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Abstract: The alternating current (AC) chip nano-calorimetry is a powerful tool to investigate the
physical properties of polymer thin films. In this paper, we report on the adsorption kinetics of
polymers in which an AC chip nano-calorimetry was used for the first time. This technique allows
for the real-time measurement of the adsorption kinetics of polymer chains onto the SiO2 surface. We
used polystyrene (PS) and poly(9-anthracenyl methyl methacrylate) (PAMMA), which have different
chemical natures and side group sizes. It was confirmed that the observed adsorption kinetics for PS
were consistent with previously reported results obtained by dielectric spectroscopy. For PAMMA,
we found characteristic adsorption kinetics, which shows a clear kink at the crossover between the
early and later stages, while PS exhibits a lesser tendency of showing the kink as demonstrated by
previously reported results.

Keywords: AC chip nano-calorimetry; poly(9-anthracenyl methyl methacrylate); SiO2 surface

1. Introduction

Polymer thin films are promising materials that facilitate advances in the industry and
improvements in our daily lives. Due of their large surface-to-volume ratio in confined
geometries, their properties, such as gas permittivity, density, creep behavior, relaxation
time, and physical aging, significantly deviate from the bulk properties [1–7]. Additionally,
the characterization of atomic/molecular interactions at the interface between polymeric
and inorganic materials is becoming of more importance not only academically but also
practically. For example, Menazea et al. extensively studied the interaction between
lithium titanate and polymer blends to improve their performance as electrode materials
for batteries [8]. To tailor the properties of polymer/inorganic composite materials, it is
necessary to understand the behavior of the polymer chains near the interface. Recently,
the adsorbed polymer layers have gained significant attention because a correlation was
identified between the number of adsorbed chains and material properties [9–12].

The procedure of “Guiselin’s experiment” provides the adsorbed layer by annealing
and subsequent solvent washing [13]. Many experiments have shown that the residual
adsorbed layer thickness depends on the annealing time at an elevated temperature [14–19].
Dielectric spectroscopy provided real-time measurements of adsorption kinetics in a buried
interface with an aluminum substrate [20]. This real-time measurement provides important
information because the adsorption kinetics can be revealed without solvent washing.

Housmans et al. proposed a description of the kinetics of the irreversible adsorp-
tion, including a crossover between the linear and logarithmic growth stages [21]. Many
experiments have revealed linear and logarithmic adsorption kinetics, and to the best
of our knowledge, this assumption has been confirmed only by studies using Guiselin’s
experiment [21–24]. This two-stage mechanism is consistent with the bimodal growth
reported for the chains adsorbed from solutions [25]. However, Roth et al. suggested an
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open question as to what the difference in solubility is of the layer adsorbed from melt and
from the solution [16]. As already pointed out by Granick in 2002, the relationship between
the loop size and the dynamics of the entire polymer film is still unknown [26]. Jiang et al.
proposed that the magnitude of the polymer/substrate interactions controls not only the
final thickness, but also the kinetics of the flattened adsorbed layer formation [24]. How-
ever, this can only be explained qualitatively by simulation results: the number of polymer
chains adsorbed on solids increases with an increase in the solid-segment interaction. In
summary, because of its intricacy, the adsorption mechanism is not completely understood.

The alternating current (AC) chip nano-calorimetry is a technique that can detect the
heat capacity of a sample of the order of several nanograms [27]. Similar to the dielectric
relaxation measurements, an embedded measurement that measures the heat capacity
of the entire film can be performed, so that the adsorption experiment can be measured
in real time. Studies on the glass transition temperature of the polymer thin films have
been conducted via AC chip nano-calorimetry [3,27–31]. However, there is no record
of this technique being applied to the direct measurement of the polymer adsorption
process. The surface of the chip sensor used for the calorimetry was coated with SiO2.
Dynamic measurements can be performed on the SiO2 substrates that cannot be used by
the dielectric relaxation measurements, where the substrate needs to have conductivity. In
the future, this advantage may enable the study of adsorption of modified substrates by
surface-fluorination. In this study, the AC chip nano-calorimetry is used to investigate the
adsorption kinetics.

In this study, we establish a technique for observing the formation process of an
adsorption layer via AC chip nano-calorimetry for the first time. Using this technique,
we measure the time evolution of the heat capacity of polymers during adsorption onto
a silica substrate, which directly reflects the adsorption kinetics. We use polystyrene (PS)
because many studies have been conducted on this polymer in a previous work [18]. We
also use poly(9-anthracenyl methyl methacrylate) (PAMMA), which is quite characteristic
of its bulky anthracenyl group. Comparing the results of these polymers, we attempt to
reveal the influence of the bulky side chains on the adsorption process. In addition, the
anthracenyl group exhibits strong absorbance in ultraviolet (UV) range, thus PAMMA is
useful for measuring the film thickness via UV-vis spectroscopy.

2. Materials and Methods
2.1. Materials

The atactic polystyrene (PS, Mn = 424 kDa; MW/Mn = 1.06) was purchased from
Scientific Polymer Products (Ontario, NY, USA). PAMMA (Mn = 88.0 kDa; MW/Mn = 1.15
was purchased from Polymer Source, Solon, OH, USA (see Figure 1). The polymers were
used as received without further purification. The glass transition temperatures Tg for PS
and PAMMA were measured to be 379 K and 418 K, respectively, via differential scanning
calorimetry (DTG-60, Shimadzu, Kyoto, Japan) on the second heating at 20 ◦C/min under
a nitrogen atmosphere. The molar extinction coefficient ε of the anthracenyl groups in
PAMMA was determined to be 6713 M−1 cm−1 at 370 nm via UV-vis spectroscopy using
a Hitachi (Tokyo, Japan) U-3900H. Toluene was obtained from Kanto Chemicals, Tokyo,
Japan. Chloroform was obtained from Fujifilm Wako Pure Chemicals, Tokyo, Japan, and
used as a good solvent for PAMMA.

Figure 1. Chemical structure of PAMMA.
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2.2. Heat Capacity Measurement

A spin-coated PS film (approximately 88 nm in thickness) was prepared from a 1.0 wt%
toluene solution at 1000 rpm for 30 s. The film thickness of PS was estimated using an
optical interferometer, Filmetrics (Yokohama, Japan) F20. The film was then cut into pieces
of approximately 2 mm × 2 mm in size and then floated on water. One of the pieces was
scooped up with a chip sensor and placed in the active area. Then, it was dried under
vacuum at room temperature for 24 h.

A PAMMA film was cast directly onto the chip sensor from a saturated chloroform
solution (0.26 wt%). The thickness of the films was 1.0~1.2 µm, which was controlled by the
amount of the solution. We confirmed that the cast film was spread over the entire sensor
area of 7.24 mm2. The thickness of the cast film h was estimated as follows:

h =
xρsol ϕ

ρpoly A
(1)

where x is the volume of the drop, ρsol is the density of the solvent, ρpoly is the density of
the polymer, ϕ is the concentration of the PAMMA/chloroform, and A is the surface area of
the active area of the chip sensor. After casting the PAMMA film, the samples were dried
in a vacuum oven at room temperature for 24 h. The heat capacity of the entire PAMMA
film during adsorption at 433 K (Tg + 15 K) was measured via heat capacity measurements.

We followed the established protocol using the Guiselin approach [32–35] for PAMMA-
adsorbed layers (Figure 2). Optically polished SiO2 (2 cm × 2 cm) substrates were cleaned
using the following procedure. First, the SiO2 substrates were heated at 973 K for 10 min
to remove organics in an electric furnace, and then, these substrates were rinsed with
methanol. PAMMA films of 800 nm thickness were cast from a saturated solution of 100 µL
onto cleaned SiO2 substrates, and then left at room temperature for 10 min. Subsequently,
the samples were annealed at 433 K in a vacuum oven for various annealing times (tads).
The samples were then solvent leached in a bath of chloroform at 40 ◦C for 1 h and then
rinsed with fresh chloroform to remove the non-adsorbed polymer chains. This washing
procedure was repeated three times. The amount of residual adsorbed layer was evaluated
via UV-vis spectroscopy.

Figure 2. Preparation of PAMMA adsorbed layer via the Guiselin approach.

2.3. Sample Preparation

Heat capacity measurements were performed using an AC chip nano-calorimeter
(XI-39390, Xensor Integration, Delfgauw, Netherland). The equipment used for the AC chip
nano-calorimetry is shown in Figure 3. Two chip sensors were used for the sample and
the reference (empty). The set temperature was adjusted using a handmade aluminum
block heater that covered the two chip sensors. The measurements were performed under
a nitrogen flow of 0.1 mL/min.

The amplitude difference ∆V = |VA − VB| and the phase difference θ between the
sample and the reference were obtained, where VA and VB are the voltages from the
thermopile of the sample and the reference, respectively. In AC calorimetry, the apparent
heat capacity is given by [30].

Cp = ∆V aiωC0
2/P (2)

where a is the reciprocal of the sensitivity of the thermopile, which was estimated to be
452 K V−1; C0 is the effective heat capacity of the empty chip; and P is the heating power
applied to the chip sensors, which can be evaluated from the voltage V0. The voltage V0
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over the known resistor R (shown in Figure 3) was measured using a digital multimeter
Keithley 2100 (Solon, Quebec, Canada). The chip sensors in the block heater were driven
by an alternating current at a frequency of ω/2 from the oscillator of a lock-in amplifier
Signal Recovery (Ametek, Berwyn, PA, USA) 7270. We also obtained the data of the phase
angle difference θ between the sample and the empty sensors. The real part of the complex
heat capacity is approximately proportional to ∆V cos θ. While measuring the change in
the complex heat capacity during polymer adsorption, the difference in the temperature
amplitude between the sample chip (chip A) and the reference chip (chip B) connected
in series was observed. The temperature amplitude is inversely proportional to the heat
capacity of the sample. When adsorption occurs, the heat capacity of the sample decreases,
the temperature amplitude increases, and the absolute value ∆V decreases. Therefore, it
is expected that the above measured value (i.e., the difference in the voltage amplitude
between chips A and B) will decrease as the adsorption proceeds.

Figure 3. Equipment of AC chip nano-calorimetry. The two chip sensors are included in the aluminum
block heater (a); (b) shows the schematic picture of the electric setup.

We attempted to observe the dynamics of the polymer chains near the chip interface by
measuring the heat capacity. The storage heat capacity (C’(t)) at a temperature modulation
of 200 Hz was measured at 429 K for a chip sensor on which a PS spin-cast film was placed.
Nitrogen was infused at 1 mL/min for 10 min prior to the measurement. At the same time,
the temperature of the block heater was set such that the temperature of the sample became
Tg + 50 K. It took approximately 10 min to reach the set temperature. Then, the flow rate of
nitrogen was set to 0.1 mL/min, and after 1 min had passed, the measurement was started.
PAMMA was also investigated at 433 K (Tg + 15 K) in the same manner as that for PS.

2.4. Thickness Determination of the Adsorbed Layer

The amount of PAMMA adsorbed was investigated using a UV-vis spectrophotometer.
Since the anthracenyl group showed the maximum absorbance at a wavelength of 370 nm,
the absorbance was measured in the wavelength range of 300–450 nm. The absorbance was
converted to the thickness of the adsorbed layer using the Lambert–Beer law as follows:

A = εcl (3)

In this equation, A is the absorbance, ε is the molar extinction coefficient of the an-
thracenyl group (6713 M−1 cm−1), and c is the concentration of the anthracenyl group per
volume of PAMMA (4.27 mol L−1). The optical path length l was assumed to be the thick-
ness of the adsorbed layer. The concentration of the anthracenyl group was determined by
dividing the density of PAMMA (1.21 g cm−3) by the molecular weight per repeating unit
(276.3 g mol−1).
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3. Results and Discussion

It was confirmed that the polymer films prepared in this study were uniform as
evidenced by the optical microscopy before the adsorption. However, we found that
cracking occurred occasionally for PAMMA films after the long-time annealing, which was
probably caused due to dewetting during the adsorption process. Typical images of the
annealed samples with cracking are shown in Figure S1 in the Supplementary Materials.
Multiple experiments repeated carefully revealed that such cracks did not directly affect
the heat capacity profile obtained by the nano-calorimetry. This suggests that the crack did
not reach the region of the adsorption layer near the interface. On the other hand, no cracks
were observed for PS films even after the annealing.

C’(t) was normalized so that it started from zero to the final value of unity as [C’(0)
− C’(t)]/[C’(0) − C’(∞)]. To determine the adsorption kinetics of PS, the heat capacity
measurements were performed via the AC chip nano-calorimeter at 429 K. The results
are shown in Figure 4. For comparison, the results of the adsorption kinetics data for PS
obtained by Napolitano et al. via the dielectric spectroscopy are also plotted in Figure 4 [20].
The data were obtained for two different molecular weights of 97 and 160 kDa at 423 K
(purple circles and green triangles, respectively). The molecular weight of PS used in this
study was 424 kDa, which showed an intermediate time evolution profile between those
obtained from the dielectric measurements. This may have resulted from the difference
in the chemical structure of the substrate; the SiO2 surface was used in our experiment,
and Al2O3 was used in the dielectric spectroscopy reported by Napolitano et al. These
differences in the chemical structure of the substrate may affect the adsorption kinetics.
The effect of polymer/substrate interaction on the polymer adsorption kinetics has been
discussed by other groups [24,34,35]. It has been revealed that the adsorption rate is
reduced when the polymer/substrate interaction becomes strong. Additionally, when
porous substrates were used, the adsorption is also slowed as the size of the pore becomes
smaller. The latter suggests that the confinement of polymer chains in the pores also affects
the adsorption kinetics.

Furthermore, the observed adsorption kinetics were in line with the two regimes
proposed in Ref. [21]. Housmans et al. revealed the growth kinetics of heterogeneous
structures in the vicinity of the polymer/substrate interface, which can be described by [21].

hads =

{
h0 + vt

hcross + Π log t
(4)

where h0 is the thickness of the adsorbed layer at t = 0; v and Π express the growth rates in
the first and second regimes, respectively; hcross is the value of the thickness at the crossover
time tcross; and the value of t in the argument of the logarithm is normalized by t0 = 1 s, to
ensure correct dimensionality. This means that, for a short time, the growth kinetics follows
a linear time dependence where the adsorbed layer grows by the direct pinning of segments
to the substrate, and the logarithmic regime was reached where the diffusion of segments
through the already existing layer with entropy was lost. We estimated the crossover time
via nonlinear least squares fitting processes with Equation (4) for the two temporal regions.
As a result, tcross was estimated to be ca. 1.5 × 104 s, as shown in Figure 4. Furthermore,
our data do not exhibit a clear kink at tcross, but similar profiles were confirmed for the
dielectric relaxation measurements by Napolitano et al. Such an unclear kink between the
two regimes for PS may be due to a dynamic measurement feature.

We extended our experiments to PAMMA carrying an anthracenyl group (bulky side
chain). Figure 5 shows the results. As a result of fitting Equation (4), tcross was evaluated to
be 1.9 × 104 s. The right axis shows the thickness of the adsorbed layer prepared using the
Guiselin approach (blue square). From these results, it was found that the heat capacity
and thickness of the adsorption layer changed consistently with the annealing time. It
was found that the boundary between the linear and logarithmic profiles was not smooth
compared to the case of PS. This result means that the rates of change of v and Π are
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different, as shown in Table 1. The difference in the adsorption behavior between PS and
PAMMA observed in this study evokes the assumption suggested by Gin et al. that the
local conformations (i.e., trans and gauche states) of a polymer chain play a vital role in
the unusual densification process during adsorption [14]. The correlation between the
adsorption kinetics and chemical structure of the side chain should be elucidated. The data
in Figure 5 revealed an induction period before the adsorption commences. This results
in an apparent negative value of h0 as shown in Table 1, but of course, it is not the real
value of the initial thickness of the adsorbed layer. The bulky anthracenyl group might
require such an induction period in which slow conformational rearrangements take place
to achieve favorable structures for the adsorption process at the interface.

Figure 4. Time evolution of the normalized storage heat capacity of PS (Mw = 424 kDa) layer at
429 K (red line, left axis). The purple circles and green triangles show the literature data of dielectric
measurements for PS on Al2O3 substrates at 423 K with Mw = 97 kDa and 160 kDa, respectively
(reproduced from Ref. [20] Copyright Springer Nature (2011)) (right axis). The black solid line
indicates the fitting results with Equation (4).

Figure 5. Time evolution of the normalized storage heat capacity of the PAMMA (Mw = 88.0 kDa)
layer at 433K (left axis). The solid line indicates the fitting results with Equation (4). Blue squares are
the thickness of the adsorbed layer prepared using the Guiselin approach (right axis).

Table 1. Obtained parameters from fitting analysis with Equation (4).

Polymer h0 (nm) v (nm s−1) Π Π/v

PS 0.51 ± 0.004 1.98 × 10−5 0.584 ± 0.002 2.95 × 104

PAMMA −0.66 ± 0.002 1.62 × 10−5 0.425 ± 0.001 2.62 × 104
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4. Conclusions

We investigated, for the first time, the adsorption process for polymers via AC chip
nano-calorimetry. The main conclusions are summarized as follows: (1) we were able
to measure the adsorption of polymers on a silica substrate using the nano-calorimetry
technique. Such real-time measurements can provide reliable information about the adsorp-
tion kinetics of polymers on a silica substrate. (2) The obtained profile of the adsorption
kinetics for PS was consistent with those obtained via the dielectric spectroscopy reported
in the literature. Both the adsorption kinetics of PS from the AC chip nano-calorimetry and
dielectric spectroscopy show an unclear transition between the earlier and later regimes
at the crossover time, which may be a feature of the dynamic measurement. (3) On the
other hand, PAMMA that has bulky side groups clearly exhibits a different adsorption
profile from PS. The fitting parameter of PAMMA shows a clear crossover between the two
regimes compared with that of PS.

The results obtained in this study provide typical evidence that the chemical structure
of the polymer influences significantly its adsorption behaviors at the interface. Such a
valuable finding gives a clue to elucidate the interfacial phenomena based on the chemistry
of the materials on a molecular basis, and provides a molecular guideline for the develop-
ment of adhesion technology and molecular design for various composite materials. We
are currently investigating how the relationship between the polymer/substrate interaction
and the adsorption process is related to the adsorption rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym14030605/s1. Figure S1. Optical micrographs of typical PAMMA films on the active area
of the chip sensor after annealing at 433 K for ca. 106 s. The scale bar indicates 70 µm.
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