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Abstract: Heavy metal ions and organic pollutants often coexist in industrial effluents. In this work,
silica-di-block polymer hybrids (SiO2-g-PBA-b-PDMAEMA) with two ratios (SiO2/BA/DMAEMA =
1/50/250 and 1/60/240) were designed and prepared for the simultaneous removal of Cr(VI) and
phenol via a surface-initiated atom-transfer radical polymerization process using butyl methacry-
late (BA) as a hydrophobic monomer and 2-(Dimethylamino)ethylmethacrylate (DMAEMA) as a
hydrophilic monomer. The removal efficiency of Cr(VI) and phenol by the hybrids reached 88.25%
and 88.17%, respectively. The sample with a larger proportion of hydrophilic PDMAEMA showed
better adsorption of Cr(VI), and the sample with a larger proportion of hydrophobic PBA showed
better adsorption of phenol. In binary systems, the presence of Cr(VI) inhibited the adsorption
of phenol, yet the presence of phenol had a negligible effect on the adsorption of Cr(VI). Kinetics
studies showed that the adsorption of Cr(VI) and phenol fitted the pseudo-second-order model
well. Thermodynamic studies showed that the adsorption behavior of Cr(VI) and phenol were better
described by the Langmuir adsorption isotherm equation, and the adsorption of Cr(VI) and phenol
were all spontaneous adsorptions driven by enthalpy. The adsorbent still possessed good adsorption
capacity for Cr(VI) and phenol after six adsorption–desorption cycles. These findings show that
SiO2-g-PBA-b-PDMAEMA hybrids represent a satisfying adsorption material for the simultaneous
removal of heavy metal ions and organic pollutants.

Keywords: silica; amphipathic; block copolymer; adsorption; Cr(VI); phenol

1. Introduction

Water pollution is a worldwide problem that requires urgent attention and prevention.
Heavy metal ions [1,2] and organic pollutants [3,4] are common pollutants in water which
pose a serious threat to human health and the ecological environment. The most commonly
toxic heavy metal ions in water include Cr(VI) [5–7], As(III) [8], Cd(II) [9], Hg(II) [10],
Pb(II) [11], Cu(II) [12], Zn(II) [13], etc. The main organic pollutants include phenolic
compounds [14,15], benzene compounds [16,17], halohydrocarbons [18,19] and so on.
Among various water purification and recycling technologies, adsorption is a fast, effective,
easy to operate, inexpensive, and a universal method [20,21]. Current research on adsorbent
development mainly focuses on the adsorption of a certain type of pollutant like heavy
metal ions or organic pollutants. But in practical application, adsorption materials are
required to have good adsorption performance for different types of pollutants [22,23].
Therefore, it is urgent to design a new type of adsorption material which can adsorb metal
ions and organic molecules simultaneously and efficiently.

Organic/inorganic nano-hybrids have significant advantages in terms of having in-
organic nanoparticles with high specific surface area, high mechanical strength, high
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thermal stability, and durability [24,25]. What’s more, by means of molecular design, the
organic polymer chains of organic/inorganic nano-hybrids can adsorb different kinds
of pollutants at the same time via van der Waals forces [26], hydrogen bonding [27],
charge interactions [28], complexation [29], and other driving forces [30,31]. Therefore,
organic/inorganic nano-hybrids are deemed to be an ideal adsorption material [32–34].

Except for the usual advantages of inorganic nanoparticles, nano-silica is low-cost
and easily functionalized [35–37]. On the other hand, block co-polymerization is a useful
method for getting functional co-polymers since block co-polymer has the superiorities of a
clear chemical structure and narrow molecular weight distribution [38–40]. In this work, a
new kind of silica-di-block polymer hybrid adsorbent, SiO2-g-PBA-b-PDMAEMA, was pre-
pared by surface-initiated atom-transfer radical polymerization (SI-ATRP) [41] using butyl
methacrylate (BA) as a hydrophobic monomer and 2-(Dimethylamino)ethylmethacrylate
(DMAEMA) as a hydrophilic monomer. Interaction between the hydrophobic block
PBA and the organic pollutants was expected, and the hydrophilic functional segment
PDMAEMA was introduced into the adsorbent for its affinity with heavy metal ions. The
structure of SiO2-g-PBA-b-PDMAEMA was characterized by FTIR, GPC, and TEM. The
adsorption kinetics and thermodynamics of Cr(VI) and phenol in water were studied, and
the competitive-adsorption behavior of binary systems of Cr(VI) and phenol was discussed.

2. Materials and Methods
2.1. Materials

Nano-silica (SiO2, > 99%wt, a mean particle diameter of 20 nm and a specific sur-
face area of 120 m2·g−1) was purchased from Hai Tai Nano (Nanjing, China) and used
as received. 2-(Dimethylamino)ethylmethacrylate (DMAEMA, 99%) was purchased from
Aladdin (Shanghai, China), which was dried over calcium hydride (CaH2, 95%, Aladdin)
for 24 h and distilled under reduced pressure before use. Butyl acrylate (BA, 99%, Aladdin)
was rinsed with 5 wt% NaOH (97%, Aladdin) aqueous solution and dried over CaH2 for
24 h. Tetrahydrofuran (THF, 99%, Aladdin) and cyclohexanone (CYC, 99.5%, Aladdin)
were stirred over CaH2 for 24 h at room temperature and distilled under reduced pres-
sure prior to use. Triethylamine (TEA, 99%, Aladdin) was purified by distillation after
drying over CaH2. Cuprous chloride (CuCl, 97%, Aladdin) was purified before use [42].
(3-aminopropyl) triethoxysilane (APTES, 99%), 2-bromoisobutyrylbromide (BiBB, 98%),
N,N,N′,N′,N′′-pentamethyldiethylenetriamine (PMDETA, 99%), copper chloride (CuCl2,
98%), phenol (C6H6O, 99%), potassium dichromate (K2Cr2O7, 98%), hydrofluoric acid (HF,
40%), 1,5-diphenyl carbazide (98%) and ethanol (99.5%) were supplied by Aladdin and
used as-received without further purification. Nitric acid (HNO3, 68%) was supplied by
Foshan Huaxisheng Chemical Co. Ltd. (Foshan, China) and used as-received without
further purification.

2.2. Preparation of Silica Initiator SiO2-Br

The first step was to prepare the amino-modified nano-silica (SiO2-NH2). An amount
of 2.7 g SiO2 was dispersed in a mixture of 87 mL water and 63 mL ethanol for 30 min. Then,
10.5 mL APTES was dissolved in 24 mL ethanol and then added to the above suspension.
The pH of the system was adjusted to 10 by ammonium hydroxide, and the reaction was
kept for 24 h at 50 ◦C. After centrifugation, the lower solid layer was alternately washed
and centrifuged with water and ethanol. SiO2-NH2 was obtained after vacuum-drying
at 50 ◦C for 24 h with a yield of 78%. The second step was to bring the bromine atoms
into SiO2-NH2. An amount of 0.5 g SiO2-NH2 and 10 mL THF was added into a dried
Schlenk flask and dispersed by ultrasound for 30 min. Under the condition of an ice bath,
the Schlenk flask was filled with N2 via three vacuum/N2 cycles and the suspension was
stirred for 30 min. An amount of 1.5 mL TEA was added subsequently and then mixed with
the solution of 3 mL BiBB and 40 mL THF was injected dropwise into the flask to react for
4 h in an ice bath followed by 48 h of reaction in a water bath at 35 ◦C. After centrifugation,
the lower solid layer was alternately washed and centrifuged with water and ethanol. The
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silica surface-initiator (SiO2-Br) was obtained after vacuum-drying at 50 ◦C for 36 h with a
yield of 72%. The synthesis scheme of the silica initiator SiO2-Br is given in Scheme 1.
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2.3. Preparation of SiO2-g-PBA-b-PDMAEMA Hybrids by SI-ATRP

SiO2-g-PBA-b-PDMAEMA hybrids were obtained via a one-step ATRP. CuCl and
CuCl2 were added into a dried Schlenk flask, and the flask was sealed with a rubber septum
prior to three vacuum/N2 cycles. BA and PMDETA were injected into the flask, followed
by the suspension of SiO2-Br dispersed in cyclohexanone; the reaction was performed
at 90 ◦C for 24 h. After cooling to 70 ◦C, the cyclohexanone solution of DMAEMA was
injected, and the reaction was performed at 70 ◦C for 24 h. SiO2-g-PBA-b-PDMAEMA was
finally obtained by centrifugation and washing with THF. The synthesis scheme of SiO2-g-
PBA-b-PDMAEMA is also given in Scheme 1, and the detailed recipes of polymerization
are listed in Table 1.

Table 1. Detailed recipes for prepared samples.

Sample (SiO2-
Br:BA:DMAEMA)

SiO2-Br
/mmol

BA
/mmol

DMAEMA
/mmol

CuCl
/mmol

CuCl2
/mmol

PMDETA
/mmol

CYC
/g

S1 (1:50:250) 0.1620 8.1000 40.5000 0.1620 0.0162 0.1620 11.4773
S2 (1:60:240) 0.1620 9.7200 38.8800 0.1620 0.0162 0.1620 11.4066

Note: dosage of CYC was calculated based on a solid content of 40%.

2.4. Characterization of Initiator and Hybrids

The chemical structures for SiO2-Br and SiO2-g-PBA-b-PDMAEMA were character-
ized by Fourier transform infrared spectroscopy (FTIR, Nicolet-380, Thermo Electron
Corporation, USA) in a spectral range of 4000–400 cm−1. The molecular weights of PBA-b-
PDMAEMA cleaved from SiO2-g-PBA-b-PDMAEMA by hydrofluoric acid were measured
by gel permeation chromatograph (GPC, PL-GPC50, Agilent, USA), equipped with the PL
gel-MIXEDC chromatographic column and were calibrated by polystyrene standards. THF
was used as the eluent, and the flow rate was 0.5 mL·min−1. The particles of SiO2-g-PBA-b-
PDMAEMA were observed by transmission electron microscopy (TEM, Talos F200X, FEI,
Czech Republic) at an acceleration voltage of 200 kV. Samples were ultrasounded in water
for 30 min before measurement. The surface-grafted density of SiO2-Br was obtained by
thermogravimetric analyzer (TGA, STA449, NETZSCH, Germany) under N2 atmosphere
using a heating rate of 10 ◦C·min−1 from 25 ◦C to 1000 ◦C.
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2.5. Batch Adsorption Study

The batch mode adsorption studies were carried out by adding 0.05 g SiO2-g-PBA-
b-PDMAEMA into 50 mL Cr(VI) aqueous solutions (prepared by dissolving K2Cr2O7 in
deionized water and mostly existing as HCrO4

− and CrO4
2− [43]) or 50 mL phenol aqueous

solutions on a shaker at 120 rpm under controlled pH of 6. After thermostatic shaking for a
certain period of time, supernatant obtained by centrifugation was analyzed to detect the
concentration of Cr(VI) or phenol residues.

The concentration of residue Cr(VI) was determined using a ultraviolet-visible spec-
trophotometer (UV-Vis, Cary 5000, Agilent, USA) and developing a purple-violet color with
1,5-diphenyl carbazide in acidic solution as a complexing agent [44,45]. The absorbance of
the purple-violet colored solution was read at 540 nm after 10 min of color development.

The concentration of phenol residue was determined using a UV-Vis spectrophotome-
ter with maximum absorption wavelength of 270 nm [46,47].

The equilibrium adsorption amount Qe (mg·g−1) of SiO2-g-PBA-b-PDMAEMA of
Cr(VI) or phenol was calculated according to Equation (1) [48]. The percentage removal
η(%) was calculated according to Equation (2) [4]:

Q = (C0 − Ct)V/W (1)

η= 100(C0 − Ct)/C0 (2)

where C0 (mg·L−1) and Ct (mg·L−1) are the initial concentrations and equilibrium concen-
trations of Cr(VI) or phenol, respectively, and V (L) is the volume of the solution and W (g)
is the weight of the adsorbent.

2.6. Adsorption Kinetics

Adsorption kinetics were investigated to evaluate both the rate of Cr(VI) or phenol
adsorption and the equilibrium time required for the adsorption isotherm. Experiments
were conducted under an initial Cr(VI) or phenol concentration of 100 mg·L−1, a controlled
temperature of 298 K, and a controlled time t (5 min, 10 min, 20 min, 30 min, 60 min, 90 min,
120 min, 180 min, and 240 min).

Adsorption rate was analyzed using two kinetic models, i.e., the pseudo-first-order
model and pseudo-second-order model. The pseudo-first-order kinetic model is expressed
by Equation (3) [48]:

ln(Qe − Qt) = −k1t + lnQe (3)

where Qe (mg·g−1) and Qt (mg·g−1) are the amount of Cr(VI) or phenol adsorbed at the
equilibrium and time t (min), respectively, and k1 (min−1) is the pseudo-first-order rate
constant for the adsorption process. Values of k1 were calculated from the slope of the
ln(Qe−Qt) vs. t plot. Values of Qe were calculated from the intercept of the ln(Qe−Qt) vs.
t plot.

The pseudo-second-order kinetic model is expressed by Equation (4) [48].

t/Qt = t/Qe + 1/(k2Qe
2) (4)

where Qe (mg·g−1) and Qt (mg·g−1) are the amount of Cr(VI) or phenol adsorbed at the
equilibrium and time t (min), respectively, and k2 (g·mg−1·min−1) is the pseudo-second-
order rate constant for the adsorption process. Values of k2 and Qe were calculated from
the slope and intercept of the t/Qt vs. t plot.

2.7. Adsorption Isotherms

The adsorption isotherms were measured by controlling Cr(VI) or phenol concen-
tration at 10 mg·L−1, 20 mg·L−1, 50 mg·L−1, 100 mg·L−1, 150 mg·L−1, 200 mg·L−1, and
300 mg·L−1, respectively. After 120 min of equilibrium, the supernatant was analyzed for
the concentration of residual Cr(VI) or phenol.
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Two isotherm models were investigated, i.e., the Langmuir model and the Freundlich
model. The Langmuir model is expressed by Equation (5) [48]:

Ce/Qe = 1/(QmKL) + Ce/Qm (5)

where Qe is the equilibrium adsorption capacity (mg·g−1), Ce is the equilibrium concentra-
tion in the solution (mg·L−1), Qm is the maximum adsorption capacity (mg·g−1), and KL is
the Langmuir adsorption isotherm constant (L·mg−1). Values of Qm were calculated from
the slope of the Ce/Qe vs. Ce plot. Values of KL were calculated from the intercept of the
Ce/Qe vs. Ce plot.

The Freundlich model is expressed by Equation (6) [48]:

lnQe = lnKf + (1/n)lnCe (6)

where Qe is the equilibrium adsorption capacity (mg·g−1) and Ce is the equilibrium con-
centration in the solution (mg·L−1). Kf is the Freundlich adsorption isotherm constant
[(mg·g−1) (L·mg−1)1/n)]. The term 1/n is related to the magnitude of the adsorption driv-
ing force. Values of n were calculated from the slope of the lnQe vs. lnCe plot. Values of Kf
were calculated from the intercept of the lnQe vs. lnCe plot.

2.8. Thermodynamic Study

Three basic thermodynamic parameters were studied: the Gibbs free energy of ad-
sorption (∆G, J·mol−1), the enthalpy change (∆H, J·mol−1), and the entropy change (∆S,
J·mol−1·K−1).

∆G was calculated according to Equation (7) [48–50]:

∆G = −RTlnK (7)

where R is the universal gas constant (8.314 J·mol−1·K−1), T is the absolute temperature
(K), and K is the derived Langmuir equilibrium constant.

∆H and ∆S were calculated according to the van’t Hoff equation, which is expressed
by Equation (8) [48]:

lnK = −∆H/(RT) + ∆S/R (8)

where K is the derived Langmuir equilibrium constant, R is the gas constant (8.314 J·mol−1·K−1),
and T is the absolute temperature (K).

According to Equation (8), a linear relationship exists between lnK and 1/T. ∆H and
∆S were calculated from the slope and the intercept of the lnK vs. 1/T plot, respectively.

2.9. Recovery Experiments

Six adsorption-desorption cycles were carried out to evaluate the recovery perfor-
mance of the adsorbent. The adsorption of Cr(VI) or phenol was conducted at an initial
concentration of 100 mg·L−1, a controlled pH of 6, and a controlled temperature of 298 K.
After adsorption equilibrium, the adsorbed Cr(VI) was removed from the adsorbent using
0.1 mol·L−1 nitric acid. The adsorbent was washed with deionized water and vacuum-
dried before use. The adsorbed phenol was removed from the adsorbent using ethanol.
The adsorbent was washed with deionized water and vacuum-dried before use.

2.10. Binary Systems Competitive Adsorption

The binary-system adsorption studies were carried out using batch mode adsorption
to understand the competitive behavior between Cr(VI) and phenol onto SiO2-g-PBA-b-
PDMAEMA. The adsorption experiments were conducted by controlling the initial Cr(VI)
concentration of 100 mg·L−1 and varying the initial phenol concentration stepwise or by
controlling the initial phenol concentration of 100 mg·L−1 and varying the initial Cr(VI)
concentration stepwise. The concentration of Cr(VI) residue was measured according to
the diphenyl carbazide spectrophotometric method using a UV-Vis spectrophotometer at
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a wavelength of 540 nm. The concentration of phenol residue was determined using a
UV-Vis spectrophotometer at a wavelength of 270 nm. The equilibrium adsorption amount
Qe (mg·g−1) was calculated according to Equation (1).

3. Results and Discussion
3.1. Adsorbent Characterizations

The preparation of the silica initiator SiO2-Br was confirmed by FTIR and TGA analysis
shown in Figure 1. The new peaks in the FTIR spectrum of SiO2-NH2 at 2926 cm−1,
2854 cm−1, and 1466 cm−1 were attributed to the C-H vibration of APTES, which proved
the grafting of APTES to SiO2. Compared with the FTIR spectrum of SiO2-NH2, the new
peak in the spectrum of SiO2-Br at 1735 cm−1 was attributed to the C=O vibration of BiBB,
which proved the grafting of BiBB onto SiO2-NH2. Furthermore, the TGA curves showed
that the weight loss from 100 ◦C to 1000 ◦C for SiO2, SiO2-NH2, and SiO2-Br was 5.16%,
7.88%, and 21.93%, respectively; the weight loss below 100 ◦C was owed to the removal of
the water absorbed physically. According to these results, the graft density was calculated
at 0.81 mmol·g−1 for SiO2-Br by the content of Br in SiO2-Br.
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Figure 1. (a) IR spectra and (b) TGA curves of SiO2, SiO2-NH2, and SiO2-Br.

The verification of BA and DMAEMA grafting onto the silica surface was obtained by
the FTIR and GPC analysis of SiO2-g-PBA-b-PDMAEMA shown in Figure 2. The peaks in
the FTIR spectrum at 2958 cm−1 and 2821 cm−1 were attributed to the stretching vibration
of C-H in the PBA and PDMAEMA chains. The peaks at 1732 cm−1 were attributed to
the stretching vibration of C=O. The peaks at 1105 cm−1 were attributed to the stretching
vibration of Si-O-Si. The FTIR spectrum of SiO2-g-PBA-b-PDMAEMA showed that PBA and
PDMAEMA chains were successfully grafted onto the silica initiator SiO2-Br. Furthermore,
after etching by hydrofluoric acid, the molecular weights (Mn) of PBA-b-PDMAEMA
cleaved from SiO2-g-PBA-b-PDMAEMA were 32,930 g·mol−1 for S1 and 38,420 g·mol−1

for S2, which were close to the theoretical value for the single arm (45711 g·mol−1 for S1
and 45,421 g·mol−1 for S2, calculated from Table 1). The polydispersity indexes (PDIs)
were 1.304 for S1 and 1.391 for S2, which revealed the narrow distribution of the molecular
weights. GPC results illustrated that the polymerizations initiated by SiO2-Br were all
typically controllable ATRP, and the PBA-b-PDMAEMA chains were grafted as expected.

TEM images of SiO2 and SiO2-g-PBA-b-PDMAEMA at 100 nm are shown in Figure 3.
The particle size of SiO2 was about 20 nm. After grafting via PBA-b-PDMAEMA chains, the
silica-di-block polymer hybrids formed spherical particles with a significantly increased
diameter of 35–40 nm. Since the PBA-b-PDMAEMA chains stretched in water to some
extent, the contact between the pollutants and the adsorbent in water could be improved.
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Figure 2. (a) IR spectra and (b) GPC curves of SiO2-g-PBA-b-PDMAEMA. 

TEM images of SiO2 and SiO2-g-PBA-b-PDMAEMA at 100 nm are shown in Figure 3. 

The particle size of SiO2 was about 20 nm. After grafting via PBA-b-PDMAEMA chains, 

the silica-di-block polymer hybrids formed spherical particles with a significantly in-

creased diameter of 35–40 nm. Since the PBA-b-PDMAEMA chains stretched in water to 

some extent, the contact between the pollutants and the adsorbent in water could be im-
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3.2. Single Systems Adsorption Kinetics

Single system adsorption kinetics curves are shown in Figure 4. As a comparison,
adsorption using bare nano-silica was also discussed. It could be seen from Figure 4a
that Cr(VI) was adsorbed by SiO2-g-PBA-b-PDMAEMA rapidly within 0–20 min, and the
removal efficiency of Cr(VI) tended to be a constant after 60 min. The removal efficiency vs.
t plot suggested to us that it took about 60 min for Cr(VI) to reach adsorption equilibrium
on the surface of the adsorbent. The removal efficiency of Cr(VI) on S1 was 88.25%, which
was more than 17-times higher than the removal efficiency using bare nano-silica (5.01%).
In addition, the removal efficiency of Cr(VI) on S1 was higher than that of Cr(VI) on
S2 (79.88%). This was probably because of the larger proportion of PDMAEMA in S1,
which might have a stronger affinity for water-soluble ions. Figure 4b shows that phenol
was adsorbed by SiO2-g-PBA-b-PDMAEMA rapidly within 0–30 min, and the removal
efficiency of phenol tended to be constant after 120 min. This suggested to us that the
adsorption equilibrium was achieved within 120 min for phenol on the adsorbent. The
removal efficiency of phenol on S2 was 88.17%, which was more than 9-times higher than the
removal efficiency using bare nano-silica (9.09%) and was higher than the removal efficiency
of phenol on S1 (80.44%). The adsorption capacity of SiO2-g-PBA-b-PDMAEMA for phenol
greatly improved after functionalization, and the larger proportion of hydrophobic PBA in
S2 might be more conducive to the absorption of organic pollutants.
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Figure 4. Adsorption kinetics of (a) Cr(VI) or (b) phenol on SiO2-g-PBA-b-PDMAEMA and SiO2

(C0 = 100 mg·L−1, pH = 6, T = 298 K, adsorbent concentration = 1 g·L−1).

The adsorption kinetics data obtained experimentally were fitted to the pseudo-first-
order and pseudo-second-order models. The fitting results are shown in Figure 5 and
Table 2.
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Figure 5. Fitting curves of adsorption kinetics for (a) Cr(Ⅵ) and (b) phenol on SiO2-g-PBA-b-

PDMAEMA. 
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Figure 6. Adsorption isotherms of (a) Cr(Ⅵ) on S1 and (b) phenol on S2. 

Fitting curves and adsorption isotherm constants for Cr(Ⅵ) adsorption on S1 are 

shown in Figure 7 and Table 3. According to the desired R2 greater than 0.99, the adsorp-
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Langmuir adsorption isotherm equation, indicating that Cr(VI) was mainly adsorbed by 

monolayer. This was because, after the monolayer adsorption of Cr(VI) on the surface of 

Figure 5. Fitting curves of adsorption kinetics for (a) Cr(VI) and (b) phenol on SiO2-g-PBA-b-
PDMAEMA.

Table 2. Fitting parameters of adsorption kinetics.

Systems Adsorbents
Qe,exp

/mg·g−1

Pseudo-First-Order Pseudo-Second-Order

Qe,cal
/mg·g−1

k1
/min−1 R2 Qe,cal

/mg·g−1
k2

/g·mg−1·min−1 R2

Cr(VI)
S1 88.25 18.88 0.04364 0.9055 90.66 0.00242 0.9988
S2 79.88 37.98 0.04223 0.9688 83.19 0.00167 0.9971

phenol S1 80.44 142.62 0.04313 0.9124 92.42 0.00038 0.9944
S2 88.17 140.87 0.04821 0.9395 97.28 0.00054 0.9957

The pseudo-second-order model showed much better fitting to Cr(VI), and phe-
nol adsorption data with higher correlation coefficients (R2 > 0.99) and a better agree-
ment between experimental (Qe,exp) and calculated (Qe,cal) values is also exhibited in
Table 2. This indicated that the adsorption rates of Cr(VI) and phenol onto SiO2-g-
PBA-b-PDMAEMA were controlled by chemical processes [9]. The rate constant k2 of
Cr(VI) on S1 (0.00242 g·mg−1·min−1) was relatively higher than that of Cr(VI) on S2
(0.00167 g·mg−1·min−1), indicating a faster uptake of Cr(VI) onto S1. Similarly, the rate
constant k2 of phenol on S2 (0.00054 g·mg−1·min−1) was relatively higher than that of
phenol on S1 (0.00038 g·mg−1·min−1), indicating a faster uptake of phenol onto S2.
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3.3. Single Systems Adsorption Isotherms and Thermodynamic Study

The adsorption isotherms of Cr(VI) or phenol in aqueous solution by SiO2-g-PBA-b-
PDMAEMA at different temperatures are shown in Figure 6. The equilibrium adsorption
capacity of Cr(VI) or phenol rose with the increase of Cr(VI) or phenol equilibrium con-
centration and then tended to be constant, i.e., the saturated adsorption capacity. On the
other hand, the equilibrium adsorption capacity of Cr(VI) or phenol decreased with the
increase in adsorption temperature, indicating that the adsorption of Cr(VI) and phenol
were all exothermic processes under experimental conditions. Decreasing the temperature
was favorable for the adsorption of Cr(VI) or phenol on SiO2-g-PBA-b-PDMAEMA.
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Figure 5. Fitting curves of adsorption kinetics for (a) Cr(Ⅵ) and (b) phenol on SiO2-g-PBA-b-

PDMAEMA. 

Table 2. Fitting parameters of adsorption kinetics. 
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S1 88.25 18.88 0.04364 0.9055 90.66 0.00242 0.9988 

S2 79.88 37.98 0.04223 0.9688 83.19 0.00167 0.9971 

phenol 
S1 80.44 142.62 0.04313 0.9124 92.42 0.00038 0.9944 

S2 88.17 140.87 0.04821 0.9395 97.28 0.00054 0.9957 

3.3. Single Systems Adsorption Isotherms and Thermodynamic Study 

The adsorption isotherms of Cr(Ⅵ) or phenol in aqueous solution by SiO2-g-PBA-b-
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Figure 6. Adsorption isotherms of (a) Cr(Ⅵ) on S1 and (b) phenol on S2. 

Fitting curves and adsorption isotherm constants for Cr(Ⅵ) adsorption on S1 are 

shown in Figure 7 and Table 3. According to the desired R2 greater than 0.99, the adsorp-

tion behavior of Cr(VI) on the adsorbent surface is deemed to be better described by the 

Langmuir adsorption isotherm equation, indicating that Cr(VI) was mainly adsorbed by 

monolayer. This was because, after the monolayer adsorption of Cr(VI) on the surface of 

Figure 6. Adsorption isotherms of (a) Cr(VI) on S1 and (b) phenol on S2.

Fitting curves and adsorption isotherm constants for Cr(VI) adsorption on S1 are
shown in Figure 7 and Table 3. According to the desired R2 greater than 0.99, the adsorption
behavior of Cr(VI) on the adsorbent surface is deemed to be better described by the
Langmuir adsorption isotherm equation, indicating that Cr(VI) was mainly adsorbed by
monolayer. This was because, after the monolayer adsorption of Cr(VI) on the surface of
the adsorbent, the excess Cr(VI) did not easily approach the surface of the adsorbent due to
the existence of electrostatic repulsion. According to the fitting parameters in Table 3, the
saturated adsorption capacity of Cr(VI) at 298 K reached 174.22 mg·g−1. The n values fitted
by the Freundlich adsorption isotherm equation were all greater than 1, indicating that the
adsorption of Cr(VI) on S1 were beneficial adsorption processes [51]. At 298 K, the n value
was between 2 and 10, indicating that the adsorption of Cr(VI) on S1 more easily occurred
at room temperature [52].
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Table 3. Adsorption isotherm constants and thermodynamic parameters for Cr(VI) adsorption on S1
and phenol adsorption on S2.

Systems Temperature
/K

Langmuir Freundlich Thermodynamic Parameters

Qm
/mg·g−1

KL
/L·mg−1 R2 n Kf R2 ∆H

/(kJ·mol−1)
∆S

/(kJ·mol−1·K−1)
∆G

/(kJ·mol−1)

Cr(VI) 298 174.22 0.1114 0.9947 2.0617 21.3278 0.9541 −35.9 −0.0419 −23.4138
308 140.06 0.0701 0.9970 1.8818 12.2125 0.9341 −22.9948
318 139.08 0.0447 0.9940 1.7100 8.5612 0.9395 −22.5758

phenol 298 159.74 0.1191 0.9952 2.0211 19.1839 0.9385 −36.5 −0.0449 −23.1198
308 131.58 0.0729 0.9949 1.8757 11.4701 0.9240 −22.6708
318 130.89 0.0472 0.9906 1.7124 8.2102 0.9298 −22.2218

According to the Langmuir adsorption isotherm constant KL, the thermodynamic
equilibrium constant K was obtained by getting rid of the unit. The plot of ln K vs. 1/T
for thermodynamic parameter calculation is shown in the inset picture of Figure 7a. The
thermodynamic parameters calculated for Cr(VI) adsorption on S1 are shown in Table 3.
∆H < 0 indicated that the adsorption was an exothermic process. Reducing the temperature
was conducive to adsorption, and the adsorption was enthalpy-driven adsorption-type
behavior. ∆S < 0 indicated that the adsorption of Cr(VI) on S1 reduced the disorder degree
of the system, and the adsorption was not entropy-driven adsorption-type behavior. ∆G
ranged from −23.41 kJ·mol−1 to −22.58 kJ·mol−1. The negative values of ∆G indicated
that the adsorption was a spontaneous process. Moreover, it could be inferred that the
adsorption driving force was more than the typical physical interactions since studies have
shown that the ∆G of physical adsorption was −20–0 kJ·mol−1 and the ∆G of chemical
adsorption was −400–−80 kJ·mol−1 [53]. ∆G of between −40 kJ·mol−1 and −20 kJ·mol−1

suggested to us that the main adsorption force might have been the electrostatic coulombic
attraction [54]; this was consistent with our previous work on the adsorption of Cr(VI) to
PDMAEMA chains [28].

Fitting curves and adsorption isotherm constants for phenol adsorption on S2 are
shown in Figure 8 and Table 3. According to the desired R2 (R2 > 0.99), the adsorption
behavior of phenol on the adsorbent surface could be better described by the Langmuir
adsorption isotherm equation. The thermodynamic parameters calculated for phenol
adsorption on S2 are shown in Table 3. ∆H < 0, ∆S < 0, ∆G < 0, indicated that the adsorption
was spontaneous adsorption, driven by enthalpy. As ∆H=−36.5 kJ·mol−1, which was a
within the range of hydrogen bond adsorption enthalpy (2–40 kJ·mol−1) [55], it could be
inferred that the adsorption of S2 to phenol might be dominated by the hydrogen bond
adsorption of the carbonyl group to phenol. Because of the directivity and saturation
of the hydrogen bond, the adsorption of phenol on the adsorbent surface was mainly
monolayered. The n values fitted by the Freundlich adsorption isotherm equation were all
above 1, indicating that the adsorption of phenol on S2 was a beneficial adsorption process.
At 298 K, the n value was 2.0211, indicating that the adsorption of phenol on S2 could easily
occur at room temperature.
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3.4. Recovery Performance

Six adsorption–desorption cycles were carried out to evaluate the recyclability of the
adsorbent, which is an important point for practical applications. Figure 9 represents the
adsorption–desorption cycle of Cr(VI) on S1 and phenol on S2. For the first three cycles,
the adsorption amount of Cr(VI) was 87.92 mg·g−1, 87.91 mg·g−1, and 85.32 mg·g−1,
respectively, which showed stable adsorption performance of the hybrids to Cr(VI). After
six adsorption-desorption cycles, the adsorption amount of Cr(VI) was 62.25 mg·g−1, which
accounted for 70.80% of the initial adsorption amount. These results indicated that the
adsorbent still possessed an adequate adsorption capacity toward Cr(VI) after six cycles.
For phenol adsorption, the adsorption amounts were 87.02 mg·g−1, 86.98 mg·g−1, and
85.43 mg·g−1 for the first three cycles, respectively, which also showed stable adsorption
performance of the hybrids toward phenol. After six adsorption–desorption cycles, the
adsorption amount for phenol was 72.79 mg·g−1, which accounted for 83.65% of the initial
adsorption amount. These results indicated that the adsorbent also possessed a good
adsorption capacity toward phenol after six cycles.
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3.5. Binary Systems Competitive Adsorption Behavior

The effect of the initial concentration of phenol on Cr(VI) adsorption is shown in
Figure 10a. Phenol had little influence on the adsorption effect of Cr(VI). This was because
when the pH < 7.8 [28,56], amino existed in the form of quaternary ammonium, and strong
electrostatic attraction could have happened between the quaternary ammonium in SiO2-
g-PBA-b-PDMAEMA and Cr(VI) (in the forms of HCrO4

− and CrO4
2−). The presence
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of phenol almost did not affect the electrostatic adsorption of Cr(VI) on the quaternary
ammonium groups. The effect of the initial concentration of Cr(VI) on phenol adsorption is
shown in Figure 10b. With the increase of the initial concentration of Cr(VI), the adsorption
capacity of phenol decreased gradually. This might be because potassium ion in potassium
dichromate can form co-ordination bonds with carbonyl groups, which compete may have
competed with phenol and reduced the adsorption active site for phenol. The presumed
adsorption mechanism is shown in Figure 11. Strong electrostatic attraction between the
positively charged quaternary ammonium in the PDMAEMA blocks and Cr(VI) existed
as oxygen anion, as the main driving force for the Cr(VI) adsorption. Hydrogen bonds
between ester groups in SiO2-g-PBA-b-PDMAEMA and phenol are the main driving forces
for phenol adsorption. Generally, the silica-di-block polymer hybrids (SiO2-g-PBA-b-
PDMAEMA) showed good adsorption performance toward Cr(VI) as well as phenol in
both the single and binary systems. The adsorption capacity of the hybrids compared to
other materials is given in Table 4 [5–7,14,57–60].
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Figure 10. (a) The effect of the initial concentration of phenol on Cr(VI) adsorption and (b) the effect
of the initial concentration of Cr(VI) on phenol adsorption.
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Table 4. Comparison of different adsorbent materials.

Systems Adsorbent Material Qm of Cr(VI)
(mg·g−1)

Qm of Phenol
(mg·g−1) References

Cr(VI) divinylbenzene copolymer resin 99.91 [5]
coffee polyphenol-formaldehyde resin 175.44 [6]
coffee polyphenol-acetaldehyde resin 143.32 [6]

puresorbe 76.92 [7]
silica-di-block polymer hybrids 174.22 This study

phenol palm-tree fruit stones 129.56 [14]
porous acrylic ester polymer 78.70 [57]

polymeric adsorbents IRA-96C 59.85 [58]
silica-di-block polymer hybrids 159.74 This study

Cr(VI) and phenol iron incorporated rice husk 36.3817 6.569 [59]
natural red clay modified by

hexadecyltrimethylammonium bromide
4.47 1.13 [60]

silica-di-block polymer hybrids 87.02 37.36 This study

Note: Qm refer to saturated adsorption capacity.

4. Conclusions

In this work, silica-di-block polymer hybrids, SiO2-g-PBA-b-PDMAEMA, with two
ratios (SiO2/BA/DMAEMA = 1/50/250 and 1/60/240) were obtained via SI-ATRP method-
ology. All the results of the experimental studies can be summarized as follows:

(1) The results of FTIR and GPC proved that the SiO2-g-PBA-b-PDMAEMA hybrids
were generated as expected;

(2) The adsorbent had excellent adsorption effects for Cr(VI) as well as for phenol.
Furthermore, changing the proportion of hydrophilic and hydrophobic chain segments
allowed for the adjustment of the adsorption performance of the adsorbents for water-
soluble ions and organic pollutants. S1 (SiO2/BA/DMAEMA = 1/50/250) showed a higher
removal efficiency of Cr(VI) (88.25%) than S2 (SiO2/BA/DMAEMA = 1/60/240, 79.88%),
and S2 showed a higher removal efficiency of phenol (88.17%) than S1 (80.44%);

(3) Kinetics studies showed that the adsorption of Cr(VI) and phenol fitted the pseudo-
second-order model well;

(4) The thermodynamic studies showed that the adsorption of Cr(VI) and phenol
were all exothermic processes; therefore, decreasing the temperature was favorable for
the adsorption of Cr(VI) and phenol on SiO2-g-PBA-b-PDMAEMA. The adsorption be-
havior of Cr(VI) and phenol was better described by the Langmuir adsorption isotherm
equation, indicating that Cr(VI) and phenol were mainly adsorbed by monolayer. Thermo-
dynamic parameters showed that the adsorptions were all spontaneous adsorption driven
by enthalpy;

(5) The thermodynamic parameters suggested that the driving force of Cr(VI) adsorp-
tion on S1 was mainly the electrostatic attraction of anions by the quaternary ammonium
of the PDMAEMA chains, while the adsorption of S2 to phenol was dominated by the
hydrogen bond adsorption of carbonyl groups to phenol.

Further research will be conducted on simultaneous adsorption of various pollutants.
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