and styrene-butadiene rubber nanocomposites. However, MWCNT con-tents higher than
15 phr were an issue for the vulcanization process of the compounds, due to MWCNT
aggregation and the high viscosity of the rubber matrix [58].

In recent years, the effect of the introduction of nano-fillers in XNBR matrices has
been studied for different purposes [59,60]. Tian et al. [61] developed a material with
high dielectric constant and low dielectric loss based on graphene oxide (GO) and XNBR.
The dielectric constant of the composite started to increase with very low filler content
(0.25 phr). Liu et al. [62] noncovalently modified graphene with sodium humate and used
the modified graphene sheets on an XNBR matrix with the presence of MgO as an ionic
crosslinker. Wang et al. [63] improved the thermal stability, conductivity, and thermal
diffusivity of XNBR by incorporating functionalized graphene (1.6 phr) into an XNBR
matrix. Preetha Nair et al. incorporated MWCNT in XNBR latex and obtained percolation
behavior, and conductivity increased by about 10 orders of magnitude [64].

This research focuses on the following three main objectives: (i) to study the influence
of adding conductive fillers (carbon black) and nano-fillers (multiwalled carbon nanotubes)
on the network structure and shape-memory properties of XNBR compounds crosslinked
with covalent and ionic bonds; (ii) to compare the reinforcement efficiency of the different
fillers by investigating their viscoelastic behavior, mechanical properties, and electrical
properties; and (iii) to develop a proof of concept of new advanced applications based on
ionic elastomers with improved thermal and electrical conductivities.



Polymers 2022, 14, 1230 4 of 18

2. Materials and Methods
2.1. Materials

Samples were prepared using XNBR Krynac® X 740, (Lanxess Elastomers SAS, Stuttgart,
Germany), with a proportion of 27 wt% of acrylonitrile and 7 wt% of carboxylic groups
as a matrix. Furthermore, 4 parts per hundred of rubber (phr) of magnesium oxide, MgO
Elastomag® 170 Special (Akrochem, Akron, OH, USA), and 0.5 phr of dicumyl peroxide
(DCP) (Aldrich, St. Louis, MO, USA) were used as crosslinking agents. In addition, all
samples had 1 phr of stearic acid as a processing aid.

The reinforcing fillers used were conductive carbon black (CB) Black Pearls® 2000
(Cabot, Boston, MA, USA), with high specific surface, and multiwalled carbon nanotubes
(MWCNTs) NC7000 (Nanocyl®), with an average diameter of 9.5 nm and an average length
of 1.5 µm. For MWCNT-reinforced compounds, filler content was limited to 15 phr due to
the high viscosity reached during compounding.

The samples used are presented in Table 1.

Table 1. Formulations of the different networks studied. Quantities are expressed in parts per
hundred of rubber (phr).

Sample XNBR MgO DCP Stearic Acid Filler

phr phr phr phr phr Type

XNBR-4MgO-0.5DCP
(unfilled) 100 4 0.5 1

5CB 100 4 0.5 1 5 CB
10CB 100 4 0.5 1 10 CB
15CB 100 4 0.5 1 15 CB
20CB 100 4 0.5 1 20 CB
25CB 100 4 0.5 1 25 CB
30CB 100 4 0.5 1 30 CB

5CNT 100 4 0.5 1 5 CNT
10CNT 100 4 0.5 1 10 CNT
15CNT 100 4 0.5 1 15 CNT

2.2. Preparation of Rubber Compounds

All samples were prepared on a Gumix laboratory two-roll mill, with a cylinder
diameter of 15 cm, a length of 30 cm, and a friction ratio of 1:1.15. The fillers were
incorporated after rubber mastication and introduction of magnesium oxide and stearic
acid. As such, DCP was left as the last ingredient to avoid possible pre-vulcanization since
the samples were heated by friction. Later, all samples were vulcanized in a hydraulic press
for 60 min at 160 ◦C.

2.3. Characterization Methods

The vulcanization process was studied using a rubber process analyzer, RPA 2000,
from Alpha Technologies (Wiltshire, UK), where a deformation of 6.98% at a frequency of
1.667 Hz was applied for 2 h at 160 ◦C. Additionally, frequency-sweep experiments were
carried out in the RPA after the vulcanization process. The shear modulus was measured
at frequencies from 0.002 to 33.33 Hz at temperatures from 40 to 230 ◦C. All data were
then combined in a master curve using the frequency−temperature superposition [65],
obtaining the stress relaxation of the modulus in a wide range of frequencies.

Tensile test experiments were determined using a universal mechanical tester (Instron
3366 series, Norwood, MA, USA). Dumbbell geometry (type 4) test specimens were pre-
pared as 1 mm thick, guided by ISO 37. The strain speed was 200 mm·min−1. For each
compound, five specimens were tested at room temperature.

Dynamic mechanical measurements and bulk shape-memory effect of vulcanized
samples were carried out in a TA Q800 dynamic mechanical analyzer (TA Instruments, Inc.,
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New Castle, DE, USA). Dumbbell geometry (type 4) samples guided by ISO 37 with 1 mm
thickness were used for both experiments. Dynamic mechanical experiments were loaded
under tension with an oscillatory deformation. Temperature was registered from −70 to
200 ◦C, with a heating rate of 2 ◦C·min−1. For the study, an amplitude of 15 µm, frequency
of 1 Hz, and “force track” (the ratio of static to dynamic forces) of 108% were applied.

Shape-memory behavior was quantitatively characterized using a thermo-mechanical
cycling method divided into five steps, as widely explained in previous studies [17],
controlling the applied force under tension. To quantify the shape-memory behavior, fixing
ratio (Rf) and recovery ratio (Rr) were calculated according to [66]:

R f (N) =
εu(N)

εm(N)
× 100%. (1)

Rr(N) =
εu(N)− εp(N)

εu(N)− εp(N − 1)
× 100% (2)

where εm represents the strain before unloading, εu is the strain after unloading, εp repre-
sents the permanent strain after heat-induced recovery (including an isothermal of 30 min),
and N corresponds to the cycle number of the test. A value of 100% indicates complete strain
fixing/recovery of the sample. For cycle 1, εp(0) takes the value after the initial isothermal.

Moreover, electrically activated shape memory was characterized with a bending test.
The samples used to measure this application of the nanocomposites were “U”-shaped
sheets. Temporary shape was fixed by heating the material in an oven for 5 min in a
mechanized steel mold with 2 cm-radius curvature as found in [53]. During these tests, the
main parameter is the angle of the SMP as it is bent in its temporary shape after waiting for
30 min free of strain. The value of the degree of shape recovery (Rr) is calculated as

Rr(N) =
θ0 − θN

θ0
× 100% (3)

where θ0 is the temporarily fixed angle, and θN is the residual angle obtained during the
cycle recovery process.

Electrical conductivity of the compounds was determined using an ALPHA high-
resolution dielectric analyzer (Novocontrol Technologies GmbH, Hundsangen, Germany).
A frequency range window of 10−1–107 Hz at room temperature was used. The mea-
surements were performed on samples of 2.5 × 2.5 × 0.1 mm3 between two parallel
gold-plated electrodes.

Thermal conductivity was measured under stationary conditions using a heat flow
meter, model FOX 50 (Lasercomp—TA Instruments, Wakefield, MA, USA), according to
ASTM C518 and ISO 8301 standards. The measurements were performed on cylindrical
specimens of 45 ± 0.1 mm diameter and 8 ± 0.1 mm thickness. At least three measure-
ments were carried out for each sample, with an experimental error of less than 2% of the
absolute value.

3. Results and Discussion
3.1. Formation of Rubber Networks

The formation of the ionic and covalent crosslinking networks during the vulcanization
process was studied through the monitoring of torque evolution with time at a temperature
of 160 ◦C in a rheometer, and it is reflected in Figure 1.
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Figure 1. Evolution of the vulcanization curve (through the elastic component of the torque, S’) of
the systems reinforced with different amounts (phr) of (a) CB and (b) CNT.

The vulcanization curves show a fast increase in the elastic component of the torque
(S’) without any visible scorch time because of the fast formation of the ionic and covalent
crosslinks at the selected vulcanization temperature. After that, a marching plateau is
observed for all samples, demonstrating that the addition of fillers to the elastomeric
matrix does not limit the process of ion-pair formation and reorganization over time and
maintains the predominant ionic character studied in a previous work [67]. Nevertheless,
the maximum value of S’ increases with the added fraction of filler according to the
reinforcing effect of both CB and CNT. The correct incorporation of the fillers to the matrix
was studied by thermogravimetric analysis (Figure S1 in the Supplementary Materials).
The images of the distribution and size of the fillers obtained using FEG-SEM can be found
in Figures S1 and S2 in the Supplementary Materials.

To observe the reaction of the carboxylic groups with MgO, FTIR-ATR was used. As
studied in previous works, the formation of covalent crosslinks (by adding DCP to the
system) does not influence the IR band of the carboxylic groups of the rubber matrix [32,68].
Therefore, it can be used to study the reaction of these moieties with metal oxide. The
formation of ionic bonds in the elastomeric matrix, produced by the chemical reaction
between MgO and the carboxylic groups of XNBR rubber, can be observed in the range
between 1800 and 1500 cm−1 (Figure 2). The bands corresponding to the carboxylic acids
of the matrix (1730 and 1697 cm−1) disappear, regardless of the nature and content of the
filler introduced into the material, and a new band appears at a vibration frequency of
1580 cm−1, corresponding to the magnesium carboxylate salts generated.
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The resolution of the signals fades with an increase in CB content. The normalized
signals are not as clear for the highest CB filler contents (25CB and 30CB).

The satisfactory reaction of the carboxylic groups of the matrix with magnesium oxide
in the presence of the different fillers is a sign of the existence of the phase separation
phenomenon produced by ionic moieties and, as such, managing to maintain the ionic
transition necessary to obtain a shape-memory effect in these materials [67]. The mechano-
dynamic behavior of the materials was characterized at a frequency of 1 Hz, performing a
temperature sweep between 70 and 180 ◦C to define the polymer transitions (Figure 3).
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Figure 3. (a) Variation in the loss tangent (tan δ) and (b) of the storage modulus, with the temperature
at a frequency of 1 Hz, for the XNBR-4MgO-0.5DCP samples with the introduction of increasing
amounts of CB and CNT reinforcing fillers.

Through the variation in tan δ with temperature (Figure 3a), a thermal transition at
a temperature around 5 ◦C, attributed to the glass transition of the polymer, is clearly
distinguished in all samples. This temperature increases by a maximum of 2–3 ◦C when
introducing the CNT fillers, while for carbon black, this variation is only around 1 ◦C. The
intensity of this maximum peak and the appearance of the second transition, assigned
to ionic transition, are progressively lost with the filler content in the composite material.
Despite this, the behavior of the samples with temperature is similar in all the materials.
This effect is better appreciated when observing the evolution of the storage modulus
(E’) with temperature in Figure 3b. The introduction of reinforcing fillers increases the
rigidity and, hence, the E’ values of the material proportionally to their content, with this
effect being more visible when exceeding the glass transition temperature. However, the
changes in the slope remain practically unchanged; both “pseudo-plateaus” are observed
both when exceeding the Tg and at the end of the broad ionic transition (see Table S1 in the
Supplementary Materials for Tg Tionic and E’ values below and above Tg).

The rheometric measurements were used to characterize the dynamics of the networks
with temperature by using the time–temperature superposition principle [50] to create mas-
ter curves representing the variation in elastic modulus (G’) in a wide range of frequencies
(Figure 4).
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Figure 4. Master curves in which the elastic modulus (G’) is represented with respect to the frequency
of the XNBR-4MgO-0.5DCP samples with (a) CB contents between 0 and 30 phr and (b) CNT contents
between 0 and 15 phr. The curves were obtained from the principle of time–temperature superposition
with Tref = 40 ◦C.

As previously mentioned, ionomers exhibit viscoelastic properties similar to those
of molten polymers with high molecular weight and highly entangled chains or in con-
centrated solutions [69,70]. However, ionic elastomers flow through the “ion-hopping”
mechanism without breaking all their ionic associations simultaneously [71–73]. Chain
creep is a slow process (visible at low frequencies) that requires high temperatures, since
the ion-hopping mechanism needs to be fast enough for the elastomeric chains to relax.

Assuming that the residence time of the ion pairs in each ionic aggregate is the same
regardless of its structure (ion pairs, multiplets, or ionic clusters), the chain dynamics slows
down with the addition of dispersed fillers in the matrix (i.e., terminal relaxation time
increases) due to restrictions to movement or steric impediments in the mobility of ionic
interactions (Figure 4). This impairs the reprocessability of the materials and is, in turn, a
clear indicator of the reinforcing effect of the introduction of these fillers.

3.2. Physical Properties

The effect of fillers on dynamics is directly related to the physical properties of com-
posites at the macroscopic level. As studied in previous studies, XNBR ionic elastomers
have excellent mechanical properties at room temperature since the association between
MgO and the carboxylic groups of the matrix acts as physical crosslinks while also making
the effect of reinforcing fillers [68].

For this reason, it is obvious that the introduction of external reinforcing fillers pro-
duces an increase in the modulus of the material, although, in this case, it will gradually
limit the deformation capacity of the material. Figure 5 shows the stress–strain curves for
all the materials with the different fillers in which their reinforcing effect is appreciated,
with a progressive increase in the modules of the material, as well as a reduction in the
maximum deformation with an increase in filler content.
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Figure 5. Stress–strain curves obtained for the XNBR-4MgO-0.5DCP samples with the introduction
of increasing contents of (a) CB and (b) CNT.

If the evolution of the modulus and the tensile strength of the material is observed
in detail, certain differences can be distinguished between the reinforcing fillers, showing
that CNT has a higher reinforcing effect than that of CB. In both cases, the incorporation of
reinforcing fillers translates into an improvement in the tensile strength of the materials,
but it has a detrimental effect on their elastic properties, limiting the maximum strain
and, hence, the ultimate tensile strength (see Table 2). Despite this, deformations greater
than 300% can be achieved in all cases, valid for many applications, in our case, for their
application as elastomeric materials with shape memory.

Table 2. Tensile strength and elongation at break values obtained from stress–strain curves of
the samples.

Sample Tensile Strength Elongation at Break

MPa %

Unfilled 51 ±3 560 ±10

5CB 52 ±5 506 ±37
10CB 49 ±6 493 ±10
15CB 50 ±2 462 ±17
20CB 45 ±2 399 ±35
25CB 44 ±1 353 ±39
30CB 42 ±2 308 ±23

5CNT 45 ±3 493 ±34
10CNT 44 ±4 453 ±27
15CNT 42 ±2 389 ±18

3.3. Shape-Memory Properties of Elastomeric Composites

In this part of the study, we investigate the influence of the introduction of reinforcing
fillers in the XNBR matrix crosslinked with ionic associations between MgO salt and the
carboxylic groups of the matrix, responsible for the fixation of the temporary shape, and
the covalent unions produced by the introduction of DCP, responsible for the recovery of
the original shape.

3.3.1. Effect of the Incorporation of Reinforcing Fillers on the Shape-Memory Properties
of Elastomers

The ability of ionic interactions to act as temporary physical crosslinks depends on
temperature, time, and applied stress. However, the covalent bonds present thermostable
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behavior and tend to recover the original and permanent shape of the samples. These
mechanisms are responsible for the activation of the shape-memory properties in the
materials, where heating the material above the ionic transition temperature can cause
the ionic interactions to become ineffective, and the shape of the material can be modified
into a new shape. With the new shape, if the material is cooled down, those same ionic
interactions become effective again and retain the temporary shape until the material is
again heated above the ionic transition temperature. Both processes can be altered with
the introduction of dispersed reinforcing elements in the matrix, which will hamper the
elastic characteristics of the network and, in turn, reduce the exploration space accessible
to chains and ionic pairs or aggregates of a dynamic nature.

According to the experimental procedure described in [32], shape-memory tests with
four memory cycles were carried out for each sample with an increase of 50% in strain
for the temporary shape. Figure 6 shows the complete characterization of one of the
samples (containing 15 phr CNT). In our previous work, up to 10 cycles were carried out to
demonstrate stability with these SM cycles [32].
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Figure 6. Shape-memory test carried out on sample 15CNT. Stress, strain, and temperature are
registered simultaneously.

The fixation of the temporary shape (Rf) and the recovery of the permanent shape (Rr)
values were obtained with Equations (2) and (3), and those values are presented in Figure 7
for all the composites tested.

As can be seen, the addition of reinforcing fillers improves the fixing properties of
the temporary shape, reducing the negative effect produced by the viscoelasticity of the
pristine sample. Therefore, the incorporation of a higher filler content has a direct effect
on fixation. Comparatively, the introduction of carbon nanotubes results in the best fixing
properties being obtained (between 4 and 10% improvement with respect to the unfilled
material for the CNT contents studied). This fact may be due to the good dispersion and/or
the alignment of the nanotubes in the direction of the deformation, making it difficult to
lose this new transitory shape. The 15CNT sample achieved fixing ratio values above 90%
in every cycle. All data values can be seen in Table S2 in the Supplementary Materials.
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shape for the sample XNBR-4MgO-0.5DCP (unfilled), and with the incorporation of increasing content
of CB and MWCNT for 4 consecutive cycles.

Furthermore, contrary to what occurred when the content of the crosslinking agents
varied, where the improvement of one of the shape-memory properties had a negative
effect on the other as previously reported [32], the addition of fillers also translated into
a general improvement in the recovery of the permanent shape. Although this capacity
is impaired with the addition of large contents, the introduction of fillers produces, in all
cases, proportions above 25 phr of CB, an improvement in recovery with respect to its
unfilled counterpart of up to 10% in the first test cycle.

This conclusion is even clearer in Figure 8, where the relationship between the fixing
and recovery capacities of the nanocomposites is shown in the same graph.
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Figure 8. Relationship between fixation and shape recovery values for the different nanocomposites
studied. Solid symbols mark the data for the first cycle, while hollow symbols represent the following
three cycles.

Summarizing the results shown in Figure 8 for the different shape-memory elastomers
reinforced with carbonaceous fillers, the best balance of properties belongs to the nanocom-
posites with 10 or 15 phr of CNTs, whose fixation exceeds 90% and recovery capacity
exceeds 86% for the first cycle, with these values progressively increasing with the number
of cycles. Reinforcement with nanotubes is the most effective approach for this application,
while reinforcement with carbon black has a similar influence but requires a filler amount
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of more than double that of the nanotubes (20–25 phr), which has repercussion on other
properties (e.g., processing properties and elongation at break).

3.3.2. Effect of the Incorporation of Fillers on the Thermal Conductivity of Elastomeric
Nanocomposites

Figure 9 shows the experimental values of thermal conductivity. All samples show a
linear dependence on temperature in the analyzed range between 20 and 80 ◦C. The thermal
conductivity obtained increases with the addition of an increasing content of charge in
its structure. This effect is higher when carbon nanotubes are introduced with respect
to carbon black filler. With them, an improvement in this property of more than 25% is
achieved with respect to the unfilled material.

Polymers 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

70 80 90 100

70

80

90

100  unfilled
   5CB    5CNT 
 10CB  10CNT 
 15CB  15CNT 
 20CB
 25CB
 30CB

Sh
ap

e 
re

co
ve

ry
, R

r (
%

)

Shape fixing, Rf (%)  
Figure 8. Relationship between fixation and shape recovery values for the different nanocomposites 
studied. Solid symbols mark the data for the first cycle, while hollow symbols represent the follow-
ing three cycles. 

Summarizing the results shown in Figure 8 for the different shape-memory elasto-
mers reinforced with carbonaceous fillers, the best balance of properties belongs to the 
nanocomposites with 10 or 15 phr of CNTs, whose fixation exceeds 90% and recovery 
capacity exceeds 86% for the first cycle, with these values progressively increasing with 
the number of cycles. Reinforcement with nanotubes is the most effective approach for 
this application, while reinforcement with carbon black has a similar influence but re-
quires a filler amount of more than double that of the nanotubes (20–25 phr), which has 
repercussion on other properties (e.g., processing properties and elongation at break). 

3.3.2. Effect of the Incorporation of Fillers on the Thermal Conductivity of Elastomeric 
Nanocomposites 

Figure 9 shows the experimental values of thermal conductivity. All samples show a 
linear dependence on temperature in the analyzed range between 20 and 80 °C. The ther-
mal conductivity obtained increases with the addition of an increasing content of charge 
in its structure. This effect is higher when carbon nanotubes are introduced with respect 
to carbon black filler. With them, an improvement in this property of more than 25% is 
achieved with respect to the unfilled material. 

0 5 10 15 20 25 30
0.10

0.15

0.20

0.25

0.30

  CB    CNT    Temp.
       20 ºC
       30 ºC
       55 ºC
       80 ºC

Th
er

m
al

 c
on

du
ct

iv
ity

, λ
 ( 

W
·m

- 1
·K

- 1
)

Filler content (phr)  
Figure 9. Thermal conductivity of the pristine XNBR-4MgO-0.5DCP, and with an increase in content 
of CB and CNT fillers, measured at 4 reference temperatures. 

Figure 9. Thermal conductivity of the pristine XNBR-4MgO-0.5DCP, and with an increase in content
of CB and CNT fillers, measured at 4 reference temperatures.

The slight improvement in the thermal conductivity of the samples should contribute
to the shape-memory properties of the material, since the stimulus used to activate this
effect is a thermal one. To analyze this improvement, the instantaneous recovery ratio, iRr,
and the instantaneous recovery speed, Vr, were calculated as a function of time following
Equation (2) and

Vr

(
%·min−1

)
= f (T) =

(
−

∂εp(T)
∂T

)
· (10 ◦C·min−1)× 100% (4)

where ∂εp(T)
∂T is the temperature derivative of the strain from the strain recovery data,

and 10 ◦C·min−1 is the heating rate. The temperature derivative of the strain is negative
due to the decreasing strain recovery curve, so the minus sign is used to convert the
instantaneous velocity into a positive value. Both variables (iRr and Vr) depend on the
recovery temperature, T, in each moment, and they are represented in Figure 10 for samples
reinforced with CNTs, as they presented the best thermal conductivity values.

Slight improvements can be observed, both a faster response speed and a maximum
speed, which appear at times (and, therefore, at temperatures) slightly lower than when
CNT is added as a filler. Even so, the limitation of the ramp in controlling the temperature
in the equipment (10 ◦C·min−1) influences these results; as can be seen in Figure 10a,
the evolution of instant shape recovery is linked in a certain way to the evolution of the
chamber (running) temperature, so big differences cannot be appreciated. Instant heating
to 150 ◦C should be ideal to unveil these uncertainties.
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Figure 10. (a) Instantaneous recovery ratio curves as function of recovery temperature and (b) in-
stantaneous recovery speeds as function of recovery temperature for samples reinforced with in-
creasing amounts of CNTs. 
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Figure 10. (a) Instantaneous recovery ratio curves as function of recovery temperature and (b) instan-
taneous recovery speeds as function of recovery temperature for samples reinforced with increasing
amounts of CNTs.

3.3.3. Electroactivation of the Shape-Memory Effect in Elastomeric Nanocomposites

Most unfilled SMPs are inert to electric current, thus preventing the shape-memory
effect from being directly electrically induced through resistive heating. Furthermore, when
introducing fillers, it is generally difficult to control the dispersion of the nanoparticles
to achieve a continuous and regular conductive path or network in the polymer matrix,
resulting in high electrical resistivity.

The electrical conductivity of the elastomeric nanocomposites varies with the concen-
tration of the introduced nano-fillers as presented in Figure 11.
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Figure 11. Real electrical conductivity (σ’) in alternating current (AC) at a frequency of 1 Hz for
pristine XNBR-4MgO-0.5DCP and with increasing filler content of CB and CNT. The error bar
represents a standard deviation, illustrating the variability of the tested results.

As the filler content increased, the average electrical conductivity of the nanocomposite
increased from ~10−11 to ~10−4 S·cm−1. This range is sufficient to achieve the heating of
the materials by the Joule effect, as has been previously demonstrated [74].

The electrical conductivity in the rubber compound increases with a higher CNT or
CB fraction, because more conductive paths for electrical currents are formed in the rubber
matrix. Therefore, both the current transport capacity and the amplitude of the electric
current increase. Furthermore, by increasing the number of possible conductive paths
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through the fillers, the probability of forming shorter distances for electrons in the electrical
current increases, resulting in increased electrical conductivity.

As shown, the electrically conductive properties of SMP nanocomposites improve
with the addition of CNT fillers. Therefore, an electrical actuation and an electrically
activated shape-memory effect could be achieved in these nanocomposites through thermal
activation by the Joule effect [75].

For the practical application of SMPs, their shape recovery performance is extremely
important and is generally evaluated using a bending test. The effect of the electrical
drive and recovery of the original shape was investigated in the nanocomposite with
15 phr of CNTs since it presented the best electrical conductivity data. “U”-shaped sheets
were fabricated to measure this application for different samples. During these tests, the
main parameter is the angle of the SMP as it is bent in its temporary shape [76]. Due to
the elastomeric characteristics of the nanocomposites, the samples were deformed under
flexion under an external force by using a steel mold, and they were subsequently heated
in that position to 150 ◦C to temporarily fix their shapes, maintaining the deformation and
the temperature for 15 min.

After cooling to room temperature, the deformation was released, and the temporary
shape was fixed. The recovery of the electric-field-activated shape was observed by record-
ing images with a video camera while a constant voltage of 50 V (DC) was applied to the
tested sample. Figure 12 shows the sequential images of the electroactive behavior during
the process of recovery of the shape of the tested nanocomposite (15 phr of CNTs) (see the
complete video in the Supplementary Materials, “Video S1”).
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Figure 12. Electroactive shape recovery behavior of the XNBR nanocomposite with 15 phr of CNTs
as a function of the time of application of a constant voltage of 50 V.

As presented in Figure 13, the temperature that the sample reached was measured
using a thermocouple in contact with the surface of the specimen, and the recovery of the
instantaneous shape was calculated as a function of this temperature over time through
Equation (2), with the application of a current of 50 V.

The original shape of the sample was almost completely recovered in ~15 min when a
50 V electric field was applied. The process was previously tested with lower electric fields,
but the sample was not heated enough to recover its original shape. The shape recovery
speed therefore strongly depends on the magnitude of the applied voltage, provided that
the current intensity remains constant. As such, the nanocomposites could be heated
more quickly or to a higher temperature with application of a higher voltage. However,
it was difficult to control the temperature of the sample throughout the process for other
electric fields.

The electrical actuation efficiency, which is a measurement of the degree of conversion
of the transformation of electrical energy into resistive heat energy, was not systematically
investigated. Resistive heat is not completely transferred to the SMP matrix due to the
practical dissipation of energy in air. Therefore, high actuation efficiency is essential for the
sustainable development and practical application of SMPs powered by electricity. Hence,
the determination of shape recovery behavior could not be fully characterized. However,
the possibility of using an electric field to activate the recovery of the original shape in this
type of elastomeric nanocomposites was demonstrated.
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Figure 13. (a) Surface temperature of the XNBR sample with 15 phr CNTs when a current of 50 V
is circulated through it. (b) Instantaneous recovery of the shape as a function of the temperature
reached by the sample.

4. Conclusions

Shape-memory elastomeric composites, based on an XNBR matrix with ionic and
covalent crosslinks and the introduction of carbon black and multiwalled carbon nanotubes
as reinforcing fillers, were obtained.

The incorporation of reinforcing fillers helped to improve the shape-memory behavior
of these ionic elastomers, both in the fixation of the temporary shape and in the recovery
of the original shape, over progressive cycles. The introduction of carbon nanotubes
resulted in the best fixing properties being obtained (reaching 10% improvement compared
to the unfilled material in both properties), achieving fixing and recovery ratios above
90%. Moreover, the elastomeric nanocomposites showed an improvement in thermal
conductivity. This affects the response speed of the material when recovering the original
shape, so better control of the response to the thermal stimulus is achieved. This fact opens
the possibility of studying the temperature memory effect of these compounds, as the
materials react at temperatures close to their deformation temperature.

Finally, the introduction of electrically conductive fillers, e.g., carbon nanotubes and
carbon black, provides the possibility to develop ionic elastomers with shape-memory
properties that can be activated by an electric current, based on the heating of the material
by the Joule effect, achieving a fast and clean stimulus requiring only a current source.
This method opens up the field for the recovery of the selective shape, in specific areas, by
specific heating between the entry and exit points of the current. As such, we introduced a
path to be explored in depth in future studies.

Supplementary Materials: The following Supplementary Materials can be downloaded at: https://www.
mdpi.com/article/10.3390/polym14061230/s1, manuscript-supplementary: Supporting information
about additional tests. Video S1: Electroactive shape recovery behavior of the XNBR nanocomposite
with 15 phr of CNTs as a function of the time of application of a constant voltage of 50 V (playback
speed ×20).
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