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Abstract: An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)–
camphor mixture is constructed using an original optical method. For the first time, it contains a
boundary curve that describes the dependence of camphor solubility in the amorphous regions of
PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the
eutectic phase diagrams of two low-molar-mass crystalline substances. The phase diagram is used
to interpret the polarized light hot-stage microscopy data on cooling the above mixtures from a
homogeneous state to room temperature and scanning electron microscopy data on the morphology
of capillary-porous bodies formed upon camphor removal. Based on our calorimetry and X-ray
studies, we put in doubt the possibility of incongruent crystalline complex formation between PVDF
and camphor previously suggested by Dasgupta et al. (Macromolecules 2005, 38, 5602–5608). We
also describe and discuss the high-temperature crystalline structure of racemic camphor, which is not
available in the modern literature.

Keywords: semicrystalline polymer; camphor; phase diagram; thermally induced phase separation;
morphology; polymorphous transition

1. Introduction

At present, there is a growing interest in the preparation of polymeric capillary-porous
materials, such as membranes for liquid filtration [1–8] and gas separation [9–11], porous
pellets for immobilization of pharmaceuticals [12–14] or nanoparticles [15,16], scaffolds
for tissue engineering [17,18], etc. [19–22]. From the variety of polymers used for the
production of such materials, considerable attention is attracted by polyvinylidene fluoride
(PVDF) [1–3,15,19,20] due to its low cost, good chemical and thermal resistance, and decent
mechanical properties [1]. Capillary-porous bodies were obtained from the blends of PDVF
with thermodynamically good [23–27] and poor [28–31] liquid solvents. At the same time,
studies focused on the preparation of such materials from the mixtures of this polymer
with crystalline substances are still scarce [32–35].

Dasgupta et al. [33–35] prepared multiporous PVDF materials with micro-, meso-,
and macropores using camphor as a crystalline diluent, which could be easily removed
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from the samples by sublimation, thus bypassing the extraction step. As an interesting
feature, they reported on the formation of crystalline complexes (compounds) between
PVDF and camphor and constructed the corresponding phase diagram (Figure 1) based on
the differential scanning calorimetry (DSC) data and conclusions made from synchrotron
X-ray experiments, optical observations, and molecular modelling for this system.
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Figure 1. Phase diagram of PVDF–camphor, adapted from [34].

Our analysis of these publications raised some serious questions. Firstly, the diagram
in Figure 1 contains several curves reflecting hypothetical processes (melting of camphor
excess, melting of crystalline complexes with different structure, etc. [33,34]), the thermal
effects of which have not been recorded. At the same time, it includes the binodal of liquid–
liquid equilibrium above the camphor melting temperature, which should be characterized
by a much lower thermal effect than melting. Moreover, this binodal is present for rapid
heating (40 ◦C/min) and absent at a much slower (2 ◦C/min) heating rate.

Secondly, the formation of solid solutions of PVDF in camphor with the polymer
concentration increasing with temperature, as well as the formation of crystalline complexes
between camphor and PVDF, seems doubtful in the absence of strong intermolecular
interactions. The cocrystallization of PVDF with camphor should change the crystal
structure of the polymer, and the peaks corresponding to the α-phase of pure PVDF are
hardly expectable at high concentrations of camphor. Nevertheless, they were observed in
ref. [33,34] for the mixtures containing up to 80 wt% of camphor. It should also be noted
that in two consequent papers, different descriptions of the complex stoichiometry are
provided. In ref. [33], the complexes are thought to include four monomer units of PVDF
and five camphor molecules, whereas in ref. [34], two different complexes are described,
which contain two and four PVDF units per camphor molecule, respectively.

Thirdly, nitrogen adsorption/desorption porosimetry seems to considerably over-
estimate the volume of pores smaller than 20 nm in a polymer matrix. We observed
this effect for the capillary-porous bodies of low-density polyethylene [36] and isotactic
polypropylene [37] prepared via thermally induced phase separation (TIPS) from solutions
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in dimethyl terephthalate and camphor, respectively. In both cases, a rather high specific
volume of nanopores (up to 0.3 cm3/g), which is comparable with the overall porosity
of the samples, was obtained. We have assumed that this value corresponds to nitrogen
adsorbed on all nanoscale asperities on both internal and external surfaces of the samples.
Therefore, it should not be used for assessment of the quantity and size of nanoscale pores
in the capillary-porous sample formed via TIPS.

All the above factors cast into doubt the conclusions made by Dasgupta et al. and
motivated us to carry out our own structural and thermal studies of the PVDF–camphor
mixtures. An interpretation of the data obtained for this particular system can be made in
the framework of our concept proposed for the mixtures of semicrystalline polymers with
low-molar-mass (LMM) compounds [37–40]. This concept suggests that the phase diagrams
of such systems should be supplemented with an extra boundary curve reflecting the de-
pendence of LMM substance solubility in the amorphous polymer regions on temperature.
This boundary curve was constructed for a number of polyolefin (low- and high-density
polyethylene and polypropylene) mixtures with n-alkanes [40], alkylbenzenes [41], dialkyl
phthalates [39], 1,2,4,5-tetrachlorobenzene [42], thymol [43], camphor [37], and dimethyl
terephthalate [36] and for poly-3.3-bis(azidomethyl)oxetane with energetic plasticizer [44]
using a quasi-equilibrium optical method. The corresponding phase diagrams allowed
us to discuss the thermal behavior and structural evolution of the above mixtures in a
thermodynamically consistent manner.

While preparing this paper, we found that the crystalline structure of camphor at high
temperatures, between ca. 100 ◦C and its melting point at 170 ◦C, is missing in the major
repositories (Cambridge Crystallographic Data Centre (CDCC) and Crystallography Open
Database). Several papers report that at room temperature, racemic camphor forms the
hexagonal (hex) crystalline phase with known lattice parameters [45–50] and that upon
heating in the interval from 75 ◦C to 100 ◦C, it undergoes a transition to the face-centered
cubic (fcc) phase with a single lattice parameter of 10.1 Å [34,45,47–49,51–53]. However,
none of these papers contain the original X-ray diffraction (XRD) data, which inspired us to
conduct our own study of the hex and fcc crystalline phases of camphor.

The rest of the paper is organized as follows. After the Materials and Methods section,
we use our quasi-equilibrium optical method to construct a reliable phase diagram of
PVDF–camphor. The states of the mixtures at different compositions and temperatures
are discussed in detail. Then, we analyze the DSC curves and interpret peaks recorded
at heating and cooling experiments. The DSC data are used to obtain a dynamic phase
diagram of the system, which is then compared with the diagram obtained by the optical
method. After that, we present the results of a new study of the crystalline structure
of camphor and try to interpret the XRD data by Dasgupta et al. [33–35] in a consistent
manner. The phase diagram is also used to explain the structural evolution of the PVDF–
camphor mixtures during cooling from a homogeneous state to room temperature. Finally,
we analyze the internal morphology of the capillary-porous PVDF bodies obtained after
camphor removal. The paper is concluded with a summary of our findings.

2. Materials and Methods

PVDF (Solef 6020, Solvay Specialty Polymers, Mw ≈ 650 kg/mol according to ref. [54–56])
with a melt flow index of 4.5 g/10 min measured at 230 ◦C under a load of 21.6 kg
(DIN EN ISO 1133:2005), crystallinity degree of 73.5% found by DSC at first heating
using 104.7 J/g [57] as the melting enthalpy of PVDF at 100% crystallinity, density of
1.78 ± 0.01 g/cm3 found picnometrically at 25 ◦C, and full amorphization temperature of
175.8 ± 0.3 ◦C (end of the DSC melting peak) and camphor (racemic, 96%, Acros Organics,
Geel, Belgium) with a melting temperature of 170 ± 2 ◦C (onset of the DSC melting peak)
and boiling point of 204 ◦C were used without additional purification.

Experimental phase diagrams were constructed using the optical and DSC methods.
The optical technique [58] consists of observation, through a horizontal microscope, of
changes in the state of a binary system during its stepwise heating in a sealed ampoule.
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This method makes use of a difference in the refractive indexes of coexisting phases. In our
case, it allows one to determine, with an accuracy of ±0.5 ◦C, the temperatures at which
the state of an initially two-phase system containing a PVDF pellet and camphor crystals is
qualitatively changed under heating from room temperature at a very slow rate of ca. 1 ◦C
per day.

DSC thermograms for PVDF, camphor, and their mixtures of different compositions
were recorded on a DSC823e/400 calorimeter (Mettler-Toledo, Greifensee, Switzerland) at
a scanning rate of 10 ◦C/min under argon flow and sample mass of 3–7 mg. Calibration
standards were n-hexane (temperature and enthalpy of melting of −94 ◦C and 151.8 J/g,
respectively), distilled water (0 ◦C, 334.5 J/g), and indium (156.6 ◦C, 28.45 J/g). The
measurement accuracy was within ±0.3 ◦C for temperature and ±1 J/g for enthalpy.
Sealed crucibles containing PVDF/camphor compositions were cooled down from room
temperature to 0 ◦C, heated up to 210 ◦C, kept at that temperature for 30 min, then again
cooled to 0 ◦C and heated up to 210 ◦C for the second time. The first heating and annealing
at 210 ◦C provided homogenization of the samples, while cooling to room temperature led
to an increase in the contact area between the components, thus accelerating diffusion in
the course of further heating. At both the first and second heating stages, the DSC curves
were recorded. Some samples were treated at a slower scanning rate of 2 ◦C/min, and
some were cooled down to –90 ◦C (instead of 0 ◦C) between the heating cycles.

Optical investigations of the structure of PVDF–camphor mixtures were performed on
an RNMK-05 microscope (VEB MLW Analytik, Dresden, Germany, 100x zoom) equipped
with a compact Boetius heating stage (heating/cooling rate of 5 ◦C/min). A small amount
of the mixture was placed into the glass cell and covered with another glass in order to
form a film of uniform thickness upon melting. The cell was covered by an extra glass to
prevent camphor losses via sublimation or evaporation. Some of the mixtures were also
studied under a Micromed C-11 microscope (Micromed, Moscow, Russia, 800x zoom) after
cooling to room temperature.

Capillary-porous bodies were prepared as follows. A PVDF–camphor mixture homog-
enized at 210 ◦C was poured onto a glass plate heated up to the same temperature, covered
with another hot glass, and cooled down to room temperature in air. Then, camphor was
extracted into an isopropanol bath (1:50 by mass, 5 h), and the samples were dried in air for
48 h at room temperature.

For morphological studies, the sample was fixed on a scanning electron microscopy
(SEM) holder and cooled down to the temperature of liquid nitrogen. Then, it was cleaved
perpendicular to the surface of the film with a knife and placed in a JSM-7401F SEM
device (JEOL, Tokyo, Japan) equipped with a cold cathode field emission gun. Secondary
electron images were acquired using the lower detector at an accelerated voltage of 1 kV
and working distance of 8–9 mm without conductive coating. Images were taken from the
surface areas without defects that could arise from sample fixing and cleavage.

An X-ray study of the crystal lattice of camphor at different temperatures was per-
formed using a STADI P powder diffractometer (STOE, Darmstadt, Germany) with a
capillary sample holder and Co Kα1 radiation. Both the IP-PSD imaging plate detector for
preliminary measurements at room temperature and the scintillation counter point detector
for fine measurements were used. Borosilicate glass capillary tubes (Capillary Tube Sup-
plies, Withiel, UK) with a 1.0 mm outside diameter plugged with polytetrafluoroethylene
sealing tape to prevent camphor losses were used as sample cases. The measurements at
elevated temperatures were carried out using a hot air rework station Element 858 and
an independent temperature measuring device consisting of a Type K (chromel–alumel)
thermocouple connected to an Mastech Digital M838 multimeter (MGL, Taipei, Taiwan).
Preliminary measurements demonstrated that the accuracy of temperature stabilization
was ±2.5 ◦C.

Modelling of XRD powder patterns for the fcc crystalline phase of racemic (D,L)
camphor was performed as follows. Atom coordinates in the molecules of D-camphor
and L-camphor were found using ChemSketch 2019.1.3 freeware (ACD/Labs) after 3D
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optimization. Phase plasticity was introduced using LibreOffice freeware (TDF). To that
end, the centers of mass of both enantiomers were found and placed at the origin of the
reference system. Then, the molecules were successively rotated by three Euler angles,
the values of which were chosen at random, and placed at 14 nodes of the fcc crystal
lattice with a period of 10.1 Å so that each node was occupied simultaneously with two
different enantiomers and so that all molecules of the same chirality were oriented in the
same way. This procedure of specifying the molecular coordinates was repeated to create
twenty independent crystallographic information files (CIFs), which were used for the
powder pattern calculation with Mercury 4.1.0 freeware (CDCC). The files are presented in
Supplementary Materials. Calculated powder patterns were averaged using LibreOffice
and recalculated to the XRD intensities for various interplanar distances dhkl. Modelling
of XRD powder patterns for the hex crystalline phase of camphor was performed using
Mercury 4.1.0 freeware with the CIF file for L-camphor prepared by ab initio molecular
dynamics in ref. [50]. Simulated XRD patterns were used for peak identification in the
experimental XRD patterns.

3. Results and Discussion
3.1. Phase Diagram by the Optical Method

The experimental phase diagram of PVDF–camphor constructed by the optical method
is presented in Figure 2 and illustrated by optical photographs 1–6 at points K, K1, K2,
K’, K1’, and K2’. It is topologically similar to the diagrams of isotactic polypropylene
with camphor [37] and of low-density polyethylene with 1,2,4,5-tetrachlorobenzene [59]
studied by us previously but significantly differs from the diagram shown in Figure 1 and
from some other phase diagrams of the mixtures of semicrystalline polymers with LMM
crystalline substances reported in the literature [60–68]. Thus, it is worth discussing it in
more detail.
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illustrating the system state at points K, K1, K2, K’, K1’, and K2’.

The optical method enables one to detect qualitative changes in the system state in the
course of its stepwise heating. Let it initially consist of a PVDF pellet and camphor crystals
at room temperature (photo 1 and photo 4).
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For a polymer-rich mixture containing 80 wt% of PVDF, heating from point K results in
a gradual increase in the pellet volume and a decrease in the amount of crystalline camphor.
As was shown in ref. [69], both vapor-phase and direct mechanisms contribute to the
process of camphor dissolution in the amorphous regions of PVDF. When the temperature
corresponding to point K1 is attained, no more camphor crystals are visible, whereas the
polymer remains turbid due to its crystallinity (photo 2). Further heating diminishes the
turbidity, and at point K2, the system becomes fully transparent (photo 3). However, the
pellet still keeps its shape due to the very high viscosity.

In a polymer-lean mixture with 20 wt% of PVDF, heating from point K’ (photo 4) also
results in a swelling of the polymer pellet and a decrease in its turbidity. At point K1’,
the pellet becomes liquid so that the remaining camphor crystals coexist with a camphor
solution in the polymer melt (photo 5). Further heating gradually lowers the amount
of camphor crystals, and finally, the system transforms into a single-phase solution of
camphor in the polymer melt (photo 6).

The boundary curves BD, BC, AB, and EB in Figure 2 are plotted according to the
temperatures, at which the events in photos 2, 3, 5, and 6 are detected for the mixtures
of different compositions. The ABC curve describes the dependence of the full polymer
amorphization temperature on the composition of the initial mixture. The EBD curve
reflects the temperature dependence of camphor solubility in the amorphous regions
of semicrystalline PVDF (along the BD segment) or in the polymer melt (along the EB
segment). These boundary curves delineate four domains in the phase diagram: (I) single-
phase homogeneous mixtures of PVDF melt and camphor; (II) single-phase solutions of
camphor in semicrystalline PDVF; (III) two-phase systems composed of camphor crystals
and the camphor solution in semicrystalline PVDF; (IV) two-phase systems containing
camphor crystals and the camphor solution in melted PVDF. Note that the systems in
domain II are heterogeneous at the nano level, being composed of polymer crystallites and
swollen amorphous regions. They are similar to physical gels, in which crystallites play the
role of crosslinks interconnected by tie chains. The mass fraction of crystallites in a mixture
of a given composition decreases on heating and reaches zero at the BC curve.

Since semicrystalline polymers are generally considered non-equilibrium or metastable
systems [70], solutions of LMM substances in such polymers should be referred to as non-
equilibrium as well. Therefore, the term “phase” is, strictly speaking, inappropriate for the
systems below the ABC curve. That is why it would be more correct to characterize the
states in domains II and III as “macroscopically homogeneous” and “macroscopically inho-
mogeneous” instead of “single-phase” and “two-phase”. The absence of a true equilibrium
state in semicrystalline polymers hinders the application of higher characterization methods
reported for the complex organic [71] and inorganic [72,73] systems exhibiting crystallinity.

It also calls into question the applicability of the Gibbs–Thomson equation [74], which
relates broad melting peaks of polymers to the thickness distribution of their crystalline
lamellas. In the last few years, more and more evidence [75–82] contributing to the opinion
that the distribution of lamellar thickness cannot fully explain the melting behavior of
semicrystalline polymers appeared. For example, crystallites of the same size can melt at
different temperatures depending on the thickness of adjacent amorphous regions [75].
Polymer swelling affects the destruction of crystallites during uniaxial film stretching [77].
An increase in chain mobility with temperature can lead to the reorganization of basal
surfaces of lamellas [82]. These data are well in line with our idea [38,83] about the thermo-
mechanical equilibrium attained between the mechanical strength of the most defective
crystallites and internal stress in the amorphous regions of semicrystalline polymers. Since
the state of the amorphous regions is affected by both temperature and the swelling degree
of the polymer, the same factors should be responsible for the destruction of crystallites.
In our stepwise heating experiments, this process manifests itself through a decrease in
the sample turbidity. In domain III, this is caused by both an increase in temperature and
an increase in swelling degree, and in domain II, where the polymer swelling degree is
constant, amorphization is due to an increase in temperature only.



Polymers 2022, 14, 5214 7 of 21

Thus, the topology of the phase diagram in Figure 2 and of similar diagrams presented
in ref. [37,42,59,69] differs from that of classical eutectic phase diagrams [61–68], since we
do not discard the swelling ability of semicrystalline polymers. Regarding Figure 1, we
can conclude that no liquid–liquid equilibrium exists in this system above the camphor
melting temperature. Since a very slow heating rate of ca. 1 ◦C per day was used, we have
to suppose that the interpretation of high-temperature endothermic peaks at DSC curves as
the thermal effects of mixing melted PVDF with melted camphor [33,34] is incorrect. Also
note that in the above papers, no effect of camphor melting was recorded, which should be
much higher than the thermal effect of two liquids mixing.

In order to clarify whether the crystalline complexes between PVDF and camphor can
be formed, we performed our own DSC study of the corresponding mixtures.

3.2. Analysis of the DSC Data

The results of the first heating experiments are presented in Figure 3. The endotherm
for pure PVDF (curve 1) has two peaks, which is probably not related to the crystallite thick-
ening since the heating rate was 10 ◦C/min. It can correspond to two groups of crystallites
that differ in the degree of their perfection and thus melt at different temperatures. Such
peaks are also observed for the mixtures of PVDF with camphor (curves 2–10), and their
areas and maximum temperatures decrease with an increase in the camphor concentration
in the initial blend from 10 wt% to 90 wt%.
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Figure 3. DSC curves of 1st heating for PVDF, camphor, and their mixtures of different compositions.
The heating rate is Vh = 10 ◦C/min. Mass fractions of the polymer are shown to the right of the
curves, which are arbitrarily shifted in the vertical direction.

For pure camphor (curve 11) and the mixtures containing no more than 70 wt%
of PVDF (curves 4–10), a high-temperature endotherm is observed. We associate this
peak with two simultaneous processes: dissolution of camphor in the PVDF melt already
containing some dissolved camphor and melting of camphor that does not dissolve in the
polymer due to kinetic limitations. Since the thermal effect of melting dominates, the DSC
experiments report that the position of this peak is nearly constant. In the absence of kinetic
limitations in much slower optical experiments, a non-horizontal dissolution EB curve is
recorded (Figure 2). The same camphor-rich systems (curves 4–11) reveal another small
endothermic peak at 90 ± 2 ◦C. As follows from the literature [48,53,84], this peak reflects a
thermal effect of the high-temperature solid–solid (hex→fcc) transition in camphor. We
will consider this transition in more detail when discussing the XRD results.
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The results of the second heating experiments are presented in Figure 4. After erasing
the thermal history, PVDF reveals a single broad endothermic peak. This peak, marked with
blue, is observed for all PVDF–camphor mixtures. It combines the thermal effects of PVDF
thermomechanical amorphization and the dissolution of camphor in its amorphous regions.
Its maximum decreases from 170 ◦C to 133 ◦C with an increase in the camphor concentration
until it reaches 50 wt% (curves 1–6) and then remains nearly constant (half green/half blue
points). Curves 3–5 also contain a nearby peak, marked with green, the temperature of
which slightly grows from 127 ◦C to 133 ◦C with the camphor concentration. Based on our
previous study of isotactic polypropylene–camphor mixtures [37], we can identify the green
peak with the melting of nanoscale camphor crystals, which are formed under confinement
of a semicrystalline polymer matrix. The melting temperature of these crystals is about
130 ◦C irrespective of the polymer type, which corresponds to a size of ~10 nm according to
the Gibbs–Thomson equation [85]. Note that an endotherm with an approximately constant
peak position at 130 ◦C was detected in ref. [33,34] and interpreted as a melting curve for
one of the types of PVDF–camphor complexes discussed in these papers.
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Figure 4. (a) DSC curves of the 2nd heating for PVDF, camphor, and their mixtures of different
compositions recorded at a heating rate Vh = 10 ◦C/min. Mass fractions of the polymer, w2, are
shown to the right of the curves, which are arbitrarily shifted in the vertical direction. Color points
designate the maximums of endothermic peaks. (b) Additional low-temperature endotherm for
camphor-enriched mixtures that reflects the solid–solid (orth→hex) transition in camphor. (c) One of
the DSC curves (w2 = 0.3) recorded at a heating rate Vh = 2 ◦C/min.

At high (≥50 wt%) concentrations of camphor, green and blue peaks merge into one
peak. However, we can again record two separate peaks even at 70 wt% of camphor if
the scanning rate is dropped from 10 ◦C/min to 2 ◦C/min (Figure 4c). The position of
the green peak that reflects the melting of small camphor crystals remains unchanged,
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while the blue peak that describes PVDF amorphization is expectably shifted to higher
temperatures [86,87].

It is also instructive to follow changes in the intensity of the blue peak. A decrease in
the polymer concentration (curves 1–5) makes it smaller because the heat flux recorded by
DSC is normalized per total mass of the mixture. When the blue peak merges with the green
one, the intensity of the combined peak becomes markedly higher. However, a further
decrease in the polymer concentration results both in the reduction in the contribution of
PVDF amorphization and in the decrease in the amount of camphor nanocrystals, which
can be formed inside the polymeric matrix only. This naturally leads to a decrease in the
half green/half blue peak intensity for curves 7–10.

Figure 4 also contains red and light blue peaks related to camphor. The red peak
corresponds to the EB curve in the optical phase diagram (Figure 2) and reflects the
dissolution of camphor crystals in the PVDF melt. Both the intensity and temperature of
this peak expectably decrease with an increase in the polymer concentration. The light blue
peak, which is observed at the same temperature for the first and second heatings, describes
the solid–solid (hex→fcc) transition in camphor. As follows from the literature [48,53,84],
there should be one more polymorphic transition of orthorhombic (orth)→hex type, which
was indeed detected by us between−60 ◦C and−70 ◦C in additional experiments when the
mixtures were cooled down to −90 ◦C between the first and second heatings (Figure 4b).

The results of DSC cooling experiments are presented in Figure 5. The mixtures
containing from 10 wt% to 50 wt% of the polymer (curves 6–10) reveal two exothermic
peaks. The high-temperature peak reflects camphor crystallization from its liquid mixture
with PVDF. Its intensity and temperature both increase with the increase in the camphor
concentration. The low-temperature peak describes two processes, i.e., PVDF crystallization
from its liquid mixture with camphor and the formation of small camphor crystals in the
amorphous polymer regions. Its intensity increases with the increase in the polymer
concentration, whereas the onset temperature is independent of the mixture composition.
For the mixtures containing more than 50 wt% of the polymer (curves 2–5), only the latter
peak is recorded. The onset temperature of this peak decreases from 127 ◦C to 97 ◦C with
the increase in camphor concentration in the initial mixture.
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3.3. Comparison of the Optical and DSC Data

DSC data discussed in the previous section were used to construct the dynamic
phase diagram plotted in Figure 6. The E1B1, A1B1, B1C1, B1H, and FG curves are based
on the maximum temperatures of the endothermic peaks at the second heating and the
E2B2 and A2B2C2 curves on the exotherm onset temperatures at cooling. They describe
compositional dependences of the following temperatures: (E1B1) dissolution of camphor in
melted PVDF, (B1C1) full polymer amorphization, (B1H) melting of small camphor crystals,
(A1B1) simultaneous full polymer amorphization and melting of small camphor crystals,
(FG) polymorphic hex→fcc transition in pure camphor, (E2B2) camphor crystallization out
of the liquid mixture, and (A2B2C2) PVDF crystallization.
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to DSC 2nd heating and cooling data, respectively. Black dotted curves are replotted from the phase
diagram constructed by the quasi-equilibrium optical method (Figure 2). See the text for explanations.

By comparing the positions of the corresponding boundary lines obtained by (color
curves) calorimetric and (black curves) optical methods, we conclude that DSC in the heat-
ing regime systematically underestimates the temperatures of full polymer amorphization
(ABC curve) and slightly overestimates the temperatures of camphor dissolution (EB curve).
This is a typical feature for such kinds of binary systems [38], which mainly stems from
the dynamic nature of the DSC method. The boundary lines from heating experiments are
considerably higher on the temperature axis than the corresponding curves from cooling
runs, which is due to the kinetic factors in polymer crystallization. The BD solubility curve
cannot be constructed by DSC at all, since this method does not allow one to distinguish
the simultaneous processes of camphor dissolution in the amorphous regions of PVDF
and polymer amorphization. At the same time, DSC enriches the phase diagram with
the A1B1H curve that describes the melting of nanoscale camphor crystals formed within
the polymer matrix. Its A1B1 segment coincides with the PVDF full amorphization curve,
whereas the B1H segment is a separate curve. Note that its presence does not affect the
conclusions from the optical diagram because the system in domain III (Figure 2), both
above and below the B1H curve, contains camphor crystals and camphor solution in the
amorphous regions of PVDF.

The authors of ref. [33,34] qualitatively obtained the same DSC curves as in this
study but presented an alternative interpretation that led to the intricate phase diagram
in Figure 1. They also performed synchrotron X-ray experiments on the PVDF–camphor
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mixtures. Without the intention to repeat their experiments completely, we will nonetheless
show in the next section that an interpretation of the XRD experiments is also possible
without assuming the formation of PVDF/camphor crystalline complexes.

3.4. Solid–Solid Phase Transition in Camphor

Speculations on the formation of crystalline complexes of PVDF with camphor in
ref. [33–35] are based on the observation that the diffractograms obtained at elevated
temperatures contain reflections that are absent on the diffractograms of pure components at
room temperature. However, an alternative explanation is possible if one takes into account
that solid camphor undergoes a polymorphic transition (hex→fcc) in the temperature range
from 75 to 100 ◦C [34,45,47–49,51–53]. So far, we have carried out XRD experiments at
room temperature and at 120 ◦C, and in parallel, simulated XRD on the molecular models
of the corresponding crystalline phases of camphor. Both phases belong to the family of
orientationally disordered (plastic) crystals [88,89], where the molecules can freely rotate
relative to the crystal lattice nodes. The procedure for preparing the model structures is
described in the Materials and Methods section, and the result of its implementation is
illustrated in Figure 7. The superpositions of four out of the twenty crystal cells (see CIFs
in Supplementary Materials) used to calculate a pattern of the high-temperature fcc phase
of camphor are shown in Figure 7a. For comparison, Figure 7b contains a crystal cell of
the room-temperature hex phase of camphor taken from ref. [50], in which the influence
of rotational freedom of camphor molecules on the XRD pattern was considered in detail.
For better perception, Figure 7 also shows the positions of the centers of mass of camphor
molecules in the crystalline cells of the respective phases, which demonstrate a significant
difference between the crystalline structures.
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The experimental XRD patterns are depicted in Figure 8a and compared with the
simulation data in Figure 8b. Note that the results obtained by different methods were
presented in different coordinates (intensity vs. the double glancing angle 2θ for ordinary
XRD and log(intensity) vs. the transfer momentum q for synchrotron radiation XRD).
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Because of that, we have recalculated the results to find the interplanar spacing dhkl
characteristic of the crystal structure, which is independent of wavelength and the XRD
method. One can see from Figure 8 that an increase in the temperature from 25 ◦C to 120 ◦C
leads to the disappearance of 222, 201, 221, 002, 200, and 220 reflections from camphor
with the hex crystalline lattice and to the appearance of 200, 002, and 111 reflections from
camphor with the fcc crystalline lattice. A comparison of the experimental data with the
simulation results shows good qualitative agreement. Some deviations in the absolute peak
positions can be caused by a slight displacement of the sample relative to the axis of the
goniometer. Nevertheless, the distances between different peaks describing the fcc and hex
phases of camphor are the same in the experiment and in simulations.

In Figure 9, our data are compared with the results of Dasgupta [33,34] recalculated
to the same dependences of the XRD intensity on the interplanar distance dhkl. We can
conclude that the appearance of at least one, the most prominent, peak corresponding to
dhkl = 5.6–5.8 Å in the presence of PVDF can be caused by the hex→fcc phase transition
in camphor upon its heating in the synchrotron experiments and/or by a change in the
predominant orientation of hex camphor phase crystals at room temperature. In both
cases, there is no need to assume that the cocrystallization of PVDF with camphor takes
place. Moreover, were such crystal complexes real, it would be strange to observe the peaks
corresponding to the crystalline α-phase of PVDF in the dhkl = 4.3–5.2 Å range up to 80 wt%
of camphor (Figure 9).
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the crystallization of camphor from its liquid mixture with PVDF. Further cooling into 
domain IV should result in the formation of a dispersion of camphor crystals in a liquid 
mixture of camphor and PVDF. When it is cooled down to the AB line, the polymeric 
component would start to crystallize. In that state, its volume fraction in the liquid mixture 

Figure 9. XRD patterns of camphor in the mixtures with PVDF of different compositions at room
temperature (adapted from ref. [34]) and XRD patterns of pure camphor at 120 ◦C (phase I, fcc) and
at room temperature (phase II, hex) obtained in this study.

3.5. Crystallization in the Pre-Homogenized Mixtures

Homogeneous mixtures of PVDF and camphor were prepared by heating the sealed
ampoules with the components up to 210 ◦C. Their evolution at subsequent cooling to room
temperature can be predicted using the phase diagram in Figure 2. If a mixture with the
polymer mass fraction w2 < w2B = 0.5 is taken, then crossing the EB curve would launch the
crystallization of camphor from its liquid mixture with PVDF. Further cooling into domain
IV should result in the formation of a dispersion of camphor crystals in a liquid mixture
of camphor and PVDF. When it is cooled down to the AB line, the polymeric component
would start to crystallize. In that state, its volume fraction in the liquid mixture always
equals w2B, irrespective of the initial mixture composition, provided w2 < w2B. The system
transforms into a solution of camphor in the amorphous regions of PVDF, which behaves
as a physical gel with crystallites as crosslinks of the 3D network. Since the growth of
camphor crystals is now hindered by the solid-like polymer matrix, the subsequent cooling
into domain III results in the formation of smaller crystals than in domain IV.

Now consider the experimental data obtained with a hot-stage optical microscope
for the mixture containing 35 wt% of PVDF, which is cooled down at an average rate of
5 ◦C/min. Figure 10a shows that at 180 ◦C, the system is still homogeneous. At 160 ◦C,
fern-shaped camphor crystals become visible (Figure 10b), and they continue to grow at
lower temperatures (Figure 10c,d). At 108 ◦C, the surrounding solution becomes turbid
(Figure 10e) due to polymer crystallization. Subsequent cooling enhances light scattering,
and hence, even well-visible contours of the camphor crystals become blurred (Figure 10f),
which can be related to the formation of small camphor crystals inside the polymer matrix.
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Figure 10. Optical micrographs of the PVDF–camphor mixture with 35 wt% of PVDF taken on cooling
from the homogeneous state at (a) 180, (b) 160, (c) 155, (d) 150, (e) 108, and (f) 75 ◦C.

The cooling of homogeneous PVDF–camphor mixtures with the composition w2 > w2B
should first lead to polymer crystallization as soon as the BC curve is reached. In that case,
a physical gel is formed throughout entire volume of the sample. Subsequent cooling into
domain II would increase polymer crystallinity, and crossing the BD curve would cause
microphase separation of the gel and camphor crystallization in domain III.

The study of the mixture containing 75 wt% of PVDF, which is homogeneous at 180 ◦C
(Figure 11a), reveals nucleation (Figure 11b) and growth (Figure 11c–f) stages of polymer
crystallization. The spherulites grow until they start to impinge on each other (Figure 11e,f).
At 114 ◦C, a macroscopically uniform gel is formed throughout the entire sample. This gel
is expected to contain 25 wt% of camphor that remains dissolved in the amorphous regions
of the polymer. At 106 ◦C, the microphase separation starts, and camphor forms small
crystals within the polymer matrix (Figure 11g). The amount of such crystals increases
during subsequent cooling (Figure 11h).
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We can conclude that both polymer-lean and polymer-rich mixtures follow the phase
diagram predictions, though the crystallization of PVDF is detected at temperatures that are
more than 30 ◦C lower than the temperature of full polymer amorphization in these systems.
This is partly due to the fact that it takes some time for the polymer crystallites to grow
until they are visible in the optical microscope, but the main reason is a low crystallization
rate, characteristic of polymers in general. Camphor first crystallizes (Figure 10b) at 160 ◦C,
which is very close to the point on the EB curve in Figure 2 that corresponds to a mixture
containing 35 wt% of PVDF.

3.6. Morphology of the Capillary-Porous Bodies

We used scanning electron microscopy to study the internal structure of samples
upon cooling from homogeneous mixtures at 210 ◦C to room temperature and removal of
camphor. The remaining pores reproduce the shape of the camphor crystals that existed in
their place.

Figure 12 reveals that a capillary-porous body prepared from the mixture with 28 wt%
of PVDF contains two types of porous structures. First, there are large pores (Figure 12a,b)
formed by fern-shaped camphor crystals, which grow in domain IV of the phase diagram
in Figure 2, when the polymer is fully melted. Their dimensions in the longitudinal and
transverse directions can exceed 100 and 10 µm, respectively. The pores of the second type
are much smaller (200 nm and less), being visible on the external side (Figure 12c) and the
cross-section (Figure 12d) of the polymer matrix. They are formed within domain III of the
phase diagram.
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An increase in the polymer mass fraction in the initial mixture from 28 wt% to 45 wt%
does not qualitatively change the morphology (Figure 13) because both these systems are
situated to the left of point B in the phase diagram. However, the size of the large pores de-
creases, since domain IV becomes narrower as point B is approached, and camphor crystals
have less time to grow without restrictions imposed by polymer crystallites (Figure 13a).
The morphology of the cross-section of a wall between large pores is visible at the top
right of Figure 13b. One can see that small pores forming cellular structures are uniformly
distributed inside the wall. They are formed in the course of microphase separation in the
physical gel formed by a semicrystalline polymer. Camphor crystals in these pores that
reach 1 µm in size cause blurriness of the optical image shown in Figure 10f. The smallest
pores, with an average size of about 10 nm according to DSC, are located between polymer
lamellas, i.e., within the amorphous regions of spherulites (Figure 13c,d).
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On the contrary, the sample prepared from the polymer-rich mixture with 67 wt%
of PVDF contains only small submicron pores (Figure 14). As discussed in the previous
sections, in such systems, situated to the right of point B, camphor crystallizes only in
the presence of a semicrystalline polymer matrix. This takes place in domain III of the
phase diagram in Figure 2 in the course of microphase separation within the amorphous
polymer regions.
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4. Conclusions

In this study, we constructed a quasi-equilibrium phase diagram of the PVDF–camphor
binary mixture using an original optical method. The diagram includes a boundary curve
that describes the dependence of camphor solubility in the amorphous regions of PVDF
on temperature. It is argued that the states below the polymer liquidus curve are non-
equilibrium, and therefore, it makes little sense to consider phase equilibria in this domain.
We also performed a DSC study of the system and plotted the dynamic phase diagram.
The diagrams were used to interpret the results of hot-stage microscopy experiments on
mixtures cooling from the homogeneous state and SEM experiments on the morphology
of capillary-porous bodies obtained upon camphor extraction. The previous assessment
of PVDF–camphor systems by Dasgupta et al. [33–35] has been found to be inconsistent
in different aspects. In particular, both the DSC and XRD results of that study can be
explained without assuming the formation of crystalline complexes between the mixture
components but by taking into account the size dispersity of polymer and camphor crystals
and the high-temperature polymorphic solid–solid transition of camphor. The obtained
information can be used as a tool for process engineers dealing with systems where both
polymeric and low-molar-mass components reveal crystallinity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14235214/s1, An archive with twenty independent crystal-
lographic information files (CIFs) that were used for the simulation of XRD powder pattern for the
high-temperature fcc phase of camphor.

https://www.mdpi.com/article/10.3390/polym14235214/s1
https://www.mdpi.com/article/10.3390/polym14235214/s1
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