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Abstract: Wood warping is a phenomenon known as a deformation in wood that occurs when changes
in moisture content cause an unevenly volumetric change due to fiber orientation. Here we present
an investigation of wood warped objects that were fabricated by 3D printing. Similar to natural wood
warping, water evaporation causes volume decrease of the printed object, but in contrast, the printing
pathway pattern and flow rate dictate the direction of the alignment and its intensity, all of which
can be predesigned and affect the resulting structure after drying. The fabrication of the objects was
performed by an extrusion-based 3D printing technique that enables the deposition of water-based
inks into 3D objects. The printing ink was composed of 100% wood-based materials, wood flour,
and plant-extracted natural binders cellulose nanocrystals, and xyloglucan, without the need for any
additional synthetic resins. Two archetypal structures were printed: cylindrical structure and helices.
In the former, we identified a new length scale that gauges the effect of gravity on the shape. In the
latter, the structure exhibited a shape transition analogous to the opening of a seedpod, quantitatively
reproducing theoretical predictions. Together, by carefully tuning the flow rate and printing pathway,
the morphology of the fully dried wooden objects can be controlled. Hence, it is possible to design
the printing of wet objects that will form different final 3D structures.

Keywords: 3D printing; nanocellulose; shape programming; wood

1. Introduction

Wood is processed by subtractive manufacturing, in which a tree trunk is first cut
down, and then sawn into smaller pieces. Traditionally, these pieces form the building
blocks from which wood products can be built, or in a more modern approach, these pieces
are chemically and mechanically processed with additives to produce wood plate materials
(e.g., MDF or plywood). These processes influence the way we design our products,
providing guidelines to optimize costs and enhance dimensional stability. For example,
layered wooden plates are both cheap and mechanically resilient. Therefore, whenever
a wooden structure contains a curved, thin part, it is formed by bending a flat plate. This
limits the part to bend only in one direction, and objects that must have a double curvature,
i.e., the seat of a chair, cannot be built from a plate, thus increasing their complexity and
price [1]. This is well known by carpenters and cabinetmakers.

Here, we invert this subtractive manufacturing into additive manufacturing by 3D
printing natural plant cell-wall binders and wood particles [2]. Our fabrication approach
enables creating or reconstructing composites without “paying” in labor for their complex-
ity. This enables us to revolutionize the way we design and fabricate wooden structures.
By our approach, we 3D print a liquid dispersion wooden ink that later dries out and
solidifies. Traditionally, this can be problematic as it leads to a distortion of the shape after
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the fabrication of the 3D object. Moreover, in many cases, a non-uniform shrinkage can
lead to material failure (i.e., in drying mud, internal stresses caused by humidity gradients
lead to fracture).

For instance, this is often the case when a tree is cut down. The loss of water causes
shrinkage along the three axes as moisture content changes [3]. Wood internal structure
consists mainly of longitudinal tracheid cells and about 5% radially oriented ray cells [4].
Therefore, shrinkage in volume imposes an axisymmetric shrinkage that is different in
the radial and longitudinal direction and frequently leads to the development of cracks
(Figure 1a) [5]. Such uneven shrinkage is a phenomenon known as wood warping. This
phenomenon, as beautiful as it is, does not only damage products made of wood, such as
in house constructions and furniture, but harms engineering tolerances [6].
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Figure 1. Examples of shrinking-induced shape changes in drying natural materials. (a) Crack prop-

agation in Pinus halepensis tree trunk due to volume decrease by water evaporation in a cylindrical 

geometry constrain. (b) Delonix regia seed pod twists into a chiral shape. (c) A drying thin slice of an 

oak tree trunk buckles out-of-plane releasing the internal stresses instead of breaking (credit: Pascal 
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Figure 1. Examples of shrinking-induced shape changes in drying natural materials. (a) Crack
propagation in Pinus halepensis tree trunk due to volume decrease by water evaporation in a cylindrical
geometry constrain. (b) Delonix regia seed pod twists into a chiral shape. (c) A drying thin slice
of an oak tree trunk buckles out-of-plane releasing the internal stresses instead of breaking (credit:
Pascal Oudet [7]).

Nevertheless, the very same mechanism is exploited by members of the plant kingdom
to change their shape. Plants have no muscles or skeletons and rely on differential growth
to achieve shape changes [8,9]. Moreover, when a plant dries and shriveled due to water
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evaporation, which reduces its volume, cell wall constraints dictate the features of the
resulting deformation [10,11]. These constraints may take a functional role of movement,
for spreading seeds or digging in the sand for germination (Figure 1b).

Recently, this phenomenon was adopted to fabricate biomimetic responsive materials
that undergo uneven shrinkage as a means to induce shape changes in thin sheets, which
favor buckling out-of-plane, rather than breaking [12]. Consequently, a thin tree trunk slice
may buckle out-of-plane instead of breaking, as shown in Figure 1c. An important class of
smart materials that undergoes an anisotropic shrinkage includes nematic elastomers [13],
3D printed thermoplastics [14], hydrogels [15], and channeled inflatables [16]. Extrusion-
based 3D printing, as investigated in the current research, also belongs to this category,
for which previous reports have identified two main factors that govern the programmed
geometry: the amount of shrinkage anisotropy and its local orientation [17]. The first
corresponds to the amount of the induced alignment and the latter to the printing direction.
Therefore, controlling the alignment direction is straightforward by pre-programming the
orientation by various techniques. However, direct control of the alignment itself is not
simple and is possible only in a few experimental systems [18].

In this report, we utilized a 3D printing approach to control the alignment direction
and the printing flow rate to control the shrinkage anisotropy of wood objects. The printing
speed was selected as a control parameter since it was assumed that the alignment of the
materials in the ink is dependent on flow rate. Aiming for a wood-like material, we used
cellulose-based ink composed of wood-waste microparticles, named wood flour (WF), and
the plant-extracted natural binders, cellulose nanocrystals (CNCs) and xyloglucan (XG).
Like in natural wood, we also use water as the main component in building structures
that, through water evaporation, results in a 3D warped object. The controlled change
in structure to water evaporation opens the way towards the 4D printing of fully natural
wood objects.

2. Materials and Methods

Cellulose nanocrystal (CNC) freeze-dried powder was obtained from Celluforce Inc.,
Montreal, Canada (freeze-dry, LOT #2015-009). Wood flour (WF) from hardwood (particle
size distribution of 92% < 75 µm and 2% > 150 µm) was obtained as a gift from LA.SO.LE.
EST S.P.A, Percoto, Italy (MOD-EASY FIBER-75). Xyloglucan (XG) from tamarind seed was
supplied by Megazyme Inc., Bray, Ireland (Lot #150901).

2 wt% XG suspensions were prepared by vigorously mixing XG with distilled water
(DW) in a glass vial for 1 h, at 80 ◦C, until a clear suspension was achieved. CNC was
suspended in DW (7.5 wt%) and sonicated. Wood ink was prepared by mixing WF:CNC:XG
(2.9:1:0.01 wt) for 5 min, using a planetary mixer (AR-100, THINKY Co. Ltd., Tokyo, Japan).

2.1. 3D Printing

Wood ink was extruded using a Hyrel3D 30 M (Hyrel International, Inc. Norcross, GA, USA)
printer equipped with a disposable syringe extruder (SDS-10) with a 10 mL luer-lock syringe
mounted with 1.626 mm (14 G) smoothflow tapered tip (Nordson EFD, USA). G-code files were
prepared via Slic3r software, and objects were printed at 1 mm layer thickness with various
speed rates as indicated in the text. Printing and drying of all samples were performed at
room temperature.

Throughout the manuscript, we use the term ‘printing speed’ rather than ‘flow rate’
as it is more intuitive to understand and implement in other systems. The volumetric flow
rate can be calculated by multiplying the cross-section (path width times layer thickness)
with printing speed. For instance, a printing speed of v = 300 mm

min corresponds to the
volumetric flow of Q = 8 mm3

s . The 3D printing system allows for control of the flow rate
using a stepper motor piston that dictates the exact amount of volume to be extruded at
a given time.
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2.2. Object Characterization

Warped objects dimensions were photographed using a 2D scanner (HP LaserJet
1536dnf MFP), and a digital camera (Sony a6000 equipped with Laowa 65 mm F2.8 lens).
16 specimens were measured for cylindrical samples and 18 specimens were measured for
the helical samples.

2.3. Modeling and Simulation

Numerical optimization was performed in Python3, using the built-in optimizer of
the SciPy package (scipy.optimize, v1.7.1) using the Limited-memory constrained Broyden–
Fletcher–Goldfarb–Shanno algorithm (L-BFGS-B).

3. Results and Discussion

Wood warped objects were obtained by extrusion-based 3D printing technology using
“wooden“ aqueous ink consisting of finely ground WF particles and plant-extracted natural
binders from the plant cell wall, CNC and XG. Extrusion of such ink is possible due to CNCs
rod-like particles that function as a rheological modifier, which result in a pseudoplastic
rheological behavior. It means that at rest, the viscosity of the ink is high, and therefore
prevents it from dripping from the extruder nozzle, but as pressure is applied by the
syringe piston, the viscosity drops and enables the smooth flow of ink [19]. Once the liquid
ink is deposited at its pre-designed location, the viscosity increases again and enables the
fixation of the 3D object (extensive rheology measurements have been reported in our
previous publication [2]). The applied pressure in extrusion-based printing systems has
been shown to influence the alignment of the particles, which results in unique anisotropy
of the printed objects [20,21].

Preliminary experiments showed that in our system, the anisotropic property resulted
in a different shrinkage ratio of wet to dry objects, perpendicularly and parallel to the
printing direction. Based on this understanding we printed wooden objects at different 2D
predesign pathways and various speeds, while the obtained dried object was spontaneously
warped into a 3D object.

Due to the brittleness of dried wood and the printing process technique, obtaining
an uncracked dried object is a major challenge. To reduce substrate influence on drying
and the development of cracks, the printing process was conducted on a plastic, thin sheet
placed on a Teflon substrate, as shown in the Figure 2 illustration. After an object was
successfully printed, the plastic sheet was cut along the printed object, thus enabling the
object and the plastic sheet to slide onto the Teflon substrate during drying. In addition,
to reduce the non-homogeneous drying effect due to the contact with the substrate, we
extended the drying process by keeping the object in a closed chamber, which prolonged
the time to at least 48 h for complete drying. Typically, the mass decreased by 23.3% from
printing to its final dry state.

To control the 4D behavior, we printed bilayer structures that differed in printing
orientation and flow rate. When the specimens are dried, the difference in printing orienta-
tion results in a spontaneous bi-axial (double) curvature, that could vary in direction and
magnitude [22]. The emergence of this curvature morphs the specimen’s shape. Finding
the resulting shape involves an elastic calculation which is usually not tractable and can
only be performed numerically [23]. The complexity stems from two competing tendencies
of the sheet: the bi-axial spontaneous curvature favors configurations with saddle-like
double curvature, while the flat lateral geometry of the sheet only admits a single curvature
(cylinders and cones) without stretching. Clearly, the two tendencies cannot be simulta-
neously fulfilled in a single configuration. Therefore, the equilibrium configurations of
such structures, known as incompatible sheets, are set by the competition between their
stretching and bending energy terms. The former penalizes for non-vanishing Gaussian
curvature and the latter for deviations of the curvature from the induced one [23,24]. In
the thin limit, the sheet is unstretchable, obeying its in-plane geometry, hence having
zero Gaussian curvature and the curvature being uniaxial everywhere (deviating from
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the induced one). This deviation costs bending energy. In the thick limit, the structure
obeys the induced (double) curvature at the cost of stretching energy. This fact is the source
for the shape transitions that appear in many such systems, where sheets that are made
of the same material undergo shape transitions depending on their lateral geometry and
thickness. Whenever the structure is elongated and is ribbon-like, such as the structures
printed in this work, the shape transition also involves the width of the structure, where
the wide and narrow ribbons correspond to the thin and thick limits, respectively.
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Figure 2. Schematic drawing of the printing and drying process. Wood ink consists of WF, and CNC
and XG are extruded in a 2D predesign pathway on a plastic wrap placed on a Teflon substrate. The
obtained object reduces its volume as a result of gradual evaporation of water and glides on the
Teflon substrate. The anisotropic shrinkages result in a 3D wood warped object.

To exploit the shape-programming capability of our system, we must first calibrate
the induced curvature, κ0. For that, we chose a configuration that would result in a robust
shape that was easily measurable: rectangular objects consisting of two layers. The bottom
layer was pre-designed so that the printing pathway lines moved parallel to the long axis
of the rectangle, while the top layer was printed perpendicular to it (Figure 3a). Moreover,
we hypothesized that different printing velocities (corresponding to different flow rates)
would affect the microscopic anisotropy of the material that would be represented in the
induced curvature. The structure of this rectangular object has an induced curvature of
opposite signs, along with and across its long dimension. In either of the elastic limits,
the solution is cylindrical, with a radius corresponding to the induced curvature. In the
thin/wide limit, no perpendicular curvature should appear, and in the thick/narrow limit,
the cylinder will have a saddle-like profile, similarly to a catenoid. In both cases, the radius
of the cylinder corresponds to the magnitude of the induced curvature.

Next, we printed objects of varying lengths and varying printing speeds while main-
taining the same object dimensions by adjusting the printing flow rate, which, upon drying,
indeed adopted cylindrical shapes having varying radii. The dependence of the microstruc-
ture of the objects on the printing speed was evaluated by SEM imaging and is presented
in Appendix A. The microstructures were evaluated after the objects were printed and
wrapped. As-received wood particles are seen in sizes of tens of microns (Figure A1), in
agreement with the materials data sheet (particle size of less than 75 µm size particle for
92% of particles and above 150 µm for 2% of the wood flour particles). At 150 mm/min,
the ink seemed to have solidified into a uniform structure but with no preferred orientation
(Figure A2). At higher printing speeds of 600 mm/min and 1500 mm/min, it appeared
that some of the particles aligned with the printing pathway direction (Figures A3 and A4
respectively). This finding, together with the macrostructure behavior of the wrapped
object, suggests that particles do align with respect to the predesign pathway during the
printing by extrusion.
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Figure 3. 90◦ oriented bilayers. (a) printed object “as printed”, wet length = 60 mm, wet width = 15 mm.
(b) Curvature as a function of printing speed measured at two different locations: center and side, blue
and orange markers, respectively. (c) Dried 3D warped objects at different velocities, scale bar indicates
10 mm, demonstrating an increased effect at higher velocities.

For shape analysis, we took photos of these structures from a side-view and measured
their circular profiles. However, our measurements revealed that in many cases, the radius
of these profiles changes along with the ribbon, contradicting our prediction of cylindrical
structures. Figure 3b shows the difference of the measured curvature at two places, the
center and side of the ribbon. As can be seen, the measured curvature on the center of
the ribbon was smaller than on the side. We hypothesize that this discrepancy is due to
gravitational effects, resulting from the fact that the pre-design printing pathway dictated
bending in a direction opposite to gravity. To test it, we made a simple model that minimizes
the bending and gravitational energy of the profile (see Appendix B for more details). The
model assumes a quasi-1D structure, with a spontaneous curvature (κ0), bending rigidity
(B), and gravitational energy density (ρgtz ≡ Gz), from which it can be deduced what is
the final obtained curvature of the object (Figure 4). The behavior of this simple model
looks almost identical to our experimental measurements and revealed some key insights
regarding the system.

First, at the two edges of the ribbon, the curvature coincides with the induced one,
and closer to its center the gravitational effects become more dominant. This was predicted,
since a slight modification of the curvature near the center will reduce the height of the
entire structure, thus significantly reducing the gravitation energy. In contrast, modifying
the curvature at the edges will hardly reduce gravitation energy.
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Figure 4. Applying the curvature model on 3D warped objects at different velocities. The dashed
lines are the profiles resulting from our numerical model for different values of κ0. The resulting
values vary from 0.1 mm−1 to 0.14 mm−1.

Moreover, the competition between gravity and bending energy introduces a new

length scale, λ ≡ Bκ2
0

2G , which sets the typical height, 〈z〉, in which gravity becomes domi-
nant. Whenever λ−1〈z〉 � 1, gravity dominates the structure’s mechanics, and whenever
λ−1〈z〉 � 1, gravity can be neglected.

Finally, if λ−1〈z〉 is close to one, when fixing the bending rigidity and varying the
induced curvature only slightly, very large variations of the curvature are brought near the
center (while the curvature near the edge follows the induced one and varies only a little).
Therefore, we see again that the effect of gravity on the center of the ring is greater.

Based on this understanding, we measured the induced curvature, κ0, by calculating
the radius from the side of the ribbon, and the obtained curvature was found to be 0.135–
0.145 1/mm, increasing with printing speed (Figure 3b). This observation adds another
tier to the programmed wood warped geometry, by introducing a degree of alignment
to the orientation of the material. Furthermore, we find that for λ ≈ 21 mm, our model
reproduces the large variation in the curvature at the center of the ribbon. For the formed
ribbons, L ≈ 60 mm which corresponds to a configuration with a typical height of about
10 mm, hence λ−1〈z〉 ≈ 0.5, and therefore it fits an intermediate regime in which the shape
is dominated by bending but gravitational effects cannot be neglected.

Following the cylindrical structure calibration, helical architecture was accomplished
by predesigning printing pathways to be not only orthogonally between the two layers but
oriented with an angle of ±45

◦
to the rectangular, long axis (Figure 5). Such an architecture

appears in seedpods and self-assembled macromolecules, and is known to generate helical
structures [25]. As opposed to the cylindrical orientation, now the shape transitions were
characterized by the radius and pitch of the warped structure. Narrow wooden bilayers
objects obey the (saddle-like) reference curvature and therefore warped into a twisted
structure with a vanishing radius. At the other limit, to avoid stretching, wide objects are
warped into helical structures cut from a cylinder, which follows one of the prescribed
principal curvatures as much as possible, while developing no Gaussian curvature.

Objects of varying widths (10–30 mm) were printed, at the two velocities, 300 and
900 mm/min. Again, the wet samples were rectangular (L = 900 mm) and flat, but upon
drying, they adopted striking helical configurations, which converted from twisted to
helical configurations (Figure 5a). Each warped object was photographed, and the radius
and pitch were measured. As expected, samples with the same lateral dimensions printed
at different velocities adopted different configurations. In the wide regime (W), the radius
of the helical structures should be rW ≈ 1/κ0, which corresponds to curvatures of 0.14
and 0.1 mm−1 for the higher and lower velocities, respectively (Figure 5b). These values
are similar to what was found in the calibration experiments. The pitch in this limit is
given by pW ≈ 2π/κ0, which for our calibrated values should read about 50 and 40 mm
for the higher and lower velocities, respectively (Figure 5c). The values we measured were

somewhat smaller. Previous studies found the transition to be around wc ≈ 4
√

t
κ0
≈ 15 mm

which is where the samples convert from helical into twisted structures [24]. Near the
transition, the radius decreases rapidly, and the pitch spikes. Finally, at the narrow regime
(N), the radius vanishes as expected, and the predicted pitch again reads pN ≈ 2π/κ0.
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Figure 5. 45◦ oriented bilayers. (a) Dried, 3D-warped helical objects at different velocities and width,
scale bar indicates 10 mm. (b) Dimensionless radius versus dimensionless width. (c) Dimensionless
pitch with versus dimensionless width. The vertical dotted line represents the threshold of the
shape transition.

Overall, the experimental results qualitatively matched the predicted behavior. Fur-
thermore, we found good quantitative agreement for the critical width of the transition and
the behavior of the sample printed at high velocity. As argued above, the samples printed
at a lower velocity seemed to be more sensitive to gravity, which can prevent them from
twisting into the right shape throughout the drying process.

Once we have established the possibility to control the shape up to helical structures,
by tailoring the orientation and alignment, this two-knob simple concept, can serve as
a new toolkit to create wooden objects with many complex structures. By introducing
different combinations of the two knobs, we could create 3D printed seedpod-like structures,
as shown in Figure 6, which is an excellent starting point for the fabrication of more
complicated objects.
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4. Conclusions

In this work, we presented how using wooden ink with a raw industrial polydisperse
wood powder with a carefully controlled 3D printing system can result in morphing
wood objects. We printed elongated ribbons composed of two perpendicular layers from
two families of structures: cylinders, in which the printing direction matched the axes of
the ribbon, and helices, in which the printing direction was rotated by ±45◦ with respect to
these axes. The cylindrical structures were used to estimate the induced curvature and to
gauge the magnitude of gravitational effects on the shape. The helices displayed a shape
transition from a twisted structure to a flat helix. It was found that the critical width,
associated with this transition, agrees with the theoretical prediction.

Different from previous reports, we not only predesigned the 3D printing pathway,
but we controlled the ink flow rate, thus enabling orientation and degree of alignment.
These results validate our hypothesis that CNC particles affect the shear alignment induced
by the extruding process. Here, for simplicity, we printed only along straight lines. but
introducing curved lines [26], zigzags [27], and fractal Hilbert patterns [28] will greatly
extend the possible outcomes. Furthermore, the presented approach can be implemented
in other systems, such as hydrogels, and by carefully altering the characteristics of the ink,
the effect of printing velocity on the induced orientation can be enhanced.

In conclusion, 3D printed wooden structures were successfully designed and fabri-
cated to evolve through time into programmed warped geometry, by controlling both
the direction via the printing predesigned pathway and the anisotropy by adjusting the
printing flow rate. We have found that Gaussian curvature can be induced for continuous
wooden surfaces, thus enabling fully biomimic control of objects, by tailoring both materi-
als’ composition and the drying processes of wood. This opens new possibilities toward
the 4D printing of wood.

Author Contributions: Conceptualization, methodology, writing—review and editing, D.K., I.L.,
E.S., O.S. and S.M.; investigation, D.K., I.L., Y.K. and O.L.; supervision, E.S., O.S. and S.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Israel Ministry of Science Technology and Space, grant number
3-15638, and was partially supported by the USA–Israel binational science foundation, Israel, grant
number 2014310.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in the form of
a Jupyter notebook in FigShare at doi:10.6084/m9.figshare.17311544.

Acknowledgments: Inmywork Studio is acknowledged for illustration artwork. The authors greatly
thank LA.SO.LE for kindly providing the WF sample.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Microstructure of the Warped Objects

Samples microstructure were evaluated after objects were printed and let for warping
using SEM imaging (XHR Magellan 400L).
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Appendix B. Gravitational Effects

To assess the magnitude of the gravitational effects we used a reduced 1D model of
the problem: an Elastica of length ` and thickness t is subject to a spontaneous curvature κ0
and gravity. Our approach was to find the configuration that minimizes the total energy
E = EB + Eg.

We use the arclength coordinate u to express both energy densities εB and εg, satisfying
E =

∫ (
εB+εg

)
du. The gravitational energy density is simply

εg = tρgz(u) ≡ Gz(u)

where g is the gravitational acceleration, ρ is the mass density of the material, and z(u) is
the local height of the configuration. The bending energy is given by

εB =
1
2

B(κ(u)− κ0)
2

where B is the bending rigidity of the material, that for an isotropic plate is given by

B =
t3Y

12(1− ν2)

where Y and ν are the Young modulus and Poisson ratio of the material, respectively.
For simplicity, by assuming that both halves of the ribbon are symmetric and non-

dimensionalizing both energy terms, we minimize the reduced energy

Ee f f =

`/2∫
0

((
κ(u)

κ0
− 1
)2

+ λ−1z(u)

)
du

where, λ =
Bκ2

0
2G =

t2Yκ2
0

24ρg(1−ν2)
, is a length scale setting the ratio between the gravity and bend-

ing energy magnitudes compared to the typical height, 〈z〉 (i.e., λ−1〈z〉 � 1 corresponds to
situations where gravity dominates the structure’s mechanics).

Finally, the two energies depend on different yet dependent variables, hence we aim
to express the z coordinate using the curvature κ.

Note that from the definition of the curvature, dθ = κ(u)du, and dz = κ−1 sin θdθ =
sin θ du (and naturally, dx = cos θdu). Then by assuming z(u = 0) = ∂uz(u = 0) = 0 (the
center is at height 0 and is horizontal)

θ(u) =
u∫

0

κ
(
u′
)
du′

and finally, the configuration is given by

z(u) =
u∫

0

sin

 u′∫
0

κ(u′′ )du′′

du′, x(u) =
u∫

0

cos

 u′∫
0

κ(u′′ )du′′

du′

For the numerics, we discretize the ribbon into N identical segments of length δ:

Ee f f =
N

∑
j=1

[
δ

(
κj

κ0
− 1
)2

+ λ−1δ2
j

∑
k=1

sin

(
k

∑
m=1

δκm

)]

Estimating the bending rigidity and Young modulus:
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We find
Bκ2

0
2tρg

≡ λ = 21 mm

Assuming ρ = 1.4× 103 kg/m3 and g = 9.8 m/s2 and taking t = 80% of 2 mm = 1.6 mm
and κ0 = 0.14 mm−1 we can find the bending rigidity

B =
2tρgλ

κ2
0

= 4.7× 10−5 J

Now, assuming an isotropic material the Young modulus is:

Y =
12
(
1− ν2)B

t3 = 120 kPa
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