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Abstract: The efficient transport of solid particles using polymeric fluids is an important step in many
industrial operations. Different viscoelastic fluids have been designed for this purpose, however,
the effects of elasticity have not been fully integrated in examining the particle-carrying capacity
of the fluids. In this work, two elastic fluid formulations were employed to experimentally clarify
the effect of elasticity on the particle drag coefficient as a proxy model for measuring carrying
capacity. Fluids were designed to have a constant shear viscosity within a specific range of shear
rates, γ̇ < 50 (1/s), while possessing distinct (longest) relaxation times to investigate the influence of
elasticity. It is shown that for dilute polymeric solutions, microfluidic rheometry must be practiced
to obtain a reliable relaxation time (as one of the measures of viscoelasticity), which is on the order
of milliseconds. A calibrated experimental setup, furnished with two advanced particle velocity
measurement techniques and spheres with different characteristics, was used to quantify the effect
of elasticity on the drag coefficient. These experiments led to a unique dataset in moderate levels
of Weissenberg numbers, 0 < Wi < 8.5. The data showed that there is a subtle reduction in the
drag coefficient at low levels of elasticity (Wi < 1), and a considerable enhancement at high levels of
elasticity (Wi > 1). The experimental results were then compared with direct numerical simulation
predictions yielding R2 = 0.982. These evaluations endorse the numerically quantified behaviors for
the drag coefficient to be used to compare the particle-carrying capacity of different polymeric fluids
under different flow conditions.

Keywords: viscoelasticity; particle settling; dilute polymeric solutions; Oldroyd-B model; microflu-
idic rheometry; drag coefficient; hydraulic fracturing

1. Introduction

The dynamics of solid particles flowing through polymeric fluids is strongly affected by
viscoelasticity of the fluid [1,2]. Elasticity of the fluid, in addition to viscosity, is an integral
element to consider when designing efficient solid particle transport in many advanced
manufacturing and industrial operations, such as processing of highly-filled viscoelastic
polymer melts and elastomers [3,4], processing of semi-solid conductive flow battery
slurries [5], cement slurries flow [6], and biological applications like the flow-induced
migration of circulating cancer cells in biopolymeric media such as blood [7]. Hydraulic
fracturing operations in tight oil and gas fields [8] is another important application of
particle-laden polymeric fluids. As shown in Figure 1, in hydraulic fracturing hundreds of
millions of sand particles (also known as proppant) are co-injected alongside fracturing
fluids (e.g., dilute polymeric and surfactant solutions with/out fibers) to preserve the
conductivity of the induced fracture networks after the pressure release [9,10].

Due to the lack of physics and theoretical models, or computational power, state-
of-the-art fracturing simulators ignore the relevance of the flow properties (i.e., elastic
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response under an external flow) of polymeric fluids [2,11–13]. Some attempts have been
made in this direction for particle-free polymer solutions, however, not in the context of
hydraulic fracturing, and for very basic geometrical shapes of the channel [14,15]. Fluid
elasticity specifically alters the sedimentation and rotation rate of a particle, which in
turn causes different cross-stream flow-induced migration behaviors, affecting the overall
particle transport efficiency [15–18]. There is still a need to fully understand how to tune
the properties of polymeric fluids to efficiently transport particles. To fill this gap, not only
are the effect of particle shapes and types considered [19,20], but also different carrying
polymeric fluids are being formulated [8,21]. For these fluids, considering the importance
of polymer type, structure, solubility, and charge, the most common variables to design new
solutions are the average polymer molecular weight, Mw, and the polymer concentration,
c [22,23]. Dilute polymeric solutions, in this work, refer to a solution with 0.01 ≤ c/c∗ ≤ 1,
where c∗ is the overlap concentration [22,24].

Figure 1. Schematic of sand particles transport in hydraulic fracturing operation where hundreds
of millions of sand particles are co-injected alongside fracturing fluids (e.g., dilute polymeric and
surfactant solutions with/out fibers) to preserve the conductivity of the induced fracture networks
after the pressure release.

Despite the complexity of such systems, the particle-carrying capacity of a fluid
is estimated by mapping the translation of a single sphere in inertia-less steady-state
conditions [25,26]. In hydraulic fracturing, the importance of this measuring criterion
has been originated by the low shear rate conditions experienced by particles within the
fractures after the pressure release. This test has been bench-marked since Sir George
Stokes calculated, for the first time, the drag force on a single sphere translating through an
unbounded Newtonian fluid. The model introduced by Stokes, however, only accounted
for the shear viscosity of the fluid, and required other correction factors to be suitable
under different flow conditions or fluid types. In a series of works [17,27,28], Gomma
et al. showed that the effective shear viscosity is not the only factor to design efficient
particle transport, and the fluid elasticity, quantified via the shear modulus, also plays a
significant role. Several researchers [1,23,29–32] conducted comprehensive experimental
and numerical investigations to determine the effect of fluid elasticity on the terminal
velocity of a single sphere settling in a non-Newtonian elastic fluid in order to quantify the
drag coefficient. These studies, even though they, in some cases, provided contradictory
conclusions [11,33], generally showed that the fluid elasticity hinders the particles’ motion,
and the effect is more pronounced at a high level of elasticity [2,23].

In many practical cases, because of the strong interactions between elasticity and
viscosity of the polymeric fluids, the hindrance due to elasticity was intermingled with the
inherent shear-thinning properties, i.e., the fact that the viscosity of the polymeric fluid
surrounding the falling sphere decreases during the sphere motion [11]. Blyton et al. [11]
formulated different fluids to study the effect of fluid elasticity and shear-thinning individ-
ually, at a very high levels of flow elasticity. They concluded that the terminal velocity of a
spherical particle in fluids possessing similar shear viscosity profiles decreases significantly
with increasing the elasticity. Faroughi et al. [2] conducted direct numerical simulations to
construct a correction model for the drag force on a particle translating in dilute polymer
solutions with low to moderate levels of elasticity in negligible inertia conditions. This
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approximate model accounted for the effect of elasticity considering the viscoelastic fluids
with constant viscosity, e.g., Boger fluids [34]. This model predicts that the drag coefficient
of a particle slightly decreases at low levels of elasticity, but substantially increases at high
level of elasticity. The latter is due to the large elastic stresses developing on the surface as
well as in the wake of the particle [2]. This approximate drag model thus explained some
of the contradictory conclusions generated in previous studies. However, this numerically-
driven model itself has not been verified experimentally yet due to the lack of data at
moderate level of elasticity, i.e., dilute polymeric solutions.

The current study is undertaken to fulfill two main goals: (i) outline an appropriate
scheme to infer the particle-carrying capacity of polymeric fluids, and (ii) generate unique
static settling, or drag coefficient, data in moderate levels of elasticity. To this end, first,
the theoretical background is briefly reviewed for the particle dynamics and rheology
measurements (e.g., conventional and microfluidic rheometry) to accurately determine the
parameters required to infer the drag coefficient. Then, two fluid formulations are designed
with distinct longest relaxation times to carry out the inertia-less particle settling tests at
low to moderate level of elasticity. Next, the experimental setup and velocity measurement
procedures are elaborated, and the experimental results are presented and weighted against
the approximate drag model developed by Faroughi et al. [2]. Finally, the main conclusions
of the work are summarized.

2. Theoretical Background
2.1. Dimensionless Parameters

The interplay among different mechanisms controlling particle transport can be stud-
ied by decoupling different relevant forces acting on particles. The most important ones
induced by the viscoelastic fluids are the drag, inertial, and transversal forces for which the
theoretical developments are very limited [2]. Dimensionless numbers can be employed
here to examine the particle transport behavior highlighting the importance of relevant
forces. The viscoelasticity of polymeric fluids can be quantified using Weissenberg number,
Wi, defined as,

Wi ≡ λγ̇ =
λU
a

, (1)

for a spherical particle with radius a settling through the fluid. Here, λ is the longest
relaxation time, and γ̇ represents a characteristic shear rate defined based on the terminal
settling velocity, U, of the particle. For a Newtonian fluid, the Weissenberg number is
Wi = 0 corresponding to zero elasticity. A higher Weissenberg number, Wi > 0, represents
a more pronounced elasticity in the fluid.

The presence of coiled or stretched polymers also impacts the effective shear viscosity
of the polymeric fluid through hydrodynamic and physical interactions similar to the
presence of a cloud of solid particles [35,36]. This effect can be parameterized using,

ζ =
ηP

ηS + ηP
=

ηP
η0

, (2)

where ζ represents the retardation ratio, ηP is the polymer contribution to the shear vis-
cosity, ηS is the solvent contribution to the shear viscosity, and η0 = ηP + ηS is the total
shear viscosity in the limit of vanishing shear rate. For constant-viscosity viscoelastic
fluids, e.g., Boger fluids [34], the relaxation time and retardation ratio, λ and ζ repetitively,
are the two important characteristics that define viscoelastic behaviors. These fluids are
generally modeled using the Oldroyd-B constitutive equation [37] that best represents the
polymer contribution to the momentum exchange in very dilute polymer solutions at low
Weissenberg number. However, many realistic suspending fluids show mid to strong shear-
thinning features, leading to more complex and nonlinear dependencies at nonvanishing
Weissenberg numbers at which shear-thinning effects become even more pronounced [38].
Several viscoelastic constitutive models have been developed over the past few decades to
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model such fluids [39–41]. Among all, the Giesekus model [42] is generally used to best
represent the polymer contribution to the momentum exchange in dilute to semidilute
polymer solutions. The Giesekus model is developed based on configuration-dependent
molecular mobility. Therefore, the viscoelastic component of the polymeric stress tensor is
represented by λ and ζ as well as the mobility factor, α, which theoretically varies between
zero and unity (practically between zero and 0.5 [12]) and accounts for the shear-thinning
behavior of the polymeric fluids.

Another important dimensionless number is the Reynolds number representing the
ratio between inertial and viscous forces, which is defined as,

Re =
ρ f Ua

η0
, (3)

where ρ f is the density of the fluid. Particles experience different flow regimes, i.e., tur-
bulent to creeping flow regimes categorized by Re number, in different operations. The
particle static settling experiment, as a method to differentiate the carrying capacity of
fluids, has generally been studied at low Reynolds numbers, Re� 1, corresponding to the
creeping flow regime [17,23].

2.2. Drag Coefficient for Viscoelastic Fluids

For a single particle settling in a viscoelastic fluid, one may carry out the drag coeffi-
cient on the surface of the particle using a surface integration of the total stress comprising
the polymeric and solvent stress contributions, τP + τS, and the pressure field, p,

CD =
2

ρ f U2 A

∫

δΩs
(τP + τS − pI).n.x dS. (4)

In experimental studies, the drag coefficient can be calculated using the terminal
velocity, U, measured for a sphere settling under the action of gravity, g, through a fluid. A
relationship between the drag coefficient and terminal velocity can be deduced using the
drag and gravitational force balance, leading to,

CD =
8ga
3U2

(
ρp − ρ f

ρ f

)
, (5)

where ρp and ρ f are the density of the particle and fluid, respectively. Equations (4) and (5)
at Re � 1 and zero elasticity, Wi = 0, reduces to the base visco-inelastic (or Newtonian)
value for the drag coefficient, namely CD = 24/Re [43]. At higher elasticity, the drag
coefficient may increase or decrease depending on the flow conditions. Faroughi et al. [2]
showed that at high Reynolds number, Re� 1, CD in a viscoelastic is always bigger than
the base Newtonian value, as shown in Figure 2. At Re ≤ 1, the drag coefficient of the
particle first decreases (by a small amount) at low Weissenberg numbers, then bounces
back at a critical Weissenberg number, and finally increases drastically due to large elastic
stresses developing on the surface and in the wake of the particle. This phenomenon
schematically shown in Figure 2 is also well reported in the literature [1,33]. The insets
in Figure 2 show the profile of the polymeric axial stress developed in the wake of the
particle at different Reynolds numbers. As depicted, at low Re, the polymer chains are
stretched in the wake of particle with a maximum value close to the rear stagnation point
where strong extensional flow is dominant. At high Re, due to the strong inertial effects,
the axisymmetric flow past the particle shifts to a symmetry-breaking steady flow with a
helical wake structure. The formation of symmetric eddies in the wake of particle relaxes
the polymer chains on the center-line, and pushes the stress overshoot (maximum stretch)
close to the flow separation points. The nonlinear inertial effects causing the formation of a
steady axisymmetric toroidal eddy in the wake of the sphere greatly reduces the effect of
elasticity on the drag coefficient. As illustrated in Figure 2, at high Weissenberg numbers,
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the monotonic enhancement of the drag coefficient arising from viscoelasticity is more
pronounced for low Re flows. This is an important observation, as the elasticity effects
at low Re regimes are more applicable to many industry operations (e.g., the proppant
placement in the fracture networks [2,17]).
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Abstract
Introduction

' 1
Polymers are omnipresent materials that play an important role in a diverse range of industrial applications (Liff et al.,

2007, Olsen et al., 2016, Lim et al., 2014). More specifically, polymeric solutions are ubiquitous in many oil and gas
advanced operations and have entirely changed the performance and functionality of day-to-day activities using their unique
characteristics. Polymeric are routinely used as thickeners that introduce viscoelasticity showing liquid-like and solid-like
behaviors under different flow conditions. The most common form is water-based complex fluids made of low polymer
concentration used as friction reducers (Kumar et al., 2017, Yang et al., 2018, Sawant et al., 2018) and frac fluids (Mahoney
et al., 2016, Le Brun et al., 2016, Almubarak et al., 2018) that hugely impacted the oil and gas supply line. for example,
in hydraulic fracturing, the fracture conductivity after the pressure release is preserved by the presence of sand particles
(so-called proppant) injected alongside the complex fluids used to initiate and propagate the fractures. In a typical operation,
hundreds of millions of sand particles are dispersed in a viscoelastic matrix. Most operators would like to understand the
dynamics of the particle transport in details to be able to tune the fracturing fluid properties in response to environmental and
reservoir conditions meeting the desired design for the fractures. One of the main goals in this operation is to correctly place
proppant within the fracture to enhance both short-term and long-term conductivity of the well assuring myriad financial
gains. To this end, not only different types of proppant are being considered (Liang et al., 2016), but also different carrying
fluids are being formulated which are commonly non-Newtonian in character Al-Muntasheri et al. (2014), Barbati et al.
(2016). These fluid formulations are outlined based on the job designs and can be non-exhaustively categorized as, (i) low
viscous fluids to create long and complex network of fractures, and (ii) high viscous fluids that render shorter fractures but
perform better in transporting proppant (Faroughi et al., 2018). For polymer-based frac fluids, considering the importance of
polymer type, structure, solubility and charge, the most common variables to alter when formulating new solutions are the
polymer molecular weight, Mw, and the polymer concentration, c. Equation (4) at Re << 1 and zero elasticity, Wi = 0 reduces
to the base visco-inelastic (or Newtonian) CD = 24/Re (Kelbaliyev, 2011). At higher elasticity, drag coefficient on the particle
may increase or decrease depending of flow conditions Fundamentally, the relative settling velocity of a single particle is
measured as the first order of accuracy to evaluate the proppant carrying capacity of a hydraulic fracturing fluid (Elgaddafi
et al., 2016, Geri et al., 2019, Geri and Imqam, 2019). To better evaluate the proppant carrying capacity of a fluid, a full
consideration of several interacting factors, including but not limited to (i) particle-fluid interactions (4-way coupling), (ii)
particle-fracture interactions, and (iii) reservoir physiochemical and geomechanical behaviors, should be taken into account.
However, due to the lack of knowledge linking these factors, the current state-of-the-art prevents most of the jobs to consider
this level of complexities even though they are undoubtedly required to optimize the treatment and proppant distribution in
the fracture assuring the long-term financial gain of the well. Some of these deficiencies are originated from the lack of
physics and theoretical models as well as computing power. For example, most of the frac simulators not only limit particle-
fluid interactions to a ”simplified 2-way coupling”, but also ignore the effect of fluids’ complex rheology, e.g. elasticity,
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U

U

Figure 2. Schematic profiles of the drag correction coefficient vs. Weissenberg number for a particle
translating through an unbounded viscoelastic fluid at different Reynolds numbers. The insets show
the profile of the polymeric axial stress developed in the wake of the particle, i.e., the extent over
which polymer chains are stretched due to the strong extensional flow (red and white colors show
the maximum and minimum stresses, respectively).

Due to strong interactions of the fluid viscoelasticity and the complex kinematics
of the mixed shearing and extensional flow around the particles, an exact solution to
Equation (4) that performs well over a wide range of viscoelastic parameters is missing.
Faroughi et al. [2] tackled this problem to a great extent using direct numerical simulation
to parameterize the canonical behavior of the drag coefficient considering the strong
interaction of viscoelasticity and kinematic parameters. They used Oldroyd-B model to
parameterize the contribution of the polymer microstructural changes at a particle level to
the momentum exchange between the mixture constituents of a dilute polymer solution.
The Oldroyd-B model simply represents an elastic fluid with a constant viscosity, and
hence elastic effects can be studied alone. This constitutive model is a good approximate
model for Boger fluids made of a sufficiently viscous solvent, in which stresses due to the
elasticity are quantifiable [34]. The Oldroyd-B model, however, may not be marginally
accurate, especially in extreme extensional flow where the fictitious entropic spring allows
for infinite stretching, i.e., infinite stress [1]. Faroughi et al. [2] observed a self-similarity of
the evolution in the drag coefficient in the inertia-less flow regime, Re ≤ 1, and fitted the
numerical simulations in this regime to develop an explicit model for the drag coefficient
correction. The model by Faroughi et al. [2] at Wi ≤ 1 reduces to

χ =
CD

(24/Re)
= 1 +

1
Wi4 + (6.288− 6.111ζ)Wi2 + 0.0534

(
(0.06665ζ − 0.06392ζ2)Wi6 +

(−0.09422ζ + 0.07025ζ2)Wi4 +

(−0.00443ζ + 0.00248ζ2)Wi2
)

,

(6)

and at Wi� 1 reduces to
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χ =
CD

(24/Re)
= 1 +

1
Wi4 + (0.5014ζ − 0.02511ζ2)Wi2

(
(0.0005713ζ2)Wi8 +

(0.0006 + 0.02517ζ − 0.02148ζ2)Wi6 +

(−0.02511ζ + 0.0009496ζ2)Wi4
)

,

(7)

for the drag coefficient correction, χ, which is predicted within 95% accuracy for Wi < 5
and 0 < ζ < 1, see Figure 3. At low elasticity regime, Wi ≤ 1, Equation (6) predicts very
small reductions in drag for which χ ≈ 1 is a safe assumption for practical applications.
However, at high elasticity Wi > 1, as shown in Figure 3c plotting Equation (7), the drag
can be drastically enhanced and must be taken into consideration when comparing the
carrying capacity of different fluids.
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Theoretical Background
The interplay among different mechanisms controlling proppant transport can be studied by decoupling different relevant

forces acting on particles. The most important ones induced by the viscoelastic fluids are the drag, inertial and transversal
forces for which theoretical development are very limited (Faroughi et al., 2019). Dimensionless numbers can be employed
here to examine the particle transport behavior by elucidating the interplay among different mechanisms highlighting the
importance of relevant forces. The viscoelasticity of the carrying fluids can be quantified by the Weissenberg number, Wi,
which is defined as

Wi ⌘ lġ =
lU
R

, (1)

for a spherical particle, with radius R, settling through the viscoelastic fluid. Here, l is the longest relaxation time, and ġ
represents a characteristic shear rate defined based on the terminal settling velocity, U , of the particle. For a Newtonian
fluid, the Weissenberg number is Wi = 0 corresponding to zero elasticity, while larger Wi > 0 represents a more pronounced
elasticity in the fluid.

The presence of a network of polymers also affects the effective shear viscosity of the carrying fluid that can be parame-
terized using

z =
hP

hS +hP
=

hP

h0
, (2)

where z represents the retardation ratio, hP is the polymer contribution to the shear viscosity, and h0 = hP + hs is the
total shear viscosity contributed by polymers and the solvent in the limit of vanishing shear rate. For constant-viscosity
viscoelastic fluids, e.g. Boger Fluid (James, 2009), the relaxation time and retardation ratio, repetitively l and z, are the two
important characteristics to define the viscoelasticity. These fluids are generally modeled using the Oldroyd-B constitutive
equation (Oldroyd, 1950), and best represent the polymer molecule contribution to the momentum exchange between the
mixture constituents of a very dilute polymer solutions at low Weissenberg number. However, many realistic suspending
fluids show mid to strong shear-thinning features leading to more complex and nonlinear dependencies at nonvanishing
Weissenberg numbers at which shear-thinning effects become even more pronounced (Del Giudice, Sathish, DÁvino and
Shen, 2017). Several viscoelastic constitutive models have been developed over the past few decades to model these fluids
(Denn, 1990, Macosko and Larson, 1994, Joseph, 2013), from which the Giesekus model (Cherizol et al., 2015) is the
one generally used to best represent the polymer molecule contribution in dilute to semi-concentrated polymer solutions.
This model is based on a concept of configuration-dependent molecular mobility, and so the viscoelastic component of the
polymeric stress tensor is represented by l and z as well as the mobility factor, a, which varies between zero and unity and
accounts for the shear-thinning behavior of the fluid.

Another important dimensionless number is the Reynolds number representing the ratio between inertial and viscous
forces, which is defined as

Re =
rUR
h0

, (3)

where r is the density of the fluid. Particles from the injection point, at the well head, to the final destination experience
different flow regimes, from turbulent to creeping flow regimes, which can be categorized using Re number. The particle
static settling experiment, as a method to differentiate fluid’s carrying capacity, generally has been studied at low Reynolds
numbers, Re ⌧ 1, corresponding to the creeping flow regime.

Measuring drag coefficient
To study the dynamics of particle static settling of single particle in a viscoelastic fluid, one may simply carry out the drag

coefficient on the surface of the particle using a surface integration of the total stress comprising the polymeric and solvent
stress contributions, ⌧P +⌧S, and the pressure field, p,

CD =
2

rU2A

Z

dWs

(⌧P +⌧S � pIII).nnn.xxxdS. (4)
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parameters. They used Oldroyd-B model to parametrize the contribution of the polymer microstructural changes at chain
level to the momentum exchange between the mixture constituents of a dilute polymer solution. Oldroyd-B model simply
represents an elastic fluid with a constant viscosity, and hence elastic effects can be studied alone. This constitutive model
that may not be marginally accurate (especially is extreme extensional flow where the fictitious entropic spring allows for
infinite stretching, i.e. infinite stress) is a good approximate model for Boger fluids made of a sufficiently viscous solvent
in which stresses due to the elasticity are quantifiable (James, 2009). (Faroughi et al., 2019) observed a self-similarity of
the evolution in the drag coefficient in the inertia-less flow regime, Re  1, fitted the numerical simulations in this regime to
develop an explicit model for the drag coefficient correction. This approximate model performs well over a practical range of
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for the drag coefficient correction, c, that is predicted within 95% accuracy for Wi < 5 and 0 < z < 1. In low elasticity region,
Wi  1, Eq. (5) predicts very small reductions in drag and practically c ⇡ 1 is a safe assumption for this region. However, at
high elasticity Wi > 1, drag can be dramatically enhanced and must be taken into consideration when comparing the carrying
capacity of different fluids.

Measuring relaxation time
Considering the importance of polymer type, structure, solubility and charge, the most common variables to alter when

formulating new polymeric solutions are molecular weight, Mw, and concentration, c. At very low concentration, individ-
ual polymer coils are far placed and rare interactions presents, thus the solution viscoelasticity behavior in this region is
associated with viscoelasticity of individual polymer coils summed linearly. At higher concentration, polymer coils start to
overlap and contract with increasing concentration up to an extent where no more contraction is limited, i.e. concentrated
region where polymers are fully entangled. In these regions, the polymer solution viscoelasticity is not simply related to the
individual coil contributions, and the developed network of coils dramatically changes the solution behavior under different
flow conditions.

To distinguish the overlap concentration, c⇤, below which the solution is considered to be dilute is estimated by

c⇤ =
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4
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assuming that the product of the number of coils per unit volume and the volume pervaded by a single coil is unity (Graessley,
1980, Kulicke and Clasen, 2004, Clasen et al., 2006). In Eq. (7), NA is Avogadro’s constant, Rg is radius of gyration and
[h] denotes the intrinsic viscosity possessing units of volume per unit mass and depends on the molar mass of the chain,
the degree of polymer chain branchingn as well as and the type of solvent in which the polymer is dissolved. Alternative
to Eq. (7), one may plot the specific shear viscosity vs concentration to compute c⇤ and [h] independently, (i) in log-log
plot c⇤ corresponds to a concentration at which the first slope change occurs, because beyond this concentration a change in
rheological behavior occurs which is governed by interactions of polymer coils rather than the properties of individual coils,
and (ii) and [h] corresponds to the intercept by extrapolating the plot to a theoretical zero concentration. The characteristic
relaxation time of a polymer solution is assumed to be independent of the polymer concentration in dilute regimes, c < c⇤
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Figure 3. The effect of elasticity on the drag coefficient of a particle settling through a viscoelastic fluid.
Panel (a,b) shows the contours of dimensionless polymeric stress components, τPrr and τPφφ

developed
in the wake and front of the particle, respectively, at Re = 0.1, Wi = 2, and ζ = 0.5 [20]. These
stress components both increase with Wi and hinder the particle settling velocity, i.e., increase the
drag coefficient of the particle. Contours are shown in the spherical polar coordinate frame, {r, θ, φ},
on the r − θ plane where 0 ≤ θ ≤ 2π. The polymeric stress components are normalized by η0U/a.
Panel (c) illustrates the relationship between the drag correction coefficient and Weissenberg number
obtained from Equation (7) for an inertia-less spherical particle translating through an unbounded
Oldroyd-B fluid with different polymeric retardation ratios.

2.3. Rheological Properties

To determine the drag coefficient using Equations (6) and (7), one needs to glean
the retardation ratio and relaxation time, among other rheological parameters, for dilute
polymer solutions. The change in the zero-shear viscosity due to the presence of polymers
of different types is relatively straightforward to measure using a conventional bulk rheom-
etry [44–46] or using microfluidic viscometers [47,48]. Knowing the shear viscosity of the
Newtonian solvent, ηS, one may characterize the Newtonian plateau region at lower shear
rates, i.e., where the viscosity is independent of the shear rate, using a stress controlled
shear rheometer, see for example Rubinstein and Colby [22], Kulicke and Clasen [49]. This
method simply provides the zero-shear viscosity of the solution, η0, using which the poly-
mer contribution to the zero-shear viscosity, ηP = η0 − ηS, and the fluid’s retardation ratio,
ζ, can be determined using Equation (2).

The determination of the relaxation time, λ, is not as simple as retardation ratio. Poly-
mer solutions are usually best described using a spectrum of relaxation times accounting



Polymers 2022, 14, 657 7 of 19

for relaxation processes occurring within the chain itself, as well as within the network of
chains. For the shear flows of dilute polymer solutions, the determination of relaxation
times poses several challenges. In these cases, the weak viscoelasticity signals can hardly
be captured using conventional methods [50]. For an ideal dilute polymeric solution, the
chain–chain interactions are absent, and the viscoelasticity of the fluid reduces to the vis-
coelasticity of isolated chains that still posses multiple relaxation processes related to the
chain itself and the sub-chains on the backbone [22]. The relaxation process for the chain is
slower than that of the sub-chains [50]. This suggests that the viscoelasticity of a dilute poly-
mer solution, comprised of polymers with monodisperse molecular weight distribution,
can be quantified by the longest relaxation time within the spectrum. The longest relaxation
time is the time required for a isolated chain to relax from a stretched configuration to
a random coil configuration [22,51]. Other modes with relaxation time smaller than the
longest relaxation time do not appreciably contribute to the stress as they are not excited
by the flow. The longest relaxation time strongly depends on both molecular weight and
concentration of the polymer. Note that for low concentration and low molecular weight,
measurements have to be performed at higher frequencies as the dominant dynamics
gravitate to occur on shorter timescales [47]. Sometimes these frequencies are out of reach
using conventional bulk rheometry due to the detection limit of the instrumentation caused
by the onset of the inertial effects [47,52–54]. For example, the longest relaxation time is on
the order of milliseconds and below for low-viscous water-based viscoelastic fluids [50,55].
In these scenarios, microfluidics has proven to be a promising tool to capture the correct
modes of the dilute polymeric solutions [48].

3. Materials and Methods
3.1. Fluids and Preparation

Two different elastic fluids were used to investigate the influence of elasticity on the
drag coefficient for slow flow around a sphere. The first fluid was composed of 0.1 wt.%
polyacrylamide (5–6 MDa) dissolved in a solvent made of 90 wt.% glycerol and 10 wt.%
DI water (this fluid is tagged as PAM/GLY for the rest of this paper). Polyacrylamide
is known to adopt a relatively extended conformation in low salinity, and a random coil
conformation in solutions containing high concentrations of ions. Deionized water is then
used as a solvent to remove the reduction in extensibility of this polyacrylamide-based
Boger fluid prepared for different measurements. The second fluid was composed of
dissolving 16 wt.% high molecular weight polystyrene (20 MDa) in a solvent made of
70 wt.% low molecular weight polystyrene (500 Da) and 30 wt.% tricresyl phosphate (this
fluid is tagged as PS/TCP for the rest of this paper). The mixture of tricresyl phosphate
with low molecular weight polystyrene is known to be a good solvent for high molecular
weight polystyrene, and results in a high extensibility for the solution [56,57]. For both
fluids, conventional rheology experiments were conducted with several measurement
geometries (cone-and-plate, parallel plate, concentric cylinder) to increase the range of
shear rates. Each measurement is also repeated three times to ensure the integrity of the
data. The rheology of the solutions was monitored as a function of time to be completely
homogeneous (experimental error < 2%) before measuring the final properties under the
conditions of controlled room temperature at the same temperature as the falling sphere
experiments (i.e., T = 20 ◦C). For these solutions, η0 and ζ are obtained using viscometric
properties; the shear viscosity was measured as a function of shear rate fitted by the
Carreau model [58,59]. The longest relaxation time was measured using the normal stress
difference [60,61] and µ-rheometer [50] methods for PS/TCP and PAM/GLY, respectively.

3.2. Particle Settling Experiments

To probe a broad range of Weissenberg numbers, different Boger fluids possessing
different relaxation times are needed. Due to the difficulty to formulate Boger fluids (i.e.,
polymer solutions with constant viscosity), various sizes and types of spherical particles
were used with D = 2a = {0.5− 12} mm and densities ρ = {1300− 7800} kg/m3. All these
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particles are commercially available with a high precision, i.e., with diameter tolerance
smaller than 25 µm, at Cospheric LLC, Santa Barbara, CA, USA. Using this set of spheres
falling through the formulated solutions, it was possible to keep the nominal shear rates,
accounting for wall decelerating effect, smaller than γ̇ < 50 s−1, and explore the effect
of Reynolds number and Weissenberg number on drag coefficient for a desired range of
Re < 1 and 0 < Wi < 8.5, respectively.

The transient motion of a sphere along the center line of a glass cylindrical tube (with
internal radius of R = 15.25 cm) is captured and measured using two techniques, (i) digital
image processing (DIP) following Kim et al. [62], and (ii) particle image shadowgraph (PIS)
following Arnipally et al. [23] to measure independent estimates of the steady-state terminal
velocity of the particle settling through the Boger fluids. The DIP and PIS procedures to
calculate the settling velocity are summarized in Figure 4. In DIP, binarization is used to
differentiate target (particle) and background (viscoelastic fluid). After binarization, the
particle region is converted to a set of white pixels, and the centroid of white pixels is
marked to determine the position of the particle in each image. The displacement of the
centroid, i.e., the difference of the position of the particle, in two consecutive images with
a known time interval leads to the settling velocity. The PIS technique works based on
the fundamental principal that shadow forms as light travels through different mediums
of different refractive indices. The position of the particle in each image is determined
depending on the shadow intensity. The settling velocity is then calculated using particle
displacement in two consecutive images with known time interval as shown in Figure 4.
Refer to Kim et al. [62] and Arnipally et al. [23] for measurement calibration and details
about the required devices in these setups. The accuracy of both measurements are mostly
limited to the spatial and temporal resolution of the image acquisition device and the light
source to record the Lagrangian displacement of the falling sphere. It is important to note
that releasing the sphere below the free surface right on the cylinder’s center line greatly
affects the velocity data and particle trajectory. Therefore, the setup requires a reliable
particle release mechanism on top of the cylinder. In this work, a firm vacuum mechanism
was attached to a tube holding the particle at its end at around three particle diameter
below the free surface. The reliability of measuring techniques and the accuracy of the data
obtained are constantly checked against a Newtonian fluid. In our setup configuration, the
confinement ratio is defined as the ratio of particle radius to cylinder radius varies in the
range of a/R = {0.0016− 0.0384} for which the Fax́en correction factor [2],

fw
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1− 2.10444
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R
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+ 2.08877
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R

)3
− 0.94813
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R
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( a

R

)6
+ 3.87
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R

)8
− 4.19

( a
R

)10
+ . . .

)−1
, (8)

approaches unity. Therefore, the effect of cylinder walls on the drag coefficient could be
safely neglected. This assumption is in accordance with Arigo et al. [63] and provides us
with the ability to directly compare the experimental results with Equation (7) developed for
unbounded domain. Several calculations were also made using the theoretical analysis for
the terminal velocity of the largest particles in the lowest viscosity fluid to obtain the right
measurement window for the experiments assuring particle reaches its terminal velocity.
Images were taken inside a window located 25 cm above the bottom of the cylindrical and
10 cm below the fluid free surface. A distance of 50 mm above the bottom line was found to
satisfy all configurations reaching the steady-state velocity. Each velocity measurement is
repeated five times, assuring the statistical accuracy and repeatability of the acquired data.
In each velocity measurement, after cross-checking PIS and DIP methods, an average value
of the velocities by these two methods was used in drag coefficient calculation. A relatively
long time-interval (30 min) between measurements was considered to allow these elastic
Boger fluids to fully relax to their stress-free state before running the next experiments [23].
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Figure 4. A schematic representation of the experimental setup and procedures to measure the
settling velocity and drag coefficient of spherical particles translating through viscoelastic fluids.

3.3. Rheological Measurements

Both polymer solutions and their respective Newtonian solvents are characterized by a
steady-shear flow procedure using a stress controlled shear rheometer (DHR-3 by TA Instru-
ment using cone-and-plate, parallel plate, concentric cylinder geometries). All rheological
measurements were performed at carefully controlled room temperature, T = 20 ◦C.

The longest relaxation time for the PAM/GLYC system could not be measured using
conventional rheometry due to technical limitations of the instruments. Instead, the µ-
rheometer method, i.e., a microfluidic rheometer, was used for the measurements of the
longest relaxation time [50,54]. The working principle of the µ-rheometer is based on the
transverse migration of solid particles occurring when the suspending viscoelastic fluid
flows under an inertia-less Poiseuille flow through a confined straight microchannel. In
this method, the fraction of particles aligned on the center-line, i.e., f1 moving through the
band number 1 as shown in Figure 5a, which is measured experimentally using optical
microscopy at a distance, namely L, from the inlet position. This step is performed by
dividing the cross-section of the microchannel arbitrarily into six bands for which the
average velocities and cross-sectional area are calculated, see Del Giudice et al. [54] for
more details. Knowing the expected velocities for particles in each band calculated from
the fluid velocity, one can apply a particle tracking method to calculate the normalized
fraction of particles in the first band using,

f1 =
N1/A1V1

ΣNk/AkVk
, (9)

where Nk represents the number of particles flowing in the band k, and Vk and Ak, respec-
tively, show the average velocity and the cross-sectional area of the fluid enclosed in the kth
band. For a given set of geometrical parameters (e.g., the channel cross-section diameter, H,
and the confinement ratio defined as β = Dp/H where Dp is the diameter of the suspended
particles), once f1 is measured, the θ value can be calculated using the master curve shown
in Figure 5b. The θ value can be then translated to the longest relaxation time of the solution
knowing θ = Wi(L/H)β2 [54].

It is important to note that the master curve plotted in Figure 5a does not need
calibration for different geometrical setups and is universal for any viscoelastic fluids as
long as the Weissenberg number of the flow is kept below Wi < 0.5 (within the rheometry
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experiments), and the confinement ratio is equal or smaller than 0.1, together corresponding
to θ ≤ 1.4. For a cylindrical microchannel with diameter H, the following equation,

λ =
π

4
1
β2

H4

LQ

√
1

2.75
ln
(

2.7 f1

1− f1

)
, (10)

can be deduced for the longest relaxation time of dilute polymer solutions using the
aforementioned procedures to evaluate f1. Here, the characteristic shear rate in Wi number
is replaced by γ̇ = 4Q/πH3 in which Q represents the imposed volumetric flow rate.
Here, specifically, polystyrene particles having a 10 µm diameter (Polysciences Inc) were
added to the PAM/GLY solutions at a mass concentration φ = 0.01 wt%. Flowing particles
were observed using an inverted microscope (Zeiss Axiovert), while videos were recorded
with a high-speed camera (Photron Mini UX50). The flow rate was controlled using a
pressure pump (Dolomite Microfluidics). The resulting videos were analysed using a
particle tracking software subroutine in IDL [64].
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Figure 5. Schematic representation of a microfluidic-based device to measure the longest relaxation
time of ultra-dilute and dilute polymer solutions. Panel (a) shows the µ-rheometer device that
operates based on the transverse migration of solid particles in viscoelastic fluid flowing through a
confined straight microchannel [54]. The bands marked on the cross-section of the channel is used
to count particles trapped in those regions as they traveled a length of L, especially the fraction of
particles aligned on the central band, f1. Panel (b) shows the master curve for f1 that can be directly
used to approximate the longest relaxation time of ultra-dilute polymer solutions. This master curve
does not need calibration for different geometrical setups and is universal for any viscoelastic fluids
as long as Wi < 0.5 within the rheometry experiments, and the confinement ratio between the
suspended particle diameter, Dp, and channel cross-section diameter (or depth), H, is Dp/H ≤ 0.1.

4. Results and Discussion
4.1. Fluids Rheology

Results of the bulk shear rheology measurements are shown in Figure 6a. For the
PS/TCP solution, the fluid was designed to stay within the semi-dilute regime, c > c∗.
Here, c∗ is the overlap concentration defined as [22],

c∗ =
Mw

4
3 πNAR3

g
' 0.77

[η]
, (11)

where NA is Avogadro’s constant, Rg is the radius of gyration, and [η] denotes the intrinsic
viscosity that depends on the molar mass of the chain, the degree of polymer chain branch-
ing, as well as the type of solvent in which the polymer is dissolved [22]. The overlap
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concentration is used to distinguish the onset of semi-dilute and eventually entangled
regimes. At c > c∗, the polymer solution viscoelasticity is not only related to the individual
chain contributions, but to the developed network of coils that dramatically changes the
solution behavior under different flow conditions [49,65]. The shear viscosity and first
normal stress difference, N1, are reported in Figure 6a for the PS/TCP solution. For the
PAM/GLY solution, the fluid was designed to stay within the dilute regime, c < c∗. In this
regime, the individual polymer chains are far placed and rare hydrodynamic, steric, or
frictional interactions present [24]. Therefore, the viscoelasticity of the solution is mostly
associated with the viscoelasticity of individual polymer coils summed linearly. For the
PAM/GLY solution, only the shear viscosity as a function of the shear rate is reported. Due
to the detection limit of the rheometer in this regime, a reliable measurement for N1 was
not produced.
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Figure 6. Panel (a) shows the results of the shear viscosity (filled circles for PAM/GLY fluid and filled
squares for PS/TCP fluid) and the first normal stress difference N1 (empty squares for PS/TCP fluid)
as a function of shear rate. Panel (b) shows the comparison between theory and experimental results
obtained for the drag coefficient of a spherical particle translating through a Newtonian fluid at Re ≤ 1.
The solvent for the PS/TCP fluid is used as the test Newtonian fluid possessing ηs = 2.17 (Pa.s). The
errorbars account for the dispersion around the average value of the drag coefficient measured
experimentally. The mean value of the relative standard deviation for all measurements, conducted
at T = 20 ◦C and repeated five times, was less than 0.10%.

Both polymer solutions maintain a constant viscosity, as one of the most important
characteristics of the Boger fluid, within the full range of shear rates present in the settling
experiments at γ̇ < 50 (1/s). The zero-shear viscosity, η0, and the polymer contribution to
the solution viscosity, ηp, are determined by fitting the Carreau model [40],

η = η∞ + (η0 − η∞)
(

1 + (λγ̇)2
) n−1

2 , (12)

to the viscosity data shown in Figure 6a. In Equation (12), η∞ is the plateau viscosity at
infinite shear rate, and n is the flow index accounting for the shear-thinning of the solution.
For Boger fluids, the flow index should approach unity, n → 1. The λ, here, has a unit
of time and generally corresponds to the inverse of the shear rate at which the turnover
occurs between the Newtonian plateau and the shear-thinning region [66]. From the best
fit, at c > c∗, λ in Equation (12) can be used as an estimate of the longest relaxation time.
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This conclusion is based on the fact that the polymer chains are not in a random coiled
configuration anymore and start to stretch at the onset of shear-thinning features. The best
fit of Equation (12) to the PS/TCP viscosity data shown in Figure 6a leads to η0 = 4.32 (Pa.s)
and ηp = 2.15 (Pa.s) with R2 = 0.987. The best fit to PAM/GLY viscosity data shown in
Figure 6a leads to η0 = 0.31 (Pa.s) and ηp = 0.22 (Pa.s) with R2 = 0.992.

For the PS/TCP solution, the longest relaxation time is determined using the first
normal stress difference. N1. This is a well-practiced approach to determine an approximate
value for the longest relaxation time of polymer solutions at c > c∗ [67]. This is because,
under shear flow, the polymers dissolved in the base fluid tend to align with the flow
streamlines, while they inherently tend to come back to their undisturbed conformation.
These chain-level interactions lead to an extra tension in the direction of the flow attributed
to the fluid elasticity. Normal stresses are zero for Newtonian fluids, i.e., N1 = 0. Normal
stresses thus could be used as a measure to obtain the level of elasticity, and hence, the
relaxation time for polymeric (viscoelastic) fluids. All nonlinear constitutive models of
viscoelastic fluids provide an expression to predict normal stress differences [60]. For
a Boger fluid represented by Oldroyd-B model under a steady shear flow, N1 can be
determined as,

N1 = 2η0λζγ̇2, (13)

which is linear in both λ and ζ [60,68]. At a known value of ζ = ηP/η0, fitting Equation (13)
to the measured N1 data (see Figure 6) leads to the longest relaxation time of the polymer
solution. The best fit of Equation (13) to the N1 data reported for PS/TCP solution leads to
λ = 2.463 (s) with R2 = 0.996.

For the dilute PAM/GLY solution where c < c∗, the characterization of elasticity
effects and relaxation times is beyond the range measurable in the conventional geometries
used in most of the shear and extensional rheometers [50]. Therefore, the N1 method
hardly provides reliable estimation for λ as it is difficult to ensure the integrity of the
experimental data [68–70]. In these cases, a very rough method to provide an approximate
value for the longest relaxation time is to use the Zimm theory [22]. This theory assumes
the longest relaxation time is independent of the polymer concentration in a very dilute
polymer solutions. However, this assumption is not valid under all flow conditions. For
example, under strong extensional flow such as flow past a particle, polymer coils become
substantially stretched resulting in an increased volume of interaction, which causes the
overlap to happen at polymer concentration much below the c∗. Clasen et al. [24] concluded
that the longest relaxation time depends on the polymer concentration even at c/c∗ < 1,
but this dependency truly vanishes at c/c∗ < 0.01, known as ultra-dilute polymer solutions,
regardless of how much polymer chains are deformed beyond their equilibrium state. For
0.01 ≤ c/c∗ ≤ 1, the longest relaxation time is shown to exhibit a power-law scaling with
the reduced concentration, c/c∗, where the magnitude of the exponent depends on the
thermodynamic quality of the solvent [24]. Several methods have been proposed to glean
the longest relaxation time for this region [55], from which those based on microfluidics
are shown to outperform the others to estimate the relaxation time of viscoelastic fluids,
down to milliseconds [53,54]. As described in Section 3.3, the newest microfluidics method
is the µ-rheometer [50] This method is utilized to obtain the longest relaxation time for the
dilute PAM/GLY solution in this work. The µ-rheometer approach predicted λ = 0.023 s
for this solution, which is smaller by two orders of magnitude than the value predicted for
the PS/TCP solution.

These PAM/GLY and PS/TCP fluid choices provide the possibility to experimentally
explore the effect of viscoelasticity on the drag coefficient of a sphere settling in both weakly
elastic fluid flows, Wi ≤ 1, and highly elastic fluid flows, Wi > 1. Table 1 summarizes the
rheological results for both PAM/GLY and PS/TCP solutions.
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Table 1. Fluid rheological characteristics. For the PS/TCP solution, the longest relaxation time is
determined by fitting the Oldroyd-B model expressed by Equation (13) to the data measured for N1

shown in Figure 6a. For the PAM/GLY solution, the longest relaxation time is determined using the
µ-rheometer approach. The zero-shear viscosity, η0, and the solvent and polymer contributions to the
viscosity, ηS and ηP, are determined by fitting Equation (12) to the viscosity data shown in Figure 6a.

Boger Fluids ρ f (kg/m3) η0 (Pa.s) ηS (Pa.s) ηP (Pa.s) ζ (-) λ (s)

PAM/GLY 1242.1 0.31 0.09 0.22 0.709 0.023
PS/TCP 1162.8 4.32 2.17 2.15 0.497 2.463

4.2. Drag Measurements

Conducting the particle settling experiments using viscoelastic fluids is challenging.
For example, at a low Weissenberg number, the changes in the drag coefficient may well
be within the experimental error. At a high Weissenberg number, the polymer chains
may not relax to their stress-free condition if experiments are not well-spaced temporally.
Therefore, to generate statistically significant data, a highly calibrated setup for velocity
measurement (as shown in Figure 4) is needed in addition to a multitude of measurement
repetitions. In this work, all the settling experiments are conducted at a constant room
temperature, T = 20 ◦C, unless otherwise stated. The experimental setup and velocity
measurement procedures (DIP and PIS) are constantly calibrated by comparing the drag
coefficient of spheres with different densities in an asymptotically unbounded Newtonian
fluid at Re ≤ 1. For this purpose, spherical particles with different characteristics (i.e., types,
diameters, and densities) were used as summarized in Table 2. The solvent for the PS/TCP
fluid (i.e., 70 wt.% low molecular weight polystyrene and 30 wt.% tricresyl phosphate)
was also used as the test Newtonian fluid possessing ηs = 2.17. The terminal velocity, U,
measured for a sphere settling under the action of gravity in this Newtonian fluid was
measured using DIP and PIS methods, converted to the drag coefficient using Equation (5)
and finally compared with CD = 24/Re. For each particle, the velocity (and hence the
drag coefficient) measurement is repeated five times. A sample result for this calibration
process is shown in Figure 6b, where a good agreement between the experimental data
and the universal drag coefficient is observed at a different Reynolds number (Re < 1).
The errorbars in Figure 6b account for the dispersion around the average value of the drag
coefficient measured experimentally. The mean value of the relative standard deviation
for all measurements, conducted at T = 20 ◦C and repeated five times, was less than 0.10%.
This small deviation is greatly attributed to the small temperature tolerance, and possibly
the particle release mechanism.

Table 2. Spherical particle characteristics used in settling measurements.

Material Density (kg/m3) Diameter (mm) γ̇ (1/s) Re Wi

Cellulose Acetate 1300 1.0–12.0 <4.0 <1.0 <1.0
White Polymer 1800 5.0–6.0 <13 <1.0 <2.5
Soda Lime Glass 2500 1.0–8.0 <45 <1.1 <8.5
Yttria Zirconia 6000 0.5–1.6 <29 <0.2 <5.2
Stainless Steel 7800 0.5–1.2 <30 <0.1 <5.5

In viscoelastic fluids, as discussed in Section 2, the drag coefficient not only changes
with Re, but also varies as a function of the Weissenberg number and retardation ratio,
i.e., CD = f (Re, Wi, ζ). The effect of Wi and ζ on the drag coefficient of a spherical
particle at Re < 1 was experimentally studied using the calibrated experimental setup and
measurement procedures. Here, to quantify the effect of Weissenberg number, spherical
particles with different characteristics were used to achieve 0 < Wi < 8.5. These particles
were carefully selected to produce (i) a shear rate below than 50 (1/s) to stay in the constant-
viscosity flow regime, and (ii) a Reynolds number below than unity (Re < 1) for both



Polymers 2022, 14, 657 14 of 19

PAM/GLY and PS/TCP solutions. The characteristics of the particles, and the associated
ranges of Wi, Re, and γ̇ obtained for each family of particles, are reported in Table 2.

(a) (b)

Figure 7. The comparison between measured and theoretical drag correction coefficient for particles
settling through an asymptotically unbounded viscoelastic fluid at Re < 1 and Wi < 1. Panel (a)
shows the comparison for PS/TCP solution, and Panel (b) shows the comparison for PAM/GLY
solution. The errorbars account for the dispersion around the average value of the drag coefficient
and Wi measured experimentally (5 measurements were carried out for each Wi value to assure
the repeatability). The shaded area highlights a region constructed using the theoretical values of χ

(Equation (6)) ±σ, where σ denotes the mean standard deviation for all measurements conducted for
each solution.

Figure 7 shows the comparison between the measured and theoretical drag correction
coefficient, χ, for particles settling through an asymptotically unbounded fluid at low
Reynolds numbers, Re < 1, and low Weissenberg number, Wi < 1. The theoretical drag
correction coefficients are calculated from Equation (6). This comparison is shown for
the PS/TCP solution with ζ = 0.497 in Figure 7a, and for the PAM/GLY solution with
ζ = 0.709 in Figure 7b. As expected from the literature [1,2,33] and Equation (6), using a
carefully measured relaxation times and other rheological properties, the calibrated velocity
measurement procedures captured a slight reduction in drag coefficient for both values of
ζ at Wi < 1 and Re < 1. In these measurements, again, each settling test is repeated five
times assuring the statistical accuracy and repeatability of the acquired data. The vertical
errorbars account for the dispersion around the average value of the drag coefficient
correction measured experimentally at each Wi. The horizontal errorbars account for the
dispersion around the average value of Weissenberg number attributed to the tolerance
of sphere diameters and shear rate measurement. The shaded area highlights a region
constructed using the theoretical values of χ (Equation (6)) extended by ±1 σ, where σ
denotes the mean standard deviation for all measurements conducted at Wi < 1. The
mean value of the relative standard deviation is 0.11% for the PS/TCP solution and 0.12%
for the PAM/GLY solution. Figure 7 shows that increasing the polymer viscosity, i.e., the
retardation ratio, results in a more pronounced reduction of the drag coefficient at Wi < 1.

At higher Weissenberg numbers, no data was produced for the PAM/GLY solution due
to its very low relaxation time and the limitation on the particle size satisfying γ̇ < 50 (1/s)
and Re < 1. However, for the PS/TCP solution that possess a high zero-shear viscosity
and a large relaxation time, a broad range for Wi was achieved using the particles listed in
Table 2 while satisfying all other kinematic constraints. Figure 8a shows the comparison
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between the measured and theoretical drag correction coefficient, χ, for particles settling
through an asymptotically unbounded PS/TCP solution at Re < 1 and Wi > 1. As
expected from the literature [2,23] and Equation (7), the drag coefficient for a spherical
particle increases, i.e., χ > 1. The experimental results follow Equation (7) very well at
Re < 1. The vertical and horizontal errorbars account for the dispersion around the average
value of the measured drag coefficient correction and Wi, respectively. The horizontal
errorbars are smaller than the symbols and thus are masked in Figure 8a. The shaded area
highlights a region constructed using the theoretical values of χ (Equation (7)) extended
by ±1 σ, where σ denotes the mean standard deviation for all measurements conducted.
The mean value of the relative standard deviation is 5.97% for all measurements conducted
in the PS/TCP solution at Wi > 1. The mean value of the relative standard deviation in
this case is one order of magnitude larger than its counterpart obtained for Newtonian and
slightly elastic fluids (Wi < 1). The increase in the relative standard deviation measured at
high Weissenberg numbers might be attributed to (i) higher elasticity effects pushing the
particle off the flow centerline where it starts to rotate, (ii) repetitive experiments causing
large and continual disturbance of the polymer chains located on the flow centerline.
Figure 8b illustrates the comparison between measured drag coefficient correction and
predicted drag coefficient corrections calculated using Equations (6) and (7). The best fit to
the data yields R2 = 0.982. The shaded area highlights the bounds encompassing all the
data by extending the identity line, x = y, by ±8%.

(a) (b)

Figure 8. Panel (a) shows the comparison between measured and calculated drag correction coefficient
for particles settling through an asymptotically unbounded PS/TCP solution at Re < 1 and Wi > 1.
The errorbars account for the dispersion around the average value of the drag coefficient and
Wi measured experimentally (5 measurements were carried out for each Wi value to assure the
repeatability). The shaded area highlights the region where the theoretical values are extended
by ±σ. Here, σ denotes the mean standard deviation for the measurements. Panel (b) shows the
comparison between measured drag coefficient correction and predicted drag coefficient corrections
of particles calculated using Equations (6) and (7). The shaded area in panel (b) highlights the bounds
encompassing all the data by extending the identity line, x = y, by ±8%.

The experimental data plotted in Figures 7 and 8 are unique and were not reported
previously in the literature. These data were captured using carefully designed elastic
fluids and velocity measurement procedures. These datasets show the presence of an initial
reduction (i.e., second order decrease in Wi ≤ 1), as well as a large enhancement (i.e.,
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higher order increase in Wi > 1) in the viscoelastic drag coefficient due to elasticity. These
data also confirm that the approximate model, Equations (6) and (7), developed based on
direct numerical simulation of Oldroyd-B fluids past a sphere, can confidently predict the
effect of elasticity on the viscoelastic drag coefficient at 0 < Wi < 8.5. This moderate range
of Weissenberg number is typically experienced by particles in dilute polymeric fracturing
fluids, with λ ≈ O(100 ms), flowing through the fracture networks with γ̇ ≈ O(100 1/s);
see, for example, Malhotra and Sharma [71] and Hu et al. [72]. Therefore, this numerically-
driven model can be used to rapidly compare the particle-carrying capacity of different
polymeric fluids.

When polymeric solutions are strongly shear-thinning, the effect of elasticity on the
drag coefficient reduction or enhancement can be masked [12,23]. Shear-thinning behavior
leads to more complex and nonlinear dependencies at non-vanishing Weissenberg numbers.
Very recently, Faroughi et al. [13] numerically studied the coupled effects of elasticity, shear-
thinning, and inertia on the viscoelastic drag coefficient correction. When considering
a strong shear-thinning behavior, they showed that increasing inertia (i.e., Re number)
and elasticity (increasing the Wi number) of the flow lead to a strong reduction in the
viscoelastic drag coefficient correction. These effects not only mask the enhancement due to
elasticity (e.g., the one observed in Figure 8 for a Boger fluid), but also decrease it sharply
to a value lower than unity (χ < 1). The shear-thinning effects on the particle transport,
however, have not been comprehensively quantified, and require further investigations.

5. Conclusions

In this work, we performed an experimental campaign using different polymer solu-
tions and rheological techniques to validate a theoretical model introduced previously [2]
to describe particle settling in viscoelastic liquids with negligible shear-thinning. With
this aim, we employed two Boger fluid formulations with distinct longest relaxation time
values, and spherical particles with different characteristics were used to quantify the effect
of Weissenberg number (i.e., elasticity) on the drag coefficient in 0 < Wi < 8.5 at Re < 1.
The drag coefficient decreases with Wi at a low level of elasticity (Wi < 1), and increases
with Wi at a high level of elasticity (Wi > 1). The comparison between the measured and
calculated drag coefficient data collectively yields R2 = 0.982, endorsing the accuracy of
the approximate model for the range studied here. Our experimental results also show a
self-similarity in the evolution of the drag coefficient with elasticity in the inertia-less flow
regime. Future work should focus on the combined effect of fluid shear-thinning, elasticity,
and inertia on the particle settling behavior, a problem that is not still fully understood
and quantified.
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