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Abstract: Lipophilic fluorescent dyes can be employed as sensors for surfactants present in con-
centrations above the critical micellar concentration (CMC) where the dyes are monodispersed in
micelles. However, the surfactant concentration range over which these dyes are effective is narrowed
because by the sigmoidal nature of their responses. To overcome this limitation, we developed a
novel sensor material comprised of a labeled fluorescent solvatochromic dye covalently bonded
to alginate gel, which is known to strongly adsorb cationic surfactants. We hypothesized that the
dye-alginate conjugate would undergo fluorescent color changes in response to binding of surfactants
which alter the polarity of the surrounding environment. Indeed, addition of the representative
cationic surfactant, cetylpyridinium chloride (CPC), to an aqueous solution of the alginate conjugated
fluorescent solvatochromic dye leads to a visible fluorescent color change when the concentration
of CPC is below the CMC. The average values of the color appearance parameter, referred to as
a hue, of light emitted from gels, calculated by analysis of fluorescence microscopy images using
ImageJ software, were found to be approximately linearly dependent on the concentration of CPC
encapsulated in the alginate-fluorescent dye complex. This finding shows that absorbed CPC can
be quantitatively determined over a wide concentration range in the form of simple fluorescence
wavelength or visible responses.

Keywords: fluorescent solvatochromic dye; alginate gel; cetylpyridinium chloride; adsorption;
fluorescence microscopy image; hue analysis; quantitative measurement

1. Introduction

Fluorescent solvatochromic dyes have emission colors that depend on the nature of
the solvent [1–9]. In homogeneous solutions, the emission wavelength maxima of these
dyes are linearly dependent on the solvent polarity parameter ET(30) [5,6]. The emission
wavelength maxima also change when the solvatochromic dyes are components of hetero-
geneous systems containing aggregates of amphipathic molecules that contain both polar
and non-polar sites. For example, Son et al. devised an interesting amphipathic fluorescent
solvatochromic dye that is comprised of a highly polar electron-withdrawing pyridinium
moiety and a non-polar long-alkyl chain as an electron-donating group. Studies by this
group demonstrated that the fluorescence maximum of this dye undergoes large changes
when present in solutions containing micelle forming surfactants such as cetyltrimethylam-
monium bromide (CTAB) [1]. Because this pyridinium dye undergoes an emission change
that is dependent on the type of surfactant, its solvatochromic behavior is likely governed
by the polarity of the environment present in the surfactant dye complex. However, because
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the fluorescence color changes take place in a sigmoidal manner around the critical micelle
concentration (CMC) of the surfactant, the dye is not suitable for quantitative determination
of surfactant concentrations.

In the context of sensor applications, typical solvatochromic dyes have a disadvanta-
geous feature associated with fluorescence self-quenching that takes place upon aggregate
formation in solvents of low solubility. To prevent self-quenching, Otsuka et al. previously
developed a sensing material in which a fluorescent solvatochromic dye is immobilized
on the surface of polystyrene [2]. Importantly, we found that when this dye-polymer
complex is immersed in solvents with different polarities, solvent dependent fluores-
cence color changes occur, with a linear correlation exiting between ET(30) values and
fluorescence wavelengths.

These observations, which show that fluorescent solvatochromic dyes are excellent
sensors even when located at heterogeneous interfaces such as the polymer surfaces,
stimulated an investigation aimed at exploring new sensor systems in which fluorescent
solvatochromic dyes are covalently bound to polymers that readily absorb surfactants in
aqueous solutions. The criterion we used to select an appropriate polymer include ready
availability, low cost, an ability to undergo gelation using a simple operation and the
presence of substituents that facilitate immobilization of fluorescent solvatochromic dyes.
These considerations led to identification of alginate as an appropriate polymer. Alginic
acid, a polysaccharide found in brown algae such as wakame seaweed, is commercially
available in a variety of molecular weight ranges. Moreover, addition of multivalent ions
such as Ca2+ to aqueous solutions of sodium alginate generates a well studied alginate
gel [10–24]. The alginate prepared in this way contains numerous free carboxylic acid
groups that are not involved in crosslinking with multivalent ions and, thus, can be
utilized for amide bond formation with a substance containing a terminal primary amine
moiety. Thus, we envisioned that it might be possible to link a terminal amine containing
fluorescent solvatochromic dye to the alginate gel by amide bond formation [14]. We also
hypothesized that a surfactant would be effectively absorbed by charge-charge interactions
with the remaining free carboxylate groups in the alginate-dye conjugate (Figure 1) [14,24].
Furthermore, we anticipated that surfactant binding to fluorescent solvatochromic dye
containing gel would alter the polarity of the environment. Consequently, the dye in the
surfactant bound complex would display a characteristic fluorescent wavelength response
to a surfactant at concentrations below the CMC.
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In the investigation described below, we prepared the new terminal amine containing
fluorescent solvatochromic dye 10 and transformed it to the alginate bonded derivative 12.
In addition, we evaluated the use of 12 as a florescence sensor for quantitative determination
of the concentration of the surfactant cetylpyridinium chloride (CPC). Finally, with the
aim of developing a sensor that does not require use of a fluorescence spectrometer, we
explored a quantification protocol that is based on fluorescence image analysis.

We also hypothesized that a surfactant would be effectively absorbed by charge-charge
interactions with the remaining free carboxylate groups in the alginate-dye conjugate. As
the local concentration of CPC inside the gel increased and exceeded CMC, it may be to
form stable micelles. It is thought that the hydrophobic fluorescent solvatochromic dye
labeled on the gel may aggregate in the hydrophobic core of that micelle. Consequently, the
dye in the surfactant bound complex would display a characteristic fluorescent wavelength
response to a surfactant at concentrations below CMC.

2. Materials and Methods
2.1. Reagents and Instruments

All the reagents were purchased from Wako Pure Chemical and used without further
purification. Nuclear magnetic resonance (NMR) spectra were recorded using a JNM-
EX400 manufactured by Japan Electronics Co., Ltd. (Tokyo), trimethylsilyl (TMS) was
used as a reference. Mass spectrometry was performed by the Instrumental Analysis
Division, Global Facility Center, Creative Research Institution, and Hokkaido University.
ESI-LH was measured using a Thermo Scientific™ Exactive™ Plus instrument. Attenuated
total reflection infrared (ATR-IR) spectra were recorded using a Thermo Fisher Scientific
NicoletiS10FT-IR spectrometer with GladiATRTM accessories. Absorption spectra were
obtained using a JASCO V-770 spectrophotometer. Microscope observations were carried
out using an Olympus research high-grade stereoscope SZX16 or the Olympus inverted
fluorescence microscope IX70-S1F.

2.2. Synthesis

Preparation of alginate gel beads (11)
Alginate gel beads were prepared using the procedure given in Reference [25]. Specifi-

cally, 200 mL of an aqueous solution of sodium alginate (2 g corresponding to 0.01 mol of
carboxylic acid groups) was added dropwise to a CaCl2 aqueous solution (20 g, 0.18 mol,
200 mL). The generated material was thoroughly washed with water and stored in water.
A defined portion of the material was dried for 24 h and weighed. The result provided
an average dry weight for the produced alginate gel beads (11) of 3.56 mg (9.1 µmol of
carboxyl acid groups obtained from reference [25]).

Preparation of Alginate Linked Fluorescent Solvatochromic Dye (12)
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC) (2.5 eq, 2.5 mmol,

0.44 g) was added to five independent mixtures of alginate gel beads (dry weight 3.6 g,
9.1 mmol, 100 beads) in 10 mL of mixed solution of water and dimethylformamide(DMF)
(1:1) at 5 ◦C. After stirring at 100 rpm for 30 min, an aqueous HOBt solution of 1-hydroxyben
zotriazole monohydrate (HOBt·H2O) (1.35 eq, 1.2 mmol, 0.17 g) was added to each mixture
at 5 ◦C followed by stirring at 100 rpm for 30 min. To these mixtures were added 0.50, 5.0,
10, 25, and 50 molar equivalents of 10 and the resulting mixtures, were stirred at 30 ◦C
and 100 rpm. The five alginate linked fluorescent solvatochromic dyes 12 produced in this
manner, designated as 12a–e, were thoroughly washed with water and acetone, and then
with dichloromethane for 24 h using a Soxhlet extractor. The beads were stored in water.

2.3. CPC Adsorption Experiments
2.3.1. Concentration Dependent Adsorption of CPC

CPC adsorption experiments were performed using 12a and 12b (5 beads) at 30 ◦C,
48 h and 100 rpm. To independent aliquots of these solutions were added various con-
centrations of CPC in the 0–1000 µM range. The bead samples were isolated, lightly
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washed with water and stored in water. The beads were then photographed using a SZX16-
Olympus stereoscopic microscope and 375 nm excitation, and the images were analyzed
(HSV format).

2.3.2. Time Dependent Adsorption of CPC

To aqueous solutions of 12a or 12b (5 beads) were added 10 mL of 200 µM CPC. The
absorbances of these solutions, stirred at 30 ◦C and 100 rpm, were determined over a 0 to
10 min range.

2.3.3. Batch Type Adsorption of CPC

Independent aqueous solutions of CPC (400 µM, 3.0 mL) containing 12a and 12b
(10 beads) were monitored over a 13 h period using an absorptiometer. At the same time,
aqueous solutions containing 12a and 12b (1 bead) and CPC (400 µM, 0.30 mL), were
imaged using an Olympus inverted fluorescence microscope IX70-S1F, and the images were
analyzed (HSV format). See 2.4 for details of the of image analysis method.

2.4. Image Analysis

The captured images saved in jpeg format were converted to the HSV format using
the open source software ImageJ (https://imagej.nih.gov/ij/download.html, accessed
on 8 October 2022), and the Type”→“HSB stack method”. Next, analyze based on the
value of “List” obtained by “Analyze”→“Histogram”. The “list” was created by the
following: (1) Cut out 300 × 300 pixels of the image, (2) Get the value of “List” obtained by
“Analysis”→“Histogram”, (3) the average value at the obtained values was calculated and
analyzed. And specific calculation method is as follows. (1) Multiply the hue value obtained
from the list by its number of pixels, (2) Divide the sum of all by 90,000 (=300 × 300). Since
the hue values are in the HSV format, the strongest color selected when the saturation is
lowered is represented by a numerical value from 0 to 255. For example, hue values are
0 or 255 for red, 42 for yellow, 82 for green, and 170 for blue.

3. Results
3.1. Preparation of 12

The fluorescent solvatochromic dye 10 used to construct the alginate complexes hav-
ing differing dye contents contains an electron-acceptor dyad comprised of a respective
piperazine nitrogen and 2-acetylthiophene moieties. The electron-donating group and
immobilization site nitrogens in 10 are separated by ethylene bridges. As a result, immo-
bilization should not significantly alter the fluorescence properties of the donor-acceptor
dyad. In addition, the solubility was good, the connection of the immobilization site was
only one substitution, and the yield up 10 was generally good.

The sequence given in Scheme 1 was utilized to synthesize alginate conjugates
12a–e prepared using differing amounts fluorescent solvatochromic dyes 10. In the route,
N-phenylpiperazine (1) was Boc protected to generate 2, which was then transformed to the
bromophenyl derivative 3. Conversion of 3 to boronate 4 was followed by Suzuki-Miyaura
cross-coupling with 2-acetyl-5-bromothiophene to form 5. Removal of the Boc group in
5 generated amine 6, which was then aminoethylated with 4-N-Boc-amino-1-bromoethane
(8 derived from amine 7) to form 9, which upon Boc-deprotetion produced the terminal
primary amine containing fluorescent solvatochromic dye 10. Finally, amide bond forming
reactions of different quantities of 10 with alginate beads produced the target alginate
linked fluorescent solvatochromic dyes 12a–e.

https://imagej.nih.gov/ij/download.html
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Scheme 1. Synthesis of fluorescent solvatochromic dye 10 and alginate linked dye 12.

All substances in the about sequence except 12a–e were characterized by using
1H-NMR, 13C-NMR spectroscopy, and mass spectrometry. The detailed synthetic proce-
dures and spectroscopic data are given in Supporting Information Chapter 1, “Synthesis”.

Because methods such as NMR cannot be used, we employed IR spectroscopy to
confirm that amide bonds are present in 12. In Figure 2 are displayed portions of the
spectra of 12a–e (see Figures S12 and S13 at Supporting Information for full spectra), which
demonstrate that the intensity of amide bands increases as the amount of the fluorescent
solvatochromic dye increases, showing that the urea product derived by reaction of WSC is
not present in these dye conjugates.
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Analysis of the photographic images of 12a–e given in Figure 3 shows that 12c displays
the maximum fluorescence intensity. However, because self-quenching operates in 12d,e
to decrease the fluorescence intensity, we reasoned that it also might govern the emission
properties of 12c. As a result, we selected 12a and 12b for the studies described below.
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3.2. Concentration Dependent Adsorption of CPC

To demonstrate that light emission from 12a,b responds to CPC, experiments were
carried out to determine fluorescence color appearance parameters termed hue values of
aqueous solutions of these dye conjugates in the presence of various concentrations of the
CPC. The resulting data are provided in Table 1 and Figures 4 and 5.

Table 1. Hue values of 12a,b in aqueous solutions containing different concentrations of CPC.

CPC Concentration [µM] in
Aqueous Solutions 0 10 20 50 80 100 500 800 1000

Average of hue values 12a 46.39 46.36 48.26 49.37 49.61 49.86 58.07 60.79 63.14
12b 46.65 47.89 48.75 48.94 48.94 53.47 59.12 59.19 62.01
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is not included in the approximate straight line in Figure 4a,b.

As can be seen by viewing the data, the presence of increasing concentrations of CPC in
aqueous solutions containing these dye-conjugates causes an increase in hue values which
reach values of about 62–63 at 1 mM CPC. At the same time, the fluorescence emission
colors of the dyes change from lime (about 580 nm) to green-yellow (about 540 nm), and
the wavelength maximum undergoes a blue shift. Both phenomena are likely the result of
CPC absorption to the alginate complex, which causes a reduction in the polarity of the
environment surrounding the covalently bonded fluorescent solvatochromic dye.

Analysis of the plot in Figure 5 of the data for 12a shows that the standard deviation
is 0.23 and that of the plot corresponding to 12b is 0.36. In addition, the slopes of these
plots in the 0–50 µM range can be used to show that the lower limits for quantification of
CPC concentration are 0.035 µM for 12a and 0.068 µM for 12b (See Figures S14 and S15 at
Supporting Information).

The above findings, particularly the existence of a correlation between surfactant
concentration and hue values, show that 12a,b are good sensors for CPC. Because the CMC
of CPC is in the 900 µM range, the results suggest that 12a,b respond quantitatively to CPC
concentration even when micelles are present in the aqueous solution [26].

However, as described in the introduction, it is thought that there is a change in the
adsorption mechanism between the low concentration (0–50 µM) and high concentration
(80 µM) of CPC aqueous solution.

In other words, at low concentrations, the CPC molecule approaches the carbonyl
group of alginic acid by electrostatic interaction. And if the carbonyl group to which
the fluorescent solvatochromic dye is introduced exists in the vicinity, it responds to the
fluorescence wavelength.

On the other hand, at high concentrations, the CPC concentration increases in beads
and it is caused more CPCs micelles.

Since it is conceivable that quantitative changes could be observed because the amount
of fluorescent dye taken into the micelles increased.

3.3. Time Depent Addsorption of CPC

To investigate the nature of the sensing process, we determined the rates of adsorption
of CPC to the alginate-dye complexes 12a,b and, for comparison purposes, the dye free
alginate 11. (See Figure S16 at Supporting Information).

The results (Figure 6) show that the amount of CPC adsorbed per unit time in the
0–90 min range is larger for 12a,b than for 11. The difference is thought to be that the
CPC was more likely to approach the carbonyl groups in the beads. In this paper, FB were
produced by using mixed solution of water and DMF. Because of it, alginate beads might be
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swelling due to hydrophobic action of DMF. And, alginate beads are left swollen because
the fluorescent solvatochromic dye is hydrophobic. It is reasonable that the CPC would
reach the carbonyl groups inside more easily than the simple alginate beads, the speed
at the initial sage was faster. In addition, the respective amounts CPC adsorbed by 12b
are 41 µmol/g and 34 µmol/g lower than those of 11 and 12a. This difference is also a
consequence of the lower number of carboxylate sites in the latter substances.
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3.4. Batch Type Adsorption of CPC and Performance Comparison

Finally, a batch type CPC adsorption experiment was carried out using 12a and 12b.
The results arising from studies are displayed in Figure 7 in the form of plots reflecting the
time dependent change of the absorbance of aqueous CPC containing 12a (10 beads) and
(b) of average hue of 12a and 12b in batch type systems.
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and (b) and time dependent change of average hue values of 12a and 12b in batch type.

The result of these experiments confirm that adsorption can also be performed in batch
type by adding fluorescent beads.

However, regarding shaking time to reach the equilibrium state is 2 h in the non-batch
measurements, but in the batch type measurements took 13 h were required to reach
equilibrium. In addition, during 2h-shaking time used in the non-batch measurements,
almost all of the CPC dissolves in the aqueous solution up to concentration of 1000 µM,
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but in the batch type measurements, CPCs remains in the solution about 64 µM. Since
alginic acid gel having strong mechanical strength is used, use of the shaking type has an
advantage when using fluorescent beads produced by this system.

Next, the relationship between the amount of CPC adsorbed and the average hue
value of the 12a,b was determined (Figure 8).
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The result show that a certain correlation in the exists in the adsorption amount range
of 0–50 µmol/g, and that a quantitative measurement of the amount absorbed is possible.

However, it was found that 12a can sensor because it provides more accurate quantifi-
cation and has a lower limit of quantification. Therefore, the use of 12a is comparable that
of other alginic acid bead sensors given in Table 2.

Table 2. Comparison of alginic acid bead mixtures using image analysis.

Bead Component
(Main

Component)
M2+ Addition

Amount Target Detection Method Detection
Range [mM]

Detection
Lower

Bound [µM]
R2

This paper
12a

Alginate—
fluorescent

solvatochromic dye

CaCl2
(0.9 [M]) CPC Image analysis

(Fluorescent) 0.070~1.0 70 0.97

[27] Alginate—
Lactic acid oxidase

CaCl2
(400 [mM]) lactic acid Image analysis

(Light absorption) 10~100 6400 0.99

[28]
alginate-

methylcellulose—
bromothymol blue

CaCl2
(0.9 [M])

total volatile
basic nitrogen

Image analysis
(Light absorption) 344~880 3.4 × 105 0.98

[29] Alginate—
TiO2 Nanotubes

TiO2—Nanotubes
(5 [mg])

lactic acid Image analysis
(Light absorption)

0.10~1.0 230 0.98
glucose 0.10~0.80 150 0.99

The data in Table 2. show that the lower limit of detection in this study using flu-
orescence monitoring, is lower than those of the other systems described in the [27–29],
which use colorimetric image analysis. This difference is thought to be due to the fact that
the fluorescence method tends to have higher detectability than the colorimetric method.
In addition, since the chronic toxicity in water of CPC discharged into the environment
is 0.56 mM, the fluorescent bead sensor, which has a detection concentration range of
0.035–1.0 mM, is applicable [30].

4. Conclusions

In this study, we prepared the novel fluorescent solvatochromic dye 10 and covalently
bonded it to an alginate gel. Investigations with this alginate-dye complex show that
the alginate-dye complex emits brilliant fluorescence is even when it presents in aqueous
solution. This phenomenon is a result of immobilization on the alginate water-soluble gel
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that prevents aggregation promoted self-quenching. We also demonstrated that the dye
complex can be employed for quantitative determination of concentrations of the surfactant
CPC in the 0–900 µM range through visually observable fluorescence color changes. The
blue-shift in the wavelength of emission of the alginate-dye complex promoted by CPC is
thought to be due to absorption of the surfactant that leads to creation of a hydrophobic
environment around the fluorescent solvatochromic dye.

Fluorescence microscope images of the dye containing alginate gels confirmed that
the average Hue values calculated from the ImageJ software were significantly different
depending on CPC concentration. Hue value is linearly approximated by the ratio of the
fluorescent solvatochromic dyes incorporated into the micelles to those not incorporated.
Therefore, it was found that CPC concentration can be quantitatively measured over a wide
concentration range.

Observations made in this study suggest that it should be possible to design novel
sensors for a variety of surfactants and biologically relevant substances by incoporating
appropriate recognition sites into alginate gel.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym14214649/s1, synthesis method of 2, 3, 4, 5, 6, 8, 9 and 10 [31,32], Figure S1: 1HNMR
spectrum of 5 in CDCl3, Figure S2: 13C NMR spectrum of 5 in CDCl3, Figure S3. ESI-MS (m/z) of 5,
Figure S4: 1HNMR spectrum of 6 in CDCl3, Figure S5: 13C NMR spectrum of 5 in DMSO, Figure S6.
ESI-MS (m/z) of 6, Figure S7. 1H NMR spectrum of 9 in CDCl3, Figure S8: 13C NMR spectrum of 9
in CDCl3, Figure S9. ESI-MS (m/z) of 9, Figure S10: 1H NMR spectrum of 10 in CDCl3, Figure S11.
ESI-MS (m/z) of 10, Figure S12. FT-IR spectra of (a) 11, (b) 12a, (c) 12b, (d) 12c, (e) 12d, and (f) 12e,
Figure S13. Comparison of FT-IR spectra of compounds 12a–e, Figure S14: Hue histograms (b), (d),
and (f) created from fluorescent images (a), (c), and (e) of the beads 12a (3 pieces), respectively., Figure
S15. Hue histograms (b), (d), and (f) created from fluorescent images (a), (c), and (e) of the beads 12b
(3 pieces), respectively., Figure S16: Time-dependent absorption spectra when (a) beads 11, (b) beads
12a, (c) beads 12b were immersed in CPC aqueous solution (200 µM), respectively.
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