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Abstract: Semiflexible nunchucks are block copolymers, which consist of two long blocks of high
bending stiffness jointed together by a short block of low bending stiffness. Semiflexible nunchucks
that consist of two DNA nanorods jointed by a short segment of double-stranded (ds) DNA and
confined in two dimensions have been used in recent experiments by Fygenson and coworkers as a
tool to magnify the bending fluctuations of the linking dsDNA, which in turn are used to deduce
the persistence length of dsDNA. In a recent theoretical analysis, we showed that in a semiflexible
nunchuck with one end grafted, the fluctuations of the position of the free end that is transverse
to the grafting direction exhibit a pronounced bimodality, provided that the bending stiffness of
the hinge is not very large. In this article, we theoretically analyse a grafted semiflexible nunchuck
with a magnetic bead attached to its free end. We show that a transverse magnetic field induces an
asymmetry in the bimodal distribution of the transverse fluctuations of the free end. This asymmetry
is very sensitive to interactions with a magnetic field and, in principle, could be used in magnetometry
(the measurement of a magnetic field or the magnetic moment of the bead). We also investigate how
the response of the bimodal distribution of the transverse fluctuations of the free end to a magnetic
field depends on the bending stiffness of the nunchuck hinge. In addition, we analyse the closely
related systems of a single filament and two filaments jointed at a kink point with one end grafted
and the other end attached to a magnetic bead.

Keywords: semiflexible polymers; hinged polymers; bimodality; magnetometry; signal enhancement

1. Introduction

Semiflexible nunchucks are block copolymers consisting of two long blocks of high
bending stiffness linked together by a short block of lower bending stiffness. Such nanos-
tructures have been manufactured using DNA nanotubes linked by a segment of ds-
DNA [1,2]. The DNA nanotubes are fluorescently labeled and confined in two dimensions
between two glass plates. Their fluctuations are directly visualised and act as a magnifica-
tion of the bending fluctuations of the short dsDNA segment. The spread of the distribution
of the bending angle is used to deduce the persistence length of the dsDNA.

The conformational fluctuations of a semiflexible nunchuck in two dimensions are
amenable to analytical treatment [3]. Assuming one end to be grafted, we can calculate
(up to a numerical integration) the probability distribution of the position of the free end.
We assume that the contour length of the linking block is negligible compared to the
contour length of the two arms, and we treat it as a harmonic orientational spring that is
characterized by a bending stiffness. The probability distribution of the transverse position
of the free end (after integrating out the longitudinal position) assumes a unimodal or
bimodal form, depending on the bending stiffness of the hinge between the two arms. For
large values of bending stiffness, the distribution is unimodal with one peak and as the
bending stiffness decreases, the distribution flattens and eventually develops a pronounced
bimodality with two peaks. In order to understand the origin of this emergent bimodality,
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let us consider the limiting case of a grafted nunchuck having two perfectly rigid arms
jointed by a perfectly soft hinge. In that case, all orientations of the fluctuating arm are
equally probable, and the same is true for the position of the free end. After integrating
out the longitudinal position, the probability density of the transverse position exhibits a
pronounced bimodality. A similar bimodality has been predicted theoretically and observed
in simulations of semiflexible homopolymers with a contour length of the same order as its
persistence length [4–7]. This bimodality, or lack thereof, can be used as a rough estimate
for the bending stiffness of the linking polymer that acts as a hinge.

Magnetic beads attached to polymers, such as nucleic acids or proteins, are used
in order to exert forces or torques and probe their conformations at the single-molecule
level (magnetic tweezers) [8–12]. In addition to their use in single-molecule experiments,
magnetic beads are used to analyse the elasticity of cells or extracellular matrices [13,14]. In
this article, we consider a grafted semiflexible nunchuck with a magnetic bead attached to
its free end and two closely related systems. Our theoretical analysis is based on the weakly
bending approximation of the worm-like chain (WLC). Firstly, we consider a single WLC at
the stiff limit with one end grafted and the other end attached to a magnetic bead. We also
consider a kinked grafted system of two weakly bending WLCs rigidly jointed at a kinked
joint with one end grafted and the other end attached to a magnetic bead. The main focus
of this study is the grafted semiflexible nunchuck. In the absence of magnetic interaction,
the probability distribution of the transverse fluctuations of the free end is symmetrical for
an aligning hinge. Interaction with a magnetic field that is pointing in a direction different
from that of the grafted arm breaks this symmetry. The ensuing asymmetrical distribution
is sensitive to the parameters of the system, such as the magnetic interaction energy and
the bending stiffness of the hinge. We show that this dependence could, in principle, be
used in magnetometry or as an alternative method to determine the bending stiffness of
the hinge polymer. Magnetometry involves two types of measurements. If the magnetic
field is known, we can determine the magnetic moment of the bead. In the other case when
the magnetic moment of the bead is known, we can determine the magnetic field.

The article is organised as follows. In Section 2, we consider a single grafted WLC
at the stiff (weakly bending) limit. We review its conformational properties and then we
consider the effect of a magnet attached to its free end. In Section 3, we consider two
WLCs at the stiff limit that are jointed by a stiff kink. One end of the system is grafted
and the free end has a magnetic bead attached to it. In Section 4, we consider the case of a
grafted semiflexible nunchuck with a magnetic bead and focus on the effect of the magnetic
interaction on the bimodal distribution of the transverse fluctuations of the free end. We
conclude and summarize in Section 5. Some complicated formulas are presented in the
Appendix A.

2. Single WLC with a Magnetic Bead at the Stiffness (Weakly Bending) Limit
2.1. The Positional–Orientational Propagator of a WLC at the Stiff Limit

In this subsection, we review the behaviour of a grafted WLC in two dimensions, as
shown in Figure 1, at the weakly bending stiff limit [3]. Due to the large value of bending
rigidity, the persistence length is much greater than the total contour length L � lP and
the deflection away from the grafting direction is small, so that sin(θ − ω) ≈ θ − ω and
cos(θ −ω) ≈ 1. The conditional probability density to find the end point of the chain at
position (x, y) with orientation θ, given that it is grafted at position (x0, y0) with orientation
ω, is denoted by GL,lp(x, y, θ|x0, y0, ω) and is called the positional–orientational propagator
because it obeys the Chapman–Kolmogorov equation. In the weakly bending regime, the
propagator is calculated in closed analytic form [3,5,15–19]:
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GL,lp(x, y, θ|x0, y0, ω) =
1

NG
exp[−

3lp

L3 ((y− y0) cos(ω) (1)

−(x− x0) sin(ω))2 − lp
L (θ −ω)2]

×exp[ 3lp
L2 ((y− y0) cos(ω)− (x− x0) sin(ω))(θ −ω)]

×δ[(x− x0) cos(ω) + (y− y0) sin(ω)− L] ,

where δ(x) is the Dirac δ-function and the normalization factor NG is determined by
the condition ∫ ∫ ∫

dxdydθ GL,lp(x, y, θ|x0, y0, ω) = 1 . (2)

y

x

L x

y

x

L x

x Bead with
magnetic dipole momentMagnetic field

Figure 1. Upper panel: A typical configuration of a rather stiff grafted semiflexible filament in the
presence of thermal fluctuations. The persistence length of the filament is lp and it has contour length
L. The filament is grafted in a substrate with grafting angle ω. Lower panel: The same filament with
one tip attached to a magnetic bead.

In the remainder of this article, we use the notation
∫
≡
∫ +∞
−∞ for the sake of simplicity.

Using Equation (1), we can easily calculate the probability density of the x component of
the position of the free end point.

P′x(x)=
∫ ∫

dydθGL,lp(x, y, θ|0, 0, ω) (3)

=

√
3lp

4πL3 sin2(ω)
exp

(
−

3lp(x− L cos(ω))2

4L3 sin2(ω)

)
.
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The probability density of the y component of the position of the free end point is:

P′y(y)=
∫ ∫

dxdθGL,lp(x, y, θ|0, 0, ω) (4)

=

√
3lp

4πL3 cos2(ω)
exp

(
−

3lp(y− L sin(ω))2

4L3 cos2(ω)

)
.

In addition, the probability density of the tangent vector orientation at the free end
point turns out to be:

P′ω(θ)=
∫ ∫

dxdyGL,lp(x, y, θ|0, 0, ω) (5)

=

√
lp

4πL
exp

(
−

lp(θ −ω)2

4L

)
.

We point out that even though Equations (3) and (4) rely on the validity of the weakly
bending approximation, Equation (5) is exact and valid for any value of bending stiffness.
Next, we attach a bead with a magnetic dipole moment to the tip of the filament (see
Figure 1).

2.2. Grafted Stiff WLC with One End Attached to a Magnetic Bead

We consider a grafted weakly bending WLC with a bead having a magnetic dipole
moment~µ attached to the free end and exposed to a uniform magnetic field ~B. The magnetic
bead in this article was assumed to be a point particle with a magnetic dipole moment. Both
vectors are assumed to have only x and y components. The magnetic interaction energy
is −~µ · ~B = −µB cos(θ + θµ − θB). The orientation of the magnetic dipole deviates by a
fixed value θµ from the orientation of the tip of the filament θ. Therefore, the orientation
of the magnetic bead was θ + θµ. The orientation of the magnetic field θB is fixed (see
Figure 1). This interaction affects the filament conformations through the Boltzmann
weight exp[~µ · ~B/(kBT)].

The probability density of the x component of the end point position at the Gaussian
limit is given by the following expression:

Px(x)=
∫ ∫

dydθGL,lp(x, y, θ|0, 0, ω) (6)

× 1
NB

exp(KB cos(θ + θµ − θB))

=
1

Nx
exp(Ax) ,

where Nx is the normalization factor and Ax is given by Equation (A2) in the Appendix A.
KB = µB

kBT is the dimensionless strength of the magnetic energy relative to the thermal energy.
The probability density of the y component of the free end point position at the weakly

bending (Gaussian) limit is:

Py(y)=
∫ ∫

dxdθGL,lp(x, y, θ|0, 0, ω) (7)

× 1
NB

exp(KB cos(θ + θµ − θB))

=
1

Ny
exp

(
Ay
)

,
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where Ny is the normalization factor and Ay is given by Equation (A6) in the Appendix A.
In addition, the probability density of the orientation of the free end point is given by:

Pω(θ)=
∫ ∫

dydxGL,lp(x, y, θ|0, 0, ω) (8)

× 1
NB

exp(KB cos(θ + θµ − θB))

=
1

Nθ
exp

(
−

lp(θ −ω)2

4L
+ KB cos(θ + θµ − θB)

)
.

Here, Equation (8) is calculated using the weakly bending approximation, but it is
generally valid due to the fact that Equation (5) is exact. As a consistency check, we look at
the limit of KB = 0. At this limit, Equations (6)–(8) reduce to Equations (3)–(5), respectively.
The effect of the magnetic interaction on the filament conformations is shown in Figures 2–4.

Figure 2. The probability density of the x coordinate of the position of the tip of a single grafted
filament with a magnetic bead, as shown by Equation (6). The red, gold, green, black and blue colours
correspond to KB = 0, KB = 3, KB = 6, KB = 9 and KB = 12, respectively. The fixed parameters for
all curves are: L = 1 µm; lp = 27 µm; ω = π

4 ; θB = π
8 ; and θµ = 0.

Figure 3. The probability density of the y coordinate of the position of the tip of a single grafted
filament with a magnetic bead, as shown by Equation (7). The red, gold, green, black and blue colours
correspond to KB = 0, KB = 3, KB = 6, KB = 9 and KB = 12, respectively. The fixed parameters for
all curves are: L = 1 µm; lp = 27 µm; ω = π

4 ; θB = π
8 ; and θµ = 0.



Polymers 2022, 14, 695 6 of 14

Figure 4. The probability density of the orientation of the tip of a single grafted filament with a
magnetic bead, as shown by Equation (8). The red, gold, green, black and blue colours correspond to
KB = 0, KB = 3, KB = 6, KB = 9 and KB = 12, respectively. The fixed parameters for all curves are:
L = 1 µm; lp = 27 µm; ω = π

4 ; θB = π
8 ; and θµ = 0.

3. Two Weakly Bending WLCs Jointed at a Stiff Kink Point with One End Attached to
a Magnetic Bead

In this Section, we consider two WLCs, both at the stiff limit but they can have different
persistence lengths. They are jointed at a kink point and the kink angle γ is fixed (it does
not fluctuate). In the upper panel of Figure 5, we show the configuration of such a grafted
kinked pair of arms. The first arm is grafted onto the substrate with orientation ω, and it
has persistence length lp1 and contour length L1. The second arm is attached to the end
point of the first arm at the kink point and it has persistence length lp2 and contour length
L2. We label the end point of the first arm with the number one, which is also the kink
point. We label the end point of the second arm of the structure with the number two. The
end point of the structure is the same as the end point of the second arm. By concatenating
the propagators associated with the two arms, we calculate the probability density to find
the y component of the position of the end point of the kinked structure at a given value y2:

Pky(y2)=
∫ ∫ ∫

dx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (9)

×
∫ ∫

dx2dθ2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)

× 1
NB

exp(KB cos(θ2 + θµ − θB)) .

and

Pkθ(θ2)=
∫ ∫ ∫

dx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (10)

×
∫ ∫

dx2dy2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)

× 1
NB

exp(KB cos(θ2 + θµ − θB)) .

By performing the integrals in Equation (9), we obtain an analytic expression for
Pky(y2) at the Gaussian limit:

Pky(y2) =
1

Nky
exp

(
Aky

)
, (11)

where Aky is given in the Appendix A.
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Figure 5. Upper panel (a): A configuration of two jointed weakly bending semiflexible filaments.
The stiff joint (kink point) has a kink angle γ. The first filament has contour length L1 and persistence
length lp1. The second filament has contour length L2 and persistence length lp2. The first filament
is grafted onto a fixed substrate with a grafting angle ω. Lower panel (b): A configuration of two
jointed semiflexible filaments with a hinge point. This differs from the system in the upper panel
in that the kink angle γ fluctuates around an average value γ0. The hinge point has a rotational
(bending) stiffness Kh.

By performing the Gaussian integrals in Equation (10), we obtain the probability
distribution of the orientational fluctuations of the free end:

Pkθ(θ2) =
1

Nkθ
exp

(
KB cos(θ2 + θµ − θB)−

lp1lp2(θ2 −ω− γ)2

4L2lp1 + 4L1lp2

)
. (12)

In the weakly bending approximation, all integrals are Gaussian. As a consistency
check, we look at two limiting cases. In the first case, γ = 0, L1 = L2 = L

2 and lp = lp1 = lp2,
while in the second case, L1 = 0, γ = 0 and lp = lp2 . In both cases, the two probability
density functions of Equations (11) and (12) reduce to Equations (7) and (8), respectively,
which correspond to a single filament with length L.

4. Two Weakly Bending WLCs Jointed at a Hinge Point (Semiflexible Nunchuck) with
One End Attached to a Magnetic Bead

In this Section, we consider the most interesting case: that of a grafted semiflexible
nunchuck with a magnetic bead at the free end, as shown in the lower panel of Figure 5.
We treat the linking middle block as a point hinge with a bending stiffness (orientational
spring). The only approximation concerning the middle block is the assumption that it has
a negligible length compared to the length of the two arms. The Gaussian distribution of
its bending fluctuations is exact, and it holds irrespective of the persistence length of the
linking polymer segment. By concatenating the propagators associated with the two arms,
we calculate the probability density to find the y component of the position of the end point
of the hinged structure at a given value y2:
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Pky(y2)=
∫ ∫ ∫ ∫

dγ dx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (13)

×
∫ ∫

dx2dθ2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)

× 1
NB

exp(KB cos(θ2 + θµ − θB))Ph(γ) ,

where

Ph(γ) =

√
Kh
2π

exp
(
−Kh

2
(γ− γ0)

2
)

, (14)

Kh = kh
kBT is the ratio of the bending stiffness of the hinge point to the thermal energy

and γ− γ0 is the angle deviation from the rest angle of the hinge point. Additionally:

Pkθ(θ2)=
∫ ∫ ∫ ∫

dγdx1dy1dθ1GL1,lp1(x1, y1, θ1|0, 0, ω) (15)

×
∫ ∫

dx2dy2GL2,lp2(x2, y2, θ2|x1, y1, θ1 + γ)

× 1
NB

exp(KB cos(θ2 + θµ − θB))Ph(γ) .

By performing five of the integrals in Equation (13), we obtain a single-integral expres-
sion for Phy(y2) at the Gaussian limit (the weakly bending limit for the two arms):

Phy(y2) =
∫

Pky(y2)Ph(γ)dγ . (16)

Similarly, we perform five of the Gaussian integrals in Equation (15) and obtain the
following single-integral expression for the orientational fluctuations of the free end:

Phθ(θ2) =
∫

Pkθ(θ2)Ph(γ)dγ . (17)

These integrals have to be evaluated numerically.
In Figure 6, we show the probability density of the y component of the tip position

of a magnetic nunchuck when considering different values for the persistence length of
the arms. The magnetic interaction breaks the symmetry of the bimodal profile of this
probability density due to the specific direction of the magnetic field. The deviation from
the symmetrical bimodal profile, measured by the relative difference between the heights
of the two peaks, decreases as the persistence length of the arms increases.

In Figure 7, we show the probability density of the y component of the tip position
of a magnetic nunchuck for different values of strength of the magnetic energy KB. We
observe that the profile of the probability density becomes asymmetrical in the presence of
the magnetic field in the specific direction. The deviation from the symmetrical bimodal
profile increases as the strength of the magnetic energy increases. We measure the deviation
from the symmetrical profile by the relative offset in the heights of the two peaks. This is a
central result of the present work. We point out that this relative offset plays the role of
a very sensitive marker for the magnetic interaction. This sensitivity could be useful in
magnetometry. With the appropriate calibration, the magnetic nunchuck could be used
as an instrument for the measurement of the magnetic field or for the measurement of the
magnetic moment of the bead. As we can see in the lower panel of Figure 7, this method
is sensitive to the values of magnetic energy of the order of the thermal energy kBT or
even less.



Polymers 2022, 14, 695 9 of 14

Figure 6. The probability density of the y coordinate of the position of the tip of two filaments
jointed by a harmonic orientational spring, as shown by Equation (16). The green, red, black and blue
colours correspond to lp = 18 µm, lp = 27 µm, lp = 36 µm and lp = 45 µm, respectively. The fixed
parameters for all curves are: L1 = 3 µm; L2 = 3 µm; ω = 0; θB = π

2 ; θµ = 0m; KB = 0.5; γ0 = 0;
Kh = 0.005; and lp1 = lp2 = lp.

Figure 7. Upper panel: The probability density of the y coordinate of the position of the tip of two
filaments jointed at a hinged point, as shown by Equation (16). The red, gold, green, black and blue
colours correspond to KB = 0.005, KB = 0.5, KB = 1, KB = 1.5 and KB = 2, respectively. Lower panel:
The relative offset in the heights of the two peaks in the bimodal profile Prightmax−Ple f tmax

Prightmax
is shown as a

function of the magnetic energy KB (measured in units of kBT). The fixed parameters for all curves
are: lp1 = lp2 = lp = 27 µm; L1 = 3 µm; L2 = 3 µm; ω = 0; θB = π

2 ; θµ = 0; γ0 = 0; and Kh = 0.005.
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In Figure 8, the probability density of the y component of the tip position of the
magnetic nunchuck is shown for different values of the ratio of the stiffness of the hinge
point to the thermal energy Kh. The deviation from the bimodal curve of the probability
density increases as the ratio of the stiffness of the hinge point to the thermal energy
decreases. The curve tends to become unimodal, with a single peak for the higher values of
the stiffness of the hinge point. If the hinge point is viewed as an approximation of a short
(relative to the length of the two arms) WLC of contour length lh and persistence length lph,
then Kh = lph/(2lh). The bending stiffness of the hinge kh is related to the bending stiffness
of the corresponding WLC segment κh by kh = κh/lh. We observe that the asymmetry of
the bimodal profile, which is induced by the magnetic interaction, is not very sensitive
to the stiffness of the hinge. However, the heights of the peaks relative to the minimum
in between is sensitive to the stiffness of the hinge. This sensitivity is also present in the
absence of the magnetic interaction, as shown in Figure 4 of Ref. [3].

Figure 8. Upper panel: The probability density of the y coordinate of the position of the tip of
two filaments jointed at a hinge point, as shown by Equation (16). The red, gold, green, black and
blue colours correspond to Kh = 0.005, Kh = 0.5, Kh = 0.75, Kh = 1 and Kh = 2, respectively.
Lower left panel: The relative offset of the two peaks of the bimodal profile Prightmax−Ple f tmax

Prightmax
is shown

as a function of Kh. Lower right panel: The ratio Ple f tmax
Pmiddlemin

in the bimodal profile is shown as a function
of Kh. The fixed parameters for all curves are: L1 = 3 µm; L2 = 3 µm; ω = 0; θB = π

2 ; θµ = 0;
KB = 0.5; γ0 = 0; and lp1 = lp2 = 27 µm.

5. Conclusions

In this article, we theoretically analysed the conformations of three grafted semiflexible
systems with a magnetic bead at the fluctuating tip. The systems that we considered are
confined in two dimensions. All semiflexible parts are treated as weakly bending WLCs.
This approximation is justified when the parts are at the stiff limit (e.g., DNA nanorods).
For the single filament case, as well as for the case of two filaments jointed by a stiff



Polymers 2022, 14, 695 11 of 14

kink point, we obtained analytic expressions in closed form for the probability density
of the x and y components of the tip position, and also of the tip orientation. For the
case of the semiflexible nunchuck, where two weakly bending arms are jointed by a
harmonic orientational spring, we obtained analytic expressions up to a single integral.
The probability distribution of the transverse (y) fluctuations of the tip of the grafted
semiflexible nunchuck exhibit a pronounced bimodality, except when the hinge is very
stiff. In the absence of a magnetic interaction, the bimodal distribution is symmetrical, but
magnetic interaction causes asymmetry. The most remarkable result of our analysis is the
sensitivity of this asymmetry, which is quantified by the relative offset in the heights of
the two peaks, to the strength of the magnetic interaction. We point out that the relative
offset of the two peaks is sensitive to changes in magnetic interaction energy below the
thermal energy kBT. It is known that, in cantilever magnetometry or other conventional
types of magnetometry, thermal fluctuations limit the strength of the signal [8,20]. On the
contrary, our system is strongly fluctuating and our method takes advantage of the effect of
the magnetic interaction on the conformational fluctuations of the nunchuck. The minimal
detectable magnetic moment of an iron-filled carbon nanotube (FeCNT) in a sensitive
cantilever experiment was 103µB at room temperature and in an external magnetic field
of 1T [8]. The ratio of magnetic energy to thermal energy (kBT) for that experiment was
approximately 2.25. Our proposed method could be more sensitive, at least in theory. The
magnetic field-induced relative offset of the two peaks is not very sensitive to the stiffness
of the hinge, which in turn depends on the bending stiffness of the linking WLC. On the
other hand, the relative height of the bimodal distribution peak to the minimum point
in the middle is sensitive to the stiffness of the hinge, irrespective of the magnetic field.
This sensitivity could be used, in principle, as an alternative or complementary method for
measuring the bending stiffness of the linking WLC segment that acts as a hinge.
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Appendix A

Appendix A.1. The Single Filament

By performing the integrals in Equation (6), we obtain the following result for the
probability density of the x coordinate position of the tip of the filament attached to the
magnetic bead:

Px(x) =
1

Nx
exp(Ax) (A1)

where Nx is the normalization factor and

Ax =
A′x
A′x1

, (A2)

A′x1= 4KBL4 cos(3ω + θµ − θB)− 8KBL4 cos(ω + θµ − θB) (A3)

+4KBL4 cos(ω− θµ + θB) + 16lpL3(cos(2ω)− 1) ,
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and

A′x= −2K2
BL4 cos(2ω + 2θµ − 2θB) (A4)

+K2
BL4 cos(4ω + 2θµ − 2θB) + 8L3KBlp cos(3ω + θµ − θB)

−24L2lpKBx + cos(2ω + θµ − θB) + K2
BL4 cos(2θµ − 2θB))

+8LlpKB(6x2 + L2) cos(ω + θµ − θB))− 48Ll2
px cos(ω)

+32L3lpKB cos(ω− θµ + θB) + 24l2
px2 + 12L2

pL2 − 6L4K2
B

−72L2lpKBx cos(θµ − θB) + (12l2
pL2 + 6L4K2

B) cos(2ω) .

The result of the integrations in Equation (7) is:

Py(y) =
1

Ny
exp(Ay) , (A5)

where Ny is the normalization factor and

Ay =
A′y
A′y1

, (A6)

A′y1= 4KBL4 cos(3ω + θµ − θB) + 8KBL4 cos(ω + θµ − θB) (A7)

+4KBL4 cos(ω− θµ + θB) + 16lpL3(cos(2ω) + 1) ,

and

A′y= −2K2
BL4 cos(2ω + 2θµ − 2θB) (A8)

+K2
BL4 cos(4ω + 2θµ − 2θB) + 8L3KBlp cos(3ω + θµ − θB)

−24L2lpKBy + sin(2ω + θµ − θB) + K2
BL4 cos(2θµ − 2θB))

+8LlpKB(6y2 + L2) cos(ω + θµ − θB)) + 48Ll2
py sin(ω)

+32L3lpKB cos(ω− θµ + θB)− 24l2
py2 − 12L2

pL2 + 6L4K2
B

−72L2lpKBy sin(θµ − θB) + (12l2
pL2 + 6L4K2

B) cos(2ω) .

Appendix A.2. The Two Filaments Jointed at a Stiff Kink Point

The probability density of the y coordinate position of the end point of the system
of two filaments jointed at kink point with the end point attached to a magnetic bead is
given by Equation (9). By performing the integrals in Equation (9), we obtain the following
closed expression for the probability density:

Pky(y2) =
1

Nky
exp(Aky) , (A9)

where

Aky =
A′ky

A′ky1
, (A10)

and

A′ky1= 2KB A0 cos
(

ϕ + θµ − θB
)

(A11)

+4 lp2
2lp1L1

3(cos(ω))2

+4 lp2lp1

(
L2

3lp1 + 3 L2
2L1lp2

)
(cos(ϕ))2

+12 lp2
2lp1L1

2 cos(ω)L2 cos(ϕ) ,
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ϕ = ω + γ , (A12)

A0=
(

L2
4lp1

2 + 4 L1lp2lp1L2
3
)
(cos(ϕ))2 (A13)

+L1
3(cos(ω))2lp2

(
L1lp2 + 4 L2lp1

)
+6 L1

2L2
2 cos(ω) cos(ϕ)lp1lp2 ,

A′ky= KB
2 A1

(
cos
(

ϕ + θµ − θB
))2 (A14)

+10 A3KBlP1lp2 cos
(

ϕ + θµ − θB
)

+6 KBlp1
2lp2L2

2Zy cos(ϕ) sin
(

ϕ + θµ − θB
)

+12 KBlp1L2L1lp2
2Zy cos(ϕ) sin

(
ϕ + θµ − θB

)
+6 KBlp1L1

2lp2
2Zy cos(ω) sin

(
ϕ + θµ − θB

)
+
(

KB
2L2

4 + 3 lp2
2L2

2
)

lp1
2(cos(ϕ))2

+4 KB
2L1L2

3lp1lp2(cos(ϕ))2

+6 KB
2L1

2L2
2 cos(ω) cos(ϕ)lp1lp2

+lp2L1
2
(

L1
2lp2KB

2 + 3 lp1
2lp2 + 4 L1KB

2L2lp1

)
(cos(ω))2

−6 A2lp1
2lp2

2 ,

Zy = L2 sin(ϕ)− y2 + sin(ω)L1 , (A15)

A1=
(

L2
4lp1

2 + 4 L1 lp2 lp1 L2
3
)
(cos(ϕ))2 (A16)

+6 L1
2L2

2 cos(ω) cos(ϕ)lp1 lp2

+L1
3(cos(ω))2lp2

(
L1 lp2 + 4 L2 lp1

)
,

A2= L2(−y2 + sin(ω)L1) sin(ϕ) + 1/2 L2
2 (A17)

+1/2 L1
2 + 1/2 y2

2 − L1 sin(ω)y2 ,

and

A3=
(

L2
3lp1 + 9/5 L2

2L1lp2

)
(cos(ϕ))2 (A18)

+6/5 L1
2lp2 cos(ω)L2 cos(ϕ)

+
(

L1lp2 + 3/5 L2lp1
)

L1
2(cos(ω))2

−6/5 A2
(

L2lp1 + L1lp2
)
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