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Abstract: There is a growing demand for bone graft substitutes that mimic the extracellular ma-
trix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels
containing human bone allograft particles are particularly interesting due to inherent bioactivity
of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone
tissue engineering. Our composite bioink is formulated by incorporating human allograft bone
particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell
(hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite
bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability
(~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured
within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentia-
tion as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and
osteocalcin expression.

Keywords: bioprinting; additive manufacturing; bone tissue engineering; bone scaffold; bone regen-
eration; alginate; photocurable hydrogel; rheology

1. Introduction

Large bone defects caused by traumatic injury, disease, infection, tumor removal,
fracture, and complicated congenital malformation are difficult to treat as the size of the
defect is beyond the intrinsic capacity of self-regeneration of the bone [1–3]. Autograft
bone, i.e., bone tissue from a patient’s own body, is the gold standard for bone grafting
to treat large bone defects [4–8]. Limitations of autograft bone, including availability of
large enough bone tissue and complications in the harvesting site, such as infection, pain,
and bleeding, have led to a search for alternative grafting options [5]. Bone allografts,
i.e., human bone tissue from donors, and synthetic bone graft substitutes, including porous
scaffolds composed of biodegradable polymers, bioceramics, and their composites, are
commonly used alternatives [9–12]. Allograft bone has recently gained significant interest
due to its inherent bioactivity, such as osteoconductive and osteoinductive characteris-
tics [4,13]. Possibility of implant rejection (immunogenicity) and disease transmission are
currently limiting the direct use of commercially available allograft bone tissues [14,15].
Decellularization of the allograft bone is shown to effectively reduce the risk of immuno-
genicity [13,16,17] and coating the allograft with different minerals is reported to enhance
bone mineral deposition and functional integration of the allograft by decreasing the fibrotic
tissue formation [18–21]. Despite these advancements, obtaining a large-size allograft bone
that fits perfectly into the defect site, considering the size and shape of the defect, and
sterilization of large-scale bone tissue without damaging structure and function remains
challenging [22–24].

To overcome the abovementioned issues raised by the direct use of the allograft bone,
allograft bone can be used as a building material to construct a scaffold that can be used as

Polymers 2022, 14, 3788. https://doi.org/10.3390/polym14183788 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14183788
https://doi.org/10.3390/polym14183788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-3475-1051
https://doi.org/10.3390/polym14183788
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14183788?type=check_update&version=1


Polymers 2022, 14, 3788 2 of 17

a bone graft substitute. Although conventional scaffold manufacturing techniques (casting
and molding, freeze drying, salt leaching, electrospinning, etc.) provide some control on
scaffold architecture, porosity, and compositional heterogeneity, additive manufacturing
(AM), or 3D printing, has emerged as a revolutionary method to fabricate complex scaffolds
for tissue engineering applications [23–27]. One of the main advantages of AM is that a
patient’s medical image can be used to design and fabricate a scaffold with the correct shape
of the tissue or defect [28–30]. Extrusion-based 3D bioprinting is an advanced AM tech-
nology, which allows direct printing of live cells alone (in the form of dense aggregates or
spheroids) or supported by a hydrogel system [31–33]. The bioprintable live cell-containing
formulation is referred to as the “bioink” [34–37]. Extrusion-based bioprinting is the most
commonly used 3D bioprinting approach due to the ease of use and the availability of
the bioprinters and bioinks as well as the ability to dispense large volumes of bioinks
with high concentrations of live cells [38–40]. Moreover, the ability to simultaneously
bioprint multiple bioink formulations allows fabrication of complex tissues with structural,
compositional (biochemical and cellular), and mechanical heterogeneity [30,41–49]. These
properties are also required characteristics for an ideal bone scaffold [50,51].

3D bioprinting has been the focus of bone tissue engineering, and a wide range of
novel bioink formulations and bioprinting approaches has been reported to regenerate
bone tissue [25,52–54]. Bioinks composed of allograft bone are one of the unique formu-
lations with a significant potential to boost the bioactivity and, hence, tissue maturation
and functional integration of the bioprinted tissue. There are two main approaches to
develop allograft-derived bioinks. The first approach comprises development of bone
mimetic cell-laden hydrogels from decellularized allograft bone tissue [55–58]. In this
approach, decellularized and demineralized bone tissue is digested from a solution that
can be physically crosslinked to form a stable cell-laden hydrogel at temperatures close to
37 ◦C [55–58]. Digested tissue can also be functionalized [59,60] or alternatively blended
with other synthetic or natural polymers to form bone mimetic hydrogels [61,62]. Com-
monly used natural hydrogels include collagen, gelatin, silk fibroin, alginate, chitosan, and
hyaluronic acid [63–66]. Synthetic hydrogels are biologically inert and do not promote
cellular behavior, yet provide structural integrity and a higher degree of tunability. In the
second approach, bone allograft particles are used as a bioactive filler to form cell-laden
composite hydrogels. In this approach, decellularized bone tissue is processed into micron-
or nano-size particles and used as an additive [67–69]. This approach does not require
digestion, and hence demineralization of the bone tissue, and allows the allograft particles
to retain their bioactivity [70]. Ratheesh et al. showed the feasibility of patient-specific
bone inks by incorporating bone particles (≤500 µm) into a methacrylated gelatin bioink
formulation at high particle concentrations (5%–15% w/v) [69]. They reported that both
the shear thinning behavior of the inks and the mechanical strength of the bioprinted con-
structs increased with increasing particle concentration. Cells contained in the formulation
expressed early osteogenic markers and were able to migrate and colonize the bioprinted
scaffolds [69]. Kara et al. developed a bone particle reinforced composite gelatin bioink for-
mulation by using decellularized bone particles (~100 µm) obtained from rabbit femur [68].
The stiffness and degradation rate of the scaffolds were enhanced with increasing particle
content, and cells were reported to attach and proliferate around the particles as well as
within the composite hydrogel [68]. In addition to 3D bioprinting, bone particles have also
been incorporated in biodegradable polymers (e.g., polycaprolactone, PCL) for AM of 3D
printed bone scaffolds [71–74], and in injectable colloidal hydrogels for direct injection into
the defected site [75–78]. Here, we would like to note that although bioceramic particle
fillers are commonly used to develop bone mimetic composite bioinks, there are limited
studies focusing on bone allograft particles.

In this study, we aim to develop a novel composite bone-mimetic bioink composed
of methacrylated alginate (MeALG) hydrogel filled with human bone allograft particles.
Alginate is selected as the basic component of the bioink formulation due to its availability
and cost, biocompatibility, and processability [79–84]. Alginate can be easily functional-
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ized to synthesize photocurable MeALG polymer [85,86]. Methacrylate groups allow for
light-induced radical polymerization (or crosslinking) to form hydrogels, and for tethering
of bioactive cues in the form of cysteine-containing peptides via addition reaction [85].
Although bioceramics, such as hydroxyapatite [87], bioactive glass [88], silica [89], and
calcium phosphate derivatives [90–93], are commonly incorporated into alginate to form
composite hydrogels for bone tissue engineering, studies focusing on human bone allograft
particles are lacking. This study aims to address this gap. Here, we report processing of
human allograft tissue to form micron size particles and formulation of composite bioinks
using these particles. We present detailed characterization of the rheological properties of
the composite bioinks and their printability as well as mechanical behavior of the 3D bio-
printed constructs. We demonstrate the use of our composite bioink formulations for bone
tissue engineering by investigating human mesenchymal stem cell (hMSC) osteogenesis
within 3D bioprinted constructs up to 28 days of culture, based on alkaline phosphatase
and alizarin red assays as well as osteocalcin immunostaining.

2. Materials and Methods
2.1. Methacrylated Alginate (MeALG) Synthesis

Methacrylated alginate (MeALG) was synthesized as described previously [85,94].
Briefly, 0.5% (w/v) was prepared by dissolving 5 g of medium viscosity alginate (alginic
acid sodium salt from brown algae, Sigma-Aldrich Inc., St. Louis, MO, USA) in 1 L of DI
water. The solution was kept under magnetic stirring at 1–4 ◦C. Once the alginate was
fully dissolved, 10 mL of methacrylate anhydride (MA, Sigma-Aldrich Inc., St. Louis, MO,
USA) was added dropwise into the solution within a span of 1.5–2 h. 2 M NaOH solution
(Sigma-Aldrich Inc., St. Louis, MO, USA) was simultaneously added dropwise to adjust the
pH of the solution to 8–9. After the addition of the MA, pH of the mixture was maintained
by gradually dripping 2 M NaOH solution for 8 h using an automated pH controller. The
solution was kept at 4 ◦C overnight. The reaction was resumed the following day by
adding 5 mL of MA while maintaining the pH at 8–9. The material was then dialyzed
(Spectra/Por®1 dialysis membrane, 6–8 kDa, Fisher Scientific, Pittsburgh, PA, USA) against
DI water for 5 days and lyophilized using a benchtop freeze dryer (Labconco FreeZone
4.5 L, Fisher Scientific, Pittsburgh, PA, USA). 1H NMR (Bruker Advance III HD 500 MHz,
Bruker Scientific, Billerica, MA, USA) was used to confirm the methacrylate percentage as
described previously [85].

2.2. Bone Particle Processing

Cancellous allograft bone (crushed cancellous bone from a 53-year-old male) was
kindly provided by the Musculoskeletal Tissue Foundation (MTF) Biologics (Edison, NJ,
USA). Crushed bone pieces were pulverized manually for 13 h by using a mortar and pestle
set (JMD050, Deep Form, 50 mL, United Scientific Supplies Inc., Libertyville, IL, USA). A
Mastersizer 3000 particle size analyzer (Malvern Panalytical Inc., Westborough, MA, USA)
was used to study the particle size distribution.

2.3. Composite Bioink Preparation

Composite bioink formulation was prepared by dissolving MeALG powder, bone
particles and photo initiator (LAP, lithium phenyl-2,4,6-trimethylbenzoylphosphinate,
VWR International, Wayne, PA, USA) in phosphate-buffered saline (PBS, Fisher Scientific,
Pittsburgh, PA, USA). First, LAP stock solution was prepared by dissolving 0.1% (w/v) LAP
in phosphate buffered saline (PBS). Then, 3% (w/v) MeALG and 1% (w/v) bone particles
were added into the LAP stock solution and kept under magnetic stirring for 5 days. To
prepare 2 mL of ink, 0.06 g of MeALG and 0.02 g of bone particles were added into 0.1%
LAP stock solution.

For in vitro culture studies, cell-laden composite bioinks were prepared by adding
human mesenchymal stem cells (hMSCs, Lonza Walkersville Inc., MD, USA) in the com-
posite ink formulation (~3 million cells per mL of ink formulation). For this purpose,
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hMSCs (passage 4, Lonza) were cultured in growth media (α-MEM (Gibco, Thermo Fisher
Scientific LLC, Asheville, NC, USA) supplemented with 10% fetal bovine serum (FBS,
Gibco, Thermo Fisher Scientific LLC, Asheville, NC, USA) and 1% penicillin-streptomycin
(Gibco, Thermo Fisher Scientific LLC, Asheville, NC, USA) for ~80% confluency. Prior to
dissolving polymer and bone particles, they were sterilized under ultraviolet germicidal
irradiation for 2 h. LAP stock solution was filtered using a sterile syringe filter (0.22 µm,
Sigma-Aldrich Inc., St. Louis, MO, USA). Subsequently, cells were mixed with ink under
magnetic stirring for 20 min prior to 3D bioprinting.

2.4. Rheology

Kinexus Ultra + rheometer (Netzsch Instruments North America LLC, Burlington,
MA, USA) was used to study the rheology of the bioinks. A parallel plate geometry (20 mm
plate size and 0.7 mm gap size) was used. The viscosity of the ink was measured with
respect to shear rate (0.01 to 1000 s−1). Strain sweep (0.5–300% at 1 Hz) and frequency
sweep (0.1–100 Hz at 0.05% strain) tests were conducted to study the evolution of the elas-
tic modulus (G′) and viscous modulus (G”). To investigate the light-induced crosslinking
process, an optical kit (Netzsch) connected to a UV light source (Omnicure S2000 Excelitas
Technologies, Chicago, IL, USA, 356 nm, 10 mW/cm2) was used. G′ and G” were moni-
tored with time (at 1 Hz). Light intensity was adjusted to represent the intensity during
printing process (405 nm, 40 mW/cm2) according to the molar absorptivity spectrum of the
photoinitiator (LAP) [45]. After 2 min of equilibrium, ink solution was exposed to the light
(10 mW/cm2) for 20 min to fully crosslink the sample.

2.5. Optimization of 3D Bioprinting Parameters

In this study, we used a BIO X bioprinter (CELLINK LLC, Boston, MA, USA) with
syringe-based print head and a 25G needle size with 0.25 mm internal diameter (Blunt
End Dispensing Tip, 25G, Fisnar Inc., Germantown, WI, USA). A standard line test [45]
was performed to evaluate the printability of the bioink formulations with respect to print
pressure (100, 150, and 200 kPa) and speed (5–40 mm/s). Immediately after each strut
(or line) was printed, it was exposed to UV light (405 nm, 2 mW/cm2) for 15 s to form a
crosslinked hydrogel. Optical microscopy was used to capture the images of the struts, and
ImageJ (NIH) was used to measure the strut width. A grid pattern (1 mm × 1 mm) was
printed to evaluate the spatial uniformity of the printed struts. Here, the uniformity of the
pores was investigated by drawing diagonal lines.

2.6. Characterization of Mechanical Behavior

The mechanical behavior of the composite hydrogels was evaluated using compression
tests. Samples were fabricated in the form of disks (14 mm in diameter and 2 mm in
height). Composite hydrogel samples were then weighted and soaked in PBS overnight to
equilibrate their swelling. Samples were weighed again, and the swelling percentage of
each sample was calculated using:

Swelling % =
w f − wi

wi
× 100, (1)

where wf and wi represent the weight at equilibrium swelling and post-printing, respectively.
The equilibrated samples were then used for compression test. For this purpose, a Kinexus
Ultra+ rheometer was used to apply an increasing normal force from 0.05 N to 15 N [45,95].
The gap was recorded to calculate the strain.

2.7. 3D Bioprinting of Composite Scaffolds

Cell-laden composite bioinks (3% MeALG with 1% bone particles) were printed on
methacrylated glass slides [96] at optimized bioprinting parameters, such as 150–200 kPa at
20–30 mm/s for neat inks, and 150–230 kPa at 20–30 mm/s for composite inks. 3D scaffold
designs were created by Autodesk® Fusion 360™ and the 3D models were sliced with
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Slic3r in Repetier-Host to generate G-code files. A 2 mm × 2 mm grid scaffold composed
of 4-layers (with a layer height of 150-µm and 500-µm offset between struts) was used for
culture studies. Each bioprinted layer was partially crosslinked for 15 s to allow formation
of a self-supporting layer (405 nm, 2 mW/cm2). Bioprinted scaffolds were exposed to
light for 1 min to finalize the bioprinting process. Bioprinted cell-laden scaffolds were
immediately transferred into non-treated 6-well plates, and 5 mL of growth media was
added into each well.

2.8. In Vitro Studies

Cell viability studies were performed on 3D bioprinted scaffolds (4-layer grid scaffolds)
using a Live/Dead staining kit (Invitrogen, Thermo Fisher Scientific LLC, Asheville, NC,
USA) at culture days 1, 4, 7, 14, 21, and 28. In this assay, live cells were stained with
calcein-AM dye (green, 0.5 µL/mL), and ethidium homodimer (red, 2 µL/mL) was used for
staining dead cells. A confocal laser scanning microscope (TCS SP8 MP, Leica Microsystems
Inc., Buffalo Grove, IL, USA) was utilized to capture cell images. Three images per scaffold
were taken and transferred to ImageJ (NIH, Public Domain, Bethesda, MD, USA) software
to analyze the cell viability by counting the number of live and dead cells.

To evaluate the osteogenic differentiation of the hMSCs, alkaline phosphatase (ALP)
activity and alizarin red (AR) assay, as well as osteocalcin (OC) immunostaining were
performed. For this purpose, 3D bioprinted scaffolds were cultured in growth media
for one day, followed by culturing in osteogenic differentiation media for up to 28 days.
Osteogenic differentiation media was prepared using high-glucose DMEM (Gibco, Thermo
Fisher Scientific LLC, Asheville, NC, USA) supplemented with 100 nM of dexamethasone
(Sigma-Aldrich Inc., St. Louis, MO, USA), 37.5 µg/mL of L-ascorbic acid (Sigma-Aldrich
Inc., St. Louis, MO, USA), 10 mM of β-glycerophosphate disodium salt hydrate (Sigma-
Aldrich Inc., St. Louis, MO, USA), 10% fetal bovine serum (FBS) (Gibco), and 1% penicillin-
streptomycin (Gibco, Thermo Fisher Scientific LLC, Asheville, NC, USA). ALP activity
was evaluated using QuantiChrom™ Alkaline Phosphatase Assay Kit (ALP assay Kit,
Bio-Assay Systems, Hayward, CA, USA). For this purpose, 3 scaffolds per condition were
collected at the desired culture time. Collected scaffolds were lysed with 0.25% Triton X-100
in DI water overnight. Then, lysate samples were reacted by adding a working solution
prepared according to the protocol provided by the supplier. A plate reader (Infinite M200
Pro, Tecan Inc., Morrisville, NC) was used to read the absorbance at 405 nm. For AR
staining assay, the collected scaffolds were fixed in 70% ethanol for 2 h. After DI water
wash (3×), cells were stained with the AR staining kit (Sigma, St. Louis, MO, USA) at 4 ◦C
overnight. Scaffolds were then washed with DI water several times to remove extra AR
stain from scaffolds. After pictures of the scaffolds were taken, scaffolds were incubated in
10% cetylpyridinium chloride (Sigma, St. Louis, MO, USA) in sodium phosphate buffer
(10 mM, pH 7, Sigma) overnight to extract the AR stain from cells. The collected solutions
were scanned by a plate reader to read the absorbance at 562 nm to quantify calcium
deposition. For OC immunostaining, scaffolds were collected at 14 days of culture. Cells
were fixed by 4% formaldehyde solution (Sigma-Aldrich Inc., St. Louis, MO, USA) for
25 min, permeabilized with 0.25% Triton X-100 (Sigma-Aldrich Inc., St. Louis, MO, USA)
for 1 h, and subsequently incubated in a blocking solution (10% goat serum (Thermo
Fisher Scientific LLC, Asheville, NC, USA) in PBS) for 3 h at room temperature. The OC
primary antibody (1:200, monoclonal mouse, Invitrogen, Thermo Fisher Scientific LLC,
Asheville, NC, USA) in staining solution (3% bovine serum albumin + 0.1% Tween-20
+ 0.25% Triton X-100) was prepared and used as the primary staining of the cells. Cells
were incubated in primary staining solution for 48 h at 4 ◦C. Later, cells were stained by
Alexa Fluor 488 rabbit anti-mouse secondary antibody (1:100, Invitrogen, Thermo Fisher
Scientific LLC, Asheville, NC, USA) in a staining solution for 24 h. In addition, phalloidin
(rhodamine phalloidin, Invitrogen, Thermo Fisher Scientific LLC, Asheville, NC, USA) and
DAPI (Thermo Fisher Scientific LLC, Asheville, NC, USA) were used to stain the cells for
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imaging F-actin and cell nuclei, respectively. Confocal and multiphoton microscopy (TCS
SP8 MP, Leica Microsystems Inc., Buffalo Grove, IL, USA) is used to image the cells.

2.9. Statistics

The data were analyzed by Minitab software (Version:20.3.0, Minitab, LLC, State
College, PA, USA) and presented as mean ± standard deviation for n ≥ 3 samples. The
analysis of variance (ANOVA) with Tukey and a 95% level of confidence was used for
comparison between conditions. A p-value < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Composite Bioink Formulation and Characterization

In this study, human allograft bone particle containing composite bioinks are devel-
oped for material extrusion-based 3D bioprinting, also known as direct ink writing (DIW),
to bioprint cell-laden composite hydrogel scaffolds for bone tissue development (Figure 1).
Methacrylated alginate (MeALG), with ~80% methacrylate (Me) functionalization, was
synthesized and used as the photocurable hydrogel component of the composite bioink.
Human allograft bone particles are mixed with MeALG and dissolved in PBS to form a
composite ink formulation (Figure 1). Based on our previous studies [45] and initial screen-
ing tests, the composition of the MeALG is set to 3% (w/v). Considering the cell-laden
nature of the bioinks, bone particle concentration was limited to 1% (w/v). As received
human bone allograft tissue (in the form of large chips) is pulverized up to 13 h to form
uniform particles with ~16 µm average particle size. Figure 2 shows the SEM image of
the particles (Figure 2A) and the evolution of particle size distribution with grinding time
(Figure 2B). After 1 h of grinding, the average bone particle size is 189 µm, with a broader
particle size distribution composed of a main peak (50–580 µm range) with a wide tail
towards lower particle sizes (0.5–50 µm). The main particle distribution peak gradually
shifts to lower particle sizes with increasing grinding time, and a sharper peak emerges
at the range of 0.4 to 46 µm (base width) corresponding to a mode equal to 16.4 µm after
13 h grinding.
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Figure 1. Preparation of composite bioinks. Pictures showing MeALG, bone powder, and composite
ink solution in PBS containing photoinitiator (LAP). After addition of hMSCs, composite bioink is
transferred into a syringe for bioprinting.

The change in ink viscosity with shear rate for neat and composite inks are given in
Figure 3A. The shear viscosity of the MeALG bioink significantly increased with the addi-
tion of bone particles, such that viscosity values at low shear rates (0.01 s−1), approaching
to zero shear viscosity, increased from ~7 to ~30 Pa·s. Both ink formulations show shear
thinning behavior indicated by the significant decrease in shear viscosity with increasing
shear rate. Shear thinning behavior of the MeALG is known to be associated with chain
entanglement [97], which resists ink flow at low shear rates. The degree of shear thinning
is higher for composite bioinks as expected. This is due to the presence of particle-particle
interactions, which enhances resistance to flow indicated by high zero shear viscosity
values in filled polymer solutions [98]. Particle-particle interactions are destroyed at higher
shear rates leading to a significant decrease in ink viscosity [99]. Figure 3B illustrates the
change in elastic modulus (G′) and viscous modulus (G′′) with increasing shear strain
(0.5–300% at 1 Hz). Both ink formulations behaved like a liquid indicated by G′′ > G′, yet
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the difference between G′ and G′′ significantly reduced for composite inks, supporting the
observed increase in viscosity in Figure 3A. Frequency sweep tests (0.1–100 Hz at 0.05%
strain) shown in Figure 3C indicate increasing G′ and G′′ with increasing frequency. The
frequency dependency of the G′ confirms the viscous behavior of the inks.
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Figure 2. (A) SEM images of the bone particles that are pulverized for 13 h. (B) Plot showing the
particle size distribution for pulverized (1–13 h) bone particles.
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MeALG solution forms crosslinked hydrogels via radical polymerization when ex-
posed to light in the presence of a photoinitiator. The crosslinking density, and hence
stiffness of the hydrogel can be controlled by the % methacrylation, initiator concentration
and light exposure time [45,85]. To study the effect of particles on photocuring kinetics,
we monitored the change in G′, G′′ and phase angle (δ) under light exposure (Figure 4).
Figure 4A shows the results for neat MeALG ink. Initially, the ink behaves like a liquid with
G′′ >> G′. When the ink is exposed to light, G′ increases significantly and becomes larger
than G” due to start of the crosslinking reaction with a gel point (at 126 s) defined at G′′ = G′.
A significant drop in δ is also an indication of the gelation [100]. Both G′′ and G′ reach to
an equilibrium indicating the competition of the crosslinking reaction. The composite ink
behaves similarly, and the gel point is similar (127 s). In summary, the presence of 1% bone
particles does not affect the crosslinking behavior of the composite inks.
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Figure 4. Rheological studies to investigate crosslinking behavior of the neat (N) and composite (C)
inks. (A–B) Change in elastic modulus (G′), viscous modulus (G”), and phase angle with time for N
(A) and C (B) inks. Light is turned on at 120 s for 20 min. The plots at the bottom show the zoomed in
regions indicated by the dotted lines in the top plots.

3.2. Mechanical Properties

The mechanical behavior, stiffness, or Young’s modulus (E) of the composite hydrogels
are studies using compression tests (Figure 5). Although G′ indicates the elastic modulus of
the hydrogels (Figure 4), hydrogels should be equilibrated in PBS to determine the actual
stiffness under in vitro culture conditions (Figure 5A). Our results show that the % swelling
decreases from 84% to 72% for composite hydrogels. In good agreement with the swelling
results, E increases from 21 ± 6.2 kPa (for neat gel) to 51 ± 7.1 kPa (for composite gel).
Note that covalently crosslinked MeALG is known to be stable under in vitro conditions;
however, cell-mediated degradation can be achieved by using enzymatically degradable
crosslinkers [85].
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Figure 5. Mechanical characterization of the composite (C) and neat (N) hydrogels. (A) Pictures
showing the hydrogels after swelling. Scale bars are 1 mm. (B) Percent swelling and (C) elastic
modulus (E) of the hydrogels. Data are presented as mean ± std. deviation for n = 3 samples.
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3.3. Printability

Standard line test study is performed to investigate the printability of the neat and
composite MeALG. In general, print strut size (width) increased with increasing print
pressure at a constant print speed, whereas strut size decreased with increasing print speed
at a constant print pressure (Figure 6). We were able to print uniform struts with as low as
600 µm (at 100 kPa and 20 mm/s) and 700 µm (at 100 kPa and 30 mm/s) for composite and
neat ink formulations.
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Figure 6. Standard line test results for (A,B) neat (N) and (C,D) composite (C) inks. Microscope
images showing the 3D printed lines (struts) (A,C) and plots showing the corresponding measured
strut width values (B,D). Scale bars are 200 microns. Data are presented as mean ± std. deviation for
n = 3 samples with 3 measurements for each sample.

Grid patterns are also printed to confirm the printability of both inks. Here, the print
speed needs to be adjusted slightly to create the grid patterns with uniform struts and gap
(or pore) (Figure 7). For both ink formulations, we observe collapse of pores at higher print
pressures and low print speeds due to deposition of excess ink. For lower pressures and
higher speeds, struts are more pronounced with clear definition of pores, such that circular
pores become squares (Figure 7C,D). Pluronic is also used as a control as it is known to be
easily printed to form self-supporting structures [48]. The diagonal line of the square shape
gap is measured to determine print quality [101]. Our results show that the length of the
diagonal line decreases with increasing print pressure and the square shape converges to
a rounded shape (Figure 8). Here, we would like to note that square shape is preserved
at higher speeds, yet the printed struts become thinner, making them faster to dry out
prior to completion of the print job, potentially leading to cell death as discussed below.
Therefore, it is necessary to compromise the perfect square pores for rounded pores to
achieve bioprinting reproducible scaffolds with controlled shape and high cell viability.
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Figure 7. Printability studies via printing grid patterns using (A,C) neat (N) and (B,D) composite (C)
inks. (A,B) Pictures showing 3D printed grid patterns with respect to print pressure and speed. Scale
bars are 1 mm. (C,D) Bright field images showing a representative pore for each scaffold. Scale bars
are 200 microns.
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Figure 8. Characterization of printability. (A) Images showing the grid design and measurement of
the diagonal line. (B) Results from pluronic inks. Scale bar is 200 microns. (C,D) Diagonal line length
with respect to print pressure and speed for neat (N) and composite (C) scaffolds.
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3.4. In Vitro Studies

In this section, hMSC viability (Figure 9) and differentiation (Figure 10) results are
presented for culture times up to 28 days. It is well known that MeALG is blank to cells as
it does not contain inherent bioactivity toward cells and needs to be functionalized with
bioactive cues to promote specific biological responses. MeALG is usually modified with
integrin binding arginine-glycine-aspartic acid (RGD)-peptides to promote cell survival for
matrix tethering cells, such as the adult stem cells used in this study [85,94,96]. Methacrylate
(Me) pendant groups allow chemical tethering of bioactive molecules containing cysteine
groups mainly through a Michael-type addition reaction. Here, we functionalized MeALG
with RGD-peptide following the protocol developed previously to enhance stem cell-matrix
adhesion [85,94,96].
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Figure 9. Cell viability studies. (A) Confocal images of hMSCs showing cross-sectional views of neat
(top) and composite (bottom) scaffolds. Green and red cells indicate live and dead cells, respectively.
Scale bars are 200 µm. (B) Plot showing percent cell viability with culture day for hMSCs within
bioprinted neat (N) and composite (C) scaffolds. Data are presented as mean ± std. deviation for
n = 3 samples with 3 measurements for each sample.

Our results show that % cell viability is ≥89% for all time points, except for neat
scaffolds at day 1 (85 ± 2%), yet the data is not significantly different than that of composite
day 1 (89 ± 0.1%) (Figure 9B). We observed a slight increase at day 21 (97 ± 0.1% (N)
and 96 ± 0.1% (C)) and day 28 (91 ± 0.1% (N) and 93 ± 0.1% (C)), which could be due
to delayed proliferation within scaffolds. Bioprinted scaffolds show a slight decrease in
thickness with culture time which is attributed to detachment of the scaffolds from the
glass slide as observed visually during culture. We believe that this led to the collapse of
some layers or breakage of the sample for prolonged culture times.

Osteogenic differentiation studies are performed up to 28 days of culture, using neat
and composite scaffolds, in osteogenic media, and growth media condition is used as a
control. Our results show that ALP activity (normalized activity with respect to activity
recorded at culture day 1) increases significantly with culture time for both neat and
composite scaffolds (Figure 10A). For each culture day, ALP activity is significantly higher
for the composite scaffolds, indicating significantly enhanced osteogenic differentiation
in the presence of bone particles. Note that hMSCs express ALP without differentiation,
and it should not be used as a sole indicator of osteogenic differentiation. Normalized
ALP activity is very low in growth media and does not change with culture time for neat
scaffolds, whereas the activity increased with culture time for composite scaffolds such
that 3.5× increase is recorded at day 28 (as compared to day 1). This is much smaller
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than the activity observed at day 28 (48×) and even at day 7 (9×) in differentiation media.
The majority of the hMSCs (~95%) stained positive for osteocalcin (OC) within composite
scaffolds as compared to neat scaffolds (~70%) (Figure 10B). No staining is observed for
samples cultured in growth media (results not shown). Alizarin red (AR) staining is used to
evaluate calcium deposition, which is an indicator for osteogenic differentiation of hMSCs.
AR staining for composite scaffolds is significantly darker as compared to neat scaffolds
(Figure 10C–D). Some (significantly dim in color) AR staining is observed for composite
scaffolds cultured in growth media indicating some calcium deposition. In addition, AR
assay is performed to quantitatively measure AR activity (Figure 10E). Confirming our
qualitative assessments, AR expression is significantly higher for composite scaffolds when
compared with neat scaffolds for both growth and OC media, with significantly higher AR
expression in differentiation media. These results are in good agreement with ALP activity
and OC staining results. Overall, our results clearly indicate that the presence of bone
particles significantly enhanced osteogenic differentiation of hMSCs within bioprinted
composite scaffolds.
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Figure 10. Differentiation results of hMSCs within bioprinted neat (N) or composite (C) hydrogels cul-
tured up to 28 days in growth media (GM) or osteogenic differentiation media (OM). (A) Normalized
ALP activity (with respect to day 1). (B) Confocal images of hMSCs showing osteocalcin (OC, green)
staining at day 14 (scale bars are 200 microns) and plot showing percent OC staining for hMSCs.
(C) Pictures of scaffolds at day 21, red color indicating alizarin red (AR) staining. (D) Microscope
images of the scaffolds corresponding to the scaffolds in (C). Scale bars are 200 microns. (E) Plot
showing AR expression at day 21. * indicates p < 0.05 for n = 3 samples per group.

Decellularized human bone particles sustain the bioactivity of the native human
bone tissue including biominerals as compared to commonly used digested bone tissue,
which requires decellularization and demineralization [58]. Thus, combining human bone
particles with a photocurable hydrogel is a novel approach to formulate bone mimetic
bioinks for extrusion-based bioprinting to fabricate scaffolds for bone tissue engineering. In
this study, we report a visible light curable composite bioink formulation composed of 3%



Polymers 2022, 14, 3788 13 of 17

(w/v) MeALG and 1% (w/v) bone particles. Although bioceramics are commonly used to
fabricate hydrogel-based composite bone inks, these only target the biomineral component
and lack the ECM of the bone tissue. Composite bone inks focusing on human bone allograft
particles provide a more complete bone mimetic microenvironment, yet they are rarely
reported in the literature. Compared to a similar approach reported previously, which
utilized significantly higher concentrations of MeALG (5–15%, w/v) and bone particles
(10–75% w/v) [69], we are able to formulate bone mimetic inks with significantly lower amounts
of ingredients providing a much more feasible path for clinical applications—considering the
cost and availability of the ingredients. Our current study clearly shows that bone particles
can be used as a reinforcement to adjust the rheology of the bioink and, hence, printability,
as well as to enhance the mechanical properties of the bioprinted hydrogels. Note that
covalently crosslinked MeALG hydrogels are stable within the time frame of the in vitro
experiments and should not be degrading in the presence of cells, yet degradation can
be included by using an enzymatically degradable peptide crosslinker [85]. Our results
show that bone particles do not interfere with the photocrosslinking step making it easy
to bioprinting and potentially use it as an injectable formulation. Most importantly, the
presence of bone particles significantly enhances hMSC differentiation towards osteogenic
phenotype, such that hMSCs within composite hydrogels show significantly higher ALP
activity, AR staining and activity, and osteocalcin staining as compared to the cells within
neat hydrogels.

4. Conclusions

In this study, we report a novel photocurable composite bioink composed of methacry-
lated alginate with human bone allograft particles for 3D bioprinting of bone scaffolds.
Composite inks show higher low shear viscosity but enhanced shear thinning due to
presence of bone particles. Incorporation of bone particles leads to a decrease in swelling
and an increase in stiffness of the composite hydrogels as compared to neat hydrogels.
Standard line tests and grid patterns are used to optimize the print pressure and speed to
fabricate uniform scaffolds. In vitro culture studies up to 28 days reveal high cell viability
(~90%) for hMSCs when bioprinted within neat or composite bioinks. Differentiation
studies confirm significantly high alkaline phosphatase activity, calcium deposition, and
osteocalcin expression for hMSCs within bioprinted composite hydrogels as compared to
neat hydrogels. Overall, our results confirm that our composite bioinks have a significant
potential to create scaffolds for bone tissue regeneration.
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