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Abstract: The application of composites is increasingly extensive due to their advanced properties
while the analysis still remains complex on different scales. In this article, carbon fiber reinforced
polymer (CFRP) is modeled via asymptotic homogenization employing a representative volume
element (RVE) with periodic boundary conditions. A multiscale mechanical model of CFRP is
established to bridge the microscopic model, mesoscopic model, and macroscopic model. According
to asymptotic homogenization, the coefficients of the material constitutive equation are calculated
with volume-averaged stress and strain. Using the homogenized materials properties of CFRP,
the tensile experiments of composite layers with the layout of [(0◦/60◦/0◦/− 60◦)4] are carried
out to validate asymptotic homogenization method. The results indicated that the asymptotic
homogenization approach can be used to calculate the homogenized elastic moduli and Poisson’s
ratio of the whole structure, where the numerical results are basically consistent with test data.
The sequent homogenized CFRP laminate model is applied to the mechanical analysis of type III
composite pressure vessels, whereby burst pressure is accurately predicted. This work might shed
some light on multiscale analysis of composite pressure vessels.

Keywords: CFRP; asymptotic homogenization; multiscale analysis; composite pressure vessel;
burst pressure

1. Introduction

Characterized by lightweight as well as excellent mechanical properties compared to
traditional metals, carbon fiber reinforced polymer (CFRP), composed of reinforcements
and polymer matrix, has become the most important material in aerospace structures [1,2].
Recently, the commercial markets of CFRP are no longer confined to the aerospace industry
but wider industrial sectors e.g., architecture and automobiles [3–5]. Such extensive appli-
cations have been promoted by the in-depth understanding of the governing physical and
mechanical behaviors at various scales [6–8].

The homogenization method based on two-scale asymptotic expansion first proposed
by Bensoussan et al. has been widely used in predicting the effective properties of compos-
ites [9]. Bakhvalov and Panasenko [10] studied the solutions of differential equations with
fast oscillating coefficients using standard asymptotic methods to study various processes
in media with periodic structures, and the concept of asymptotic expansion is also intro-
duced in detail. Tang et al. [11] proposed a multi-scale modeling framework based on the
crystal plastic finite element method, and proved the accuracy of the framework through
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experiments and computational studies. For three-dimensional braided composites, the
establishment of representative volume element (RVE) under periodic boundary conditions
based on the homogenization principle and the finite element method can predict the me-
chanical properties [12–19] and damage mechanism [20–24] of the composites. Meanwhile,
the influence of reinforcement content and layering mode on the mechanical properties
of the composites can also be studied. For complex composite models, computational
costs are saved by combining macroscale and microscale. Tang et al. [25] only carried
out microscopic modeling of the region of interest, while the homogenized properties
contribute to the other regions to study rack propagation of chopped carbon fiber chip
reinforced sheet molding compound composites under fatigue conditions.

The presently emerging generation of hydrogen fuel vehicles uses composite pressure
vessels to store hydrogen gas at high pressure to guarantee desired energy density [26].
The filament winding technology has been applied to design high-capacity pressure vessel
structures with fibrous composites [16,27]. Composed of an inner aluminum liner winded
with outer CFRP bundle layers, type III composite vessels have successfully been utilized for
onboard applications of buses and private cars [28]. The composite vessel manufacturing is
realized by deploying the CFRP filament in different orientations to stack together reaching
high stiffness and strength. In addition, such CFRP structures support around 99% of the
internal pressure load. In complex environments, the mechanical properties of CFRP will
change, such as fatigue performance [29] and compositional change [30], which is also a
challenge to the performance of composite pressure vessels. Hence, a robust and accurate
modeling method is in need for composite vessel evaluation and analysis.

Since the diameter of a T700 fiber is only 7 µm, an accurate finite element model for the
microstructure of CFRP is impossible [31]. The multiscale model bridging micro to macro
composite layers would be a good solution. In numerical studies, the filament winding
CFRP layers can be considered as the laminate composite structure. Liu and Zheng [32,33]
studied the hydrogen pressure vessel with effective parametric studies to predict burst
pressure. Linking micromechanics and continuum mechanics, Nguyen and Simmons [27]
build the lamina behavior to analyze mechanical responses in complex filament-wound
composite vessel structures, which demonstrated lamina thickness and helical angle effects
on burst pressure.

In general, the conventional finite element method directly models the microscale
structure of the CFRP which is too complex to handle. The detailed microstructure geome-
try modeling requires refined meshing elements resulting in tremendous computational
cost [34]. The microscale modeling result data can be redundant as failure usually occurs
at some specific positions of the CFRP structure. Therefore, multiscale modeling such as
asymptotic homogenization (AH) and the representative volume element (RVE) has been
developed to bridge the composite mechanical responses in various scales [35]. Predicting
effective material properties from microscale upward to mesoscale and macroscale, asymp-
totic homogenization has been widely applied to investigate CFRP composite materials
and structures. In the AH method, the characteristic displacement tensor needs to be
computed to evaluate composite heterogeneity. Yuan and Fish [36] developed an ingenious
implementation with thermal expansion strain to achieve elastic moduli of composite.

Although AH has gained success in multiscale modeling of composite structures,
the filament winding composite vessel analysis can be further improved via two-stage
homogenization. The first stage of homogenization is applied to determine CFRP bundle
elastic moduli with uniaxially aligned fibers while the filament winding laminates can
be homogenized with composite bundle layers in the second stage. In this paper, the
asymptotic homogenization method is used for multiscale analysis of CFRP composite,
whereby the homogenized stiff matrix of CFRP is calculated via the ABAQUS solver. A
uniaxial tensile test of CFRP laminate is carried out to validate the asymptotic homogeniza-
tion. The mechanical analysis of type III hydrogen storage pressure vessels is performed
with homogenized CFRP filament winding layers. Mechanical responses including burst
pressure are numerically studied and compared with reported results.
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2. Asymptotic Homogenization of CFRP
2.1. Asymptotic Expansion

Proposed by Babuska [37] in 1976, the homogenization approach is deemed an ef-
fective method to study the macroscopic behavior of a medium through its microscopic
properties. By representing the physics and mechanics of the overall composite material
structure, the homogenization approach provides a tool to conduct numerical processing
of microstructure problems. Consider a piece of periodic heterogeneous macrostructure
Ω, the coordinates of the arbitrary point at the macro level are denoted x = (x1, x2) and
in the micro level are denoted y = (y1, y2) for a 2-D medium in the Cartesian coordinate
system, as shown in Figure 1. Connect the macrocoordinate x with the micro coordinate y
by a parameter ε:

ε =
x
y

(1)

Figure 1. Selection of RVE.

The displacement field u by using small parameter ε can be expanded as

uε(x) = u(x, y) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · (2)

Using the derivative rule, strain εij corresponding to displacement u in Equation (2) is

εij(uε) =
1
2
(

∂uε
i

∂xε
j
+

∂uε
j

∂xε
i
) =

1
ε

ε
(−1)
ij (x, y) + ε

(0)
ij (x, y) + εε

(1)
ij (x, y) + ε2 · · · (3)

It is assumed that the stiffness coefficient tensor of the material is Cε
ijkl . In the constitu-

tive relation of the structure, the relationship between stress and strain is expressed as

σ
(n)
ij (x, y) = Cε

ijklε
(n)
ij (x, y) (n = −1, 0, 1) (4)

σε
ij = Cε

ijklεkl =
1
ε

σ
(−1)
ij (x, y) + σ

(0)
ij (x, y) + εσ

(1)
ij (x, y) + · · · (5)

According to Equations (3) and (4), σ
(−1)
ij and σ

(0)
ij can be obtained.

σ
(−1)
ij (x, y) = Cε

ijkl
∂u(0)

k
∂yl

(6)

σ
(0)
ij (x, y) = Cε

ijkl(
∂u(0)

k
∂xl

+
∂u(1)

k
∂yl

) (7)

Considering the basic equation of linear elasticity problem, the equilibrium equation
is introduced:

σij,j + fi = 0 in Ω (8)

By combining the equilibrium equation, Equation (5) can be converted to

ε−2
∂σ

(−1)
ij

∂yj
+ ε−1(

∂σ
(−1)
ij

∂xj
+

∂σ
(0)
ij

∂yj
) + ε0(

∂σ
(0)
ij

∂xj
+

∂σ
(1)
ij

∂yj
+ fi) + ε1(

∂σ
(1)
ij

∂xj
+

∂σ
(2)
ij

∂yj
) + ε2 · · · = 0 (9)
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For ε→ 0, a series of perturbation equations are as follows:

∂σ
(−1)
ij

∂yj
= 0 (10)

∂σ
(−1)
ij

∂xj
+

∂σ
(0)
ij

∂yj
= 0 (11)

The limit relation of periodic function φ(y) is

lim
ε→0+

∫
Ωε

φ(x/ε)dV =
1
Y

∫
Ω
(
∫

Y
φ(y)dY)dV (12)

A characteristic function (χmn
k (yi)) is introduced to relate the macro displacement to

the first order displacement. The derived characteristic function satisfies

∂

∂yj
(Cijkl

∂χmn
k

∂yl
) = −

∂Cijmn

∂yj
(13)

Considering the symmetry of kl, it is assumed that mn is constant.

∂

∂yj
[Cijkl

1
2
(

∂χmn
k

∂yl
+

∂χmn
l

∂yk
)] = −

∂Cijmn

∂yi
(14)

The thermal stress method is used to solve the characteristic function. A change in
temperature produces thermal deformation. Equation (14) is converted to

∂σ
(mn)
ij

∂yj
= 0 (15)

where

σ
(mn)
ij = Cijkl [

1
2
(

∂χmn
k

∂yl
+

∂χmn
l

∂yk
) + Iklmn] (16)

Iklmn = (δmkδnl + δnkδml)/2 (17)

Introduce temperature variable ∆T

Iklmn = −κmn
kl ∆T (18)

where κmn
kl is coefficient of thermal expansion, and temperature change value ∆T = 1. The

original homogenization equation is transformed into thermal stress equation.

CH
ijmn =

1
|Y|

∫
Y

σ
(mn)
ij dY =

1
|Y|

∫
Y

Cijkl [
1
2
(

∂χmn
k

∂yl
+

∂χmn
l

∂yk
) + Iklmn]dY (19)

where κmn
kl is a fourth-order tensor, kl represents row and mn represents column, and

thermal deformation εT
klmn = κmn

kl ∆T. The coefficient of thermal expansion κmn
kl can be

expressed by the Voigt model as

κmn
kl =



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 (20)
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In ABAQUS, it is convenient to model and achieve temperature change. A key aspect
of solving a unit cell problem is the implementation of periodic boundary conditions.
Face-to-face constraints are considered appropriate, where each node on a slave surface
is constrained to have the same motion as the closest point on the master surface. The
properties of a composite at the micro level can be solved by the homogenization approach,
and simplified modeling of composite material layers of pressure vessels also needs this
theory. The homogenization approach can also be used to calculate the homogenized
parameters of the laminates with different layering modes.

The asymptotic homogenization implementation is developed for computing the
integral form characteristic displacement tenor and the effective linear elasticity. Firstly,
a finite element model of RVE is created and meshed, which includes node information
and mechanical properties of different constituents. Secondly, the material properties and
thermal expansion coefficient are set for different components and apply periodic boundary
conditions to the parallel surfaces. Then a unit temperature change is applied to the model.
Finally, the derived characteristic displacement tensor is used to compute the effective
material properties via the ABAQUS solver with a subroutine.

2.2. Multiscale Analysis
2.2.1. Microscopic Model

Considering periodic boundary conditions, the global properties are represented by
partial properties in the model environment. Assuming that the unit cell is hexahedral
in shape, A, B, C, D, E, F, G, and H are the vertices of a hexahedron. The characteristic
function at the vertex is χmn

i = 0. In Figure 2, a is an arbitrary point in plane ABCD,
and a’ is the point corresponding to an in plane EFGH where a and a’ have the same
characteristic function, as do b and b’ and c and c’. Based on the homogenization approach,
the coefficients of the structure are solved by unit cells, so as to obtain mechanical properties.
CFRP is composed of carbon fiber and epoxy. The mechanical properties of carbon fiber
and epoxy differ greatly as shown in Table 1.

Figure 2. Periodic boundary conditions.

Table 1. Material property.

Density (g/cm3) E (MPa) ν

T700SC-12K 1.8 230,000 0.3
914 epoxy 1.69 4000 0.39
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Different parameters are assigned to different materials in ABAQUS, and the periodic
boundary conditions are set for the model [36]. Each node on a master surface constrains
the same motion as the closest point on the slave surface. With an initial temperature field
of 0, the temperature field is set to 1 in Step 1, and the expansion coefficient in the six
loading cases is used. The static universal analysis method is adopted. The unit cell (a fiber)
model is shown in Figure 3a where 26460 C3D8R elements are generated.

X

Y

Z

(a) A fiber unit cell

X

Y

Z

(b) Multifilament unit cell

Figure 3. Unit cell.

Using a Python subroutine, the step is carried by submitting a single job. In ABAQUS/CAE,
the visualization module can be used to output von-Mises stress and displacement influence
functions as shown in Figures 4 and 5. Figure 5 shows the characteristic displacement contour
under the loading along the fiber direction of 11. Finally, the homogenized stiffness matrix of
the fibrous composite in Equation (21) is calculated.

Oij = [S11 S22 S33 S12 S13 S23]
−1 (21)

CFRP is an anisotropic material, and Equation (22) is the flexibility matrix of con-
stitutive relation, where E1, E2, and E3 are the elastic moduli in directions 1, 2, and 3
respectively. G23, G13, and G12 are the shear moduli of planes 2-3, 3-1, and 1-2 respectively.
νij is poisson’s ratio of transverse strain in j direction when stress is acting in i direction. For
orthotropic materials, there are only nine independent constants because the constitutive
relation is symmetric. Only ν12, ν13, and ν23 need further study, while ν21, ν31, and ν32 can
be expressed by the other three Poisson’s ratios and elastic moduli.

Dij =



1
E1

−ν21

E2

−ν31

E3
0 0 0

−ν12

E1

1
E2

−ν32

E3
0 0 0

−ν13

E1

−ν23

E2

1
E3

0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G12


(22)
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(Avg: 75%)

S, Mises

+1.644e+03
+2.044e+04
+3.923e+04
+5.803e+04
+7.683e+04
+9.562e+04
+1.144e+05
+1.332e+05
+1.520e+05
+1.708e+05
+1.896e+05
+2.084e+05
+2.272e+05

(a) S11

(Avg: 75%)

S, Mises

+1.445e+03
+2.405e+03
+3.365e+03
+4.325e+03
+5.284e+03
+6.244e+03
+7.204e+03
+8.164e+03
+9.123e+03
+1.008e+04
+1.104e+04
+1.200e+04
+1.296e+04

(b) S22

(Avg: 75%)

S, Mises

+1.436e+03
+2.401e+03
+3.367e+03
+4.332e+03
+5.297e+03
+6.262e+03
+7.227e+03
+8.193e+03
+9.158e+03
+1.012e+04
+1.109e+04
+1.205e+04
+1.302e+04

(c) S33

(Avg: 75%)

S, Mises

+6.738e+02
+2.002e+04
+3.937e+04
+5.872e+04
+7.807e+04
+9.742e+04
+1.168e+05
+1.361e+05
+1.555e+05
+1.748e+05
+1.942e+05
+2.135e+05
+2.329e+05

(d) S12

(Avg: 75%)

S, Mises

+6.658e+02
+1.992e+04
+3.917e+04
+5.842e+04
+7.767e+04
+9.692e+04
+1.162e+05
+1.354e+05
+1.547e+05
+1.739e+05
+1.932e+05
+2.124e+05
+2.317e+05

(e) S13

(Avg: 75%)

S, Mises

+1.500e+03
+2.032e+03
+2.564e+03
+3.095e+03
+3.627e+03
+4.158e+03
+4.690e+03
+5.222e+03
+5.753e+03
+6.285e+03
+6.817e+03
+7.348e+03
+7.880e+03

(f) S23

Figure 4. Characteristic stress distribution in each direction.

U, U1

−1.161e+00
−8.081e−01
−4.557e−01
−1.033e−01
+2.491e−01
+6.015e−01
+9.539e−01
+1.306e+00
+1.659e+00
+2.011e+00
+2.363e+00
+2.716e+00
+3.068e+00

(a) U1

U, U2

−9.728e−01
−7.171e−01
−4.613e−01
−2.056e−01
+5.014e−02
+3.059e−01
+5.616e−01
+8.173e−01
+1.073e+00
+1.329e+00
+1.585e+00
+1.840e+00
+2.096e+00

(b) U2

U, U3

−9.644e−01
−7.990e−01
−6.336e−01
−4.682e−01
−3.028e−01
−1.374e−01
+2.799e−02
+1.934e−01
+3.588e−01
+5.242e−01
+6.895e−01
+8.549e−01
+1.020e+00

(c) U3

Figure 5. Characteristic displacement χ in the direction of 11.

In ABAQUS, the expansion coefficient in each case is set to −1, and the homogenized
stiffness matrix of a fiber unit cell is obtained by output database. The coefficients for
homogenized stiffness matrix of a fiber unit cell is shown as

Csingle =



380800 7118 7119 −16 −17 −14
7118 13003 6968 −14 −11 −20
7119 6934 13007 −11 −15 −19
−16 −14 −11 13583 3 −0.8
−17 −11 −15 3 14 −0.7
−14 −20 −19 −0.8 −0.7 27801

 (23)

Invert the stiffness matrix, so the flexibility matrix is shown as

Ssingle = C−1
single =e− 3



0.0132 −0.00474 0.0047 0 0 0
−0.0047 0.1095 −0.0561 0 0 0
−0.0047 −0.0561 0.1095 0 0 0

0 0 0 −0.074 0 0
0 0 0 0 0.074 0
0 0 0 0 0 0.36

 (24)
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According to the corresponding relationship between engineering constants and the
values in Equation (22), homogenized mechanical properties of a single fiber unit cell
can be obtained. Using the same approach to verify the consistency of single fiber unit
cell and fibers unit cell, the fibers unit cell simulation with periodic boundary conditions
is established in ABAQUS. The cell is shown in Figure 3b with 109,120 elements. The
solution method is the same as that of a single fiber unit cell, and the output von-Mises
stress is shown in Figure 6. Fibers unit cell and a fiber unit cell are solved in the same
way, and the mechanical property parameters of the two kinds of unit cells are obtained as
shown in Table 2.

Table 2. Material properties of RVE in homogenization.

E1(MPa) E2(MPa) E3(MPa) ν12 ν13 ν23

A fiber 75,757.58 9132.42 9132.42 0.36 0.36 0.51
Fibers 80,645.16 8410.43 8703.22 0.37 0.37 0.54

The calculation results of single fiber unit cell and randomly distributed fibers unit
cell are close. Due to the interaction between fibers, the elastic modulus value of randomly
distributed fiber and single fiber cells have a certain difference but are also within an
acceptable range. Poisson’s ratios are acceptable. We have previously conducted a uniaxial
tensile experiment of carbon fiber bundles, and the experiment results of ultimate strength
showed a deviation between 5 and 11.8%. Poisson’s ratios are also acceptable. So the
feasibility of asymptotic homogenization is verified.

(Avg: 75%)

S, Mises

+1.584e+03
+3.147e+04
+6.136e+04
+9.124e+04
+1.211e+05
+1.510e+05
+1.809e+05
+2.108e+05
+2.407e+05
+2.706e+05
+3.004e+05
+3.303e+05
+3.602e+05

(a) S11

(Avg: 75%)

S, Mises

+1.455e+03
+3.188e+03
+4.920e+03
+6.653e+03
+8.385e+03
+1.012e+04
+1.185e+04
+1.358e+04
+1.532e+04
+1.705e+04
+1.878e+04
+2.051e+04
+2.225e+04

(b) S22

(Avg: 75%)

S, Mises

+1.613e+03
+3.850e+03
+6.087e+03
+8.324e+03
+1.056e+04
+1.280e+04
+1.504e+04
+1.727e+04
+1.951e+04
+2.175e+04
+2.398e+04
+2.622e+04
+2.846e+04

(c) S33

(Avg: 75%)

S, Mises

+4.791e+02
+1.259e+04
+2.469e+04
+3.680e+04
+4.891e+04
+6.101e+04
+7.312e+04
+8.523e+04
+9.734e+04
+1.094e+05
+1.215e+05
+1.337e+05
+1.458e+05

(d) S12

(Avg: 75%)

S, Mises

+1.695e+02
+1.111e+04
+2.204e+04
+3.298e+04
+4.391e+04
+5.485e+04
+6.579e+04
+7.672e+04
+8.766e+04
+9.859e+04
+1.095e+05
+1.205e+05
+1.314e+05

(e) S13

(Avg: 75%)

S, Mises

+9.774e+02
+2.582e+03
+4.187e+03
+5.791e+03
+7.396e+03
+9.001e+03
+1.061e+04
+1.221e+04
+1.381e+04
+1.542e+04
+1.702e+04
+1.863e+04
+2.023e+04

(f) S23

Figure 6. Characteristic stress distribution in each direction (fibers).

2.2.2. Mesoscopic Model

In this work, two layers of CFRP of 0◦ and 60◦ are taken as a whole to study its elastic
modulus. With 32% fiber volume fraction, the model is shown in Figure 7 and the material
properties of the model are shown in Table 1. Setting boundary conditions, the elastic
modulus of the overall model is calculated using the foregoing asymptotic homogenization
approach. The von-Mises stress patterns in six cases are shown in Figure 8.
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Figure 7. Mesoscopic model.

(Avg: 75%)

S, Mises

+3.381e+02
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Figure 8. Characteristic stress diagram of mesoscopic model.

The same method as the microscopic model is used to calculate some material param-
eters of the mesoscopic model, as shown in Table 3. For general engineering requirements,
using different laying ways of CFRP, the modeling process and calculation in engineering
are often complicated. Through the homogenization approach, different composite layers
can be regarded as a whole, and the material parameters of the whole can be calculated,
which can reduce the complexity of the simulation calculation.

Table 3. Homogenized engineering constants of mesoscopic carbon fiber composites.

E1(MPa) E2(MPa) E3(MPa) ν12 ν13 ν23 G12(MPa) G13(MPa) G23(MPa)

48,702.089 10,630.608 18,525.380 0.36 0.29 0.23 3229.035 4418.718 3624.764
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2.2.3. Validation on the Macroscopic Scale

On the macroscopic scale, homogenized material parameters are applied to the model
in ABAQUS, and the layers of 0◦ and 60◦ are regarded as a whole. In ABAQUS, the Hashin
criterion and Puck criterion are used to calculate the maximum failure stress value of the
macroscopic model, and the numerical results are compared with the experimental data.
The numerical model was built with eight layers in total. Each layer of the model is equiva-
lent to two layers of the test sample, as shown in Figure 9. The material parameters adopted
for simulation are shown in Table 3. One end of the model is fixed and the other end is
stretched until the model breaks. After the simulation, the ultimate strengths of the fracture
models are compared with test results to validate the homogenized material parameters.

Figure 9. Macroscopical model.

3. Experimental Program
3.1. Specimen Preparation

A tensile test of CFRP laminate is conducted to examine the material properties and
validate the homogenization methods. A strip of multidirectional composite laminate
[(0◦/60◦/0◦/−60◦)4] consisting of 33% carbon fiber and 67% epoxy in terms of volume has
a size of 210 mm× 210 mm. The sample of the CFRP plate is Toray T700SC-12K carbon fiber
prepreg. After layering and bonding, Teflon film is used to cover both sides to complete
the production of preprocessed parts.

The processing equipment of thermosetting processing is 50 tons 400 mm auto-
matic program intelligent vacuum high-temperature hot press, and the model is HBSCR-
50T/350AV. The preprocessed sample is placed in a specific metal frame, and the edge of
the sample fits with the internal frame of the metal frame. A fully covered metal plate is
placed above the sample to fix the preprocessed sample. During the thermosetting process,
the vacuum value of the equipment is kept within the range of −0.082 MPa ∼−0.078 MPa.
In Step 1, CFRP is heated to 80 ◦C and maintained for 360 s, at which time the product
pressure is 0.1 MPa. In Step 2, CFRP is heated to 120 ◦C and maintained for 2400 s, at
which time the product pressure is increased to 0.35 MPa and maintained until the end of
the molding. In Step 3, CFRP is cooled at a slow rate to 60 ◦C to prevent warping. After
forming, the CFRP plate with the size of 210 mm × 210 mm × 2.75 mm is taken out. It is
left standing for 24 h for cutting.

Using CNC (computer numerical control) to cut CFRP can guarantee high machining
quality. Due to the size limitation of the CFRP plate, the tensile sample size after cutting is
200 mm × 25 mm × 2.75 mm, as shown in Figure 10. A 1060 aluminum sheet with a size
of 40 mm × 25 mm × 2.75 mm is used as a reinforcement sheet. Both ends of specimens
are adhered to stiffeners. Different specimens are used to measure the longitudinal and
transverse elastic moduli. The product is cut in different vertical directions with the shape
and size of the specimens unchanged. In this way, tensile specimens in both transverse and
longitudinal directions can be obtained. The uniaxial tensile test is carried out according to
the standard [38].
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Figure 10. Specimen model (mm).

3.2. Tensile Experiment

The tensile experiment of CFRP is divided into two parts. The uniaxial tensile experi-
ments are carried out in the directions of [( 0◦/60◦/0◦/−60◦)4] and [( 90◦/30◦/90◦/−30◦)4]
respectively. Three effective test samples are taken from each part to measure the longitu-
dinal and transverse elastic modulus of CFRP samples. In the experiment process, if the
sample is debonding or has a root fracture, then it is regarded as an invalid sample. A 200
kN electronic universal testing machine is used for the test equipment. The fixture and
displacement meter are shown in Figure 11. The displacement meter is used to measure
the elongation of the sample during the test. The displacement-controlled loading method
is adopted in the test, and the loading rate was 1 mm/min [38]. Sample preparation and
the test process are shown in Figure 12.

Figure 11. Experimental fixture and displacement meter.
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Figure 12. Specimen preparation and test process.

3.3. CFRP Laminate Homogenization Theoretical Study
3.3.1. Rule of Mixtures
Longitudinal Modulus

It is assumed that the strain values of the CFRP, fiber and the matrix are equal,

εc = ε f = εm (25)

and the total force acting on CFRP is equal to the sum of the forces acting on the fiber
and matrix,

Fc1 = Ff + Fm (26)

F =
σ

A
(27)

where ε is strain; F is force; σ is stress; A is cross sectional area.

σc1 A2 = σf A f + σm Am (28)

σc1 = σf
A f

Ac
+ σm

Am

Ac
(29)

By referring to Hooke’s Law and fiber volume fraction Vf and matrix volume fraction
Vm, the following equation can be obtained,

Ec1 = E f Vf + EmVm = E f Vf + Em(1−Vf ) (30)

where E f is elastic modulus of fiber; Em is elastic modulus of matrix; Vf is volume fraction
of fiber; Vm is volume fraction of matrix.

When the fiber is laid along the reference direction (0◦), according to the material
performance parameters and volume fraction in Table 1, the longitudinal elastic modulus
of the CFRP can be calculated as Ec1 = 76,320 MPa. The results are similar to a fiber
unit cell, indicating that the elastic modulus of CFRP can be effectively calculated by the
homogenization approach in ABAQUS. As shown in Equation (30), when the fiber is
laid along 60◦ and −60◦, the elastic modulus of the fiber at fracture is shown as Ec2 =
E f Vf cos60◦ + Em(1− Vf ) = 40,520 MPa. Take two layers (0◦, 60◦ or 0◦, −60◦) of fiber
composite as 50% of the volume, then the overall elastic modulus is Ec = (Ec1 + Ec2)/2 =
58,420 MPa.
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Transverse Modulus

When the CFRP is subjected to transverse stress, the transverse displacement is equiv-
alent to the sum of the transverse displacement of fiber and matrix,

δc′ = δ f ′ + δm′ (31)

ε =
δ

L
(32)

σc′ = σf ′ = σm′ (33)

then

δc′ = εc′L = Vf ε f ′L + Vmεm′L (34)

invoking Hooke’s Law

Ec′ =
E f Em

E f Vm + EmVf
(35)

where δ is displacement; L is original length.
The transverse elastic modulus of transverse fiber laying 90◦ is shown as

Ec3 = 5835 MPa. The elastic modulus of fibers laid along the direction of 60◦ can be
calculated after being subjected to transverse tension. The elastic modulus is Ec4 =
E f Vf sin60◦ + Em(1− Vf ) = 33, 459 MPa. Take the layers of 0◦ direction and 60◦ direc-
tion as superimposed together. Therefore, the elastic modulus of the laminated plate is
shown as Ec′ = (Ec3 + Ec4)/2 = 19, 647 MPa.

In this study, the transverse elastic modulus of the fiber along the direction of 0◦ and 60◦

can be regarded as the longitudinal elastic modulus of the fiber along the direction of
90◦ and 30◦. The layout of the specimen used is [(0◦/60◦/0◦/−60◦)4], with 16 layers in
total, which can be regarded as eight layers of 0◦/60◦. Then the elastic moduli of the total
number of layers are the same as 0◦/60◦. Theoretically, the longitudinal and transverse
elastic moduli are 58,420 MPa and 19,647 MPa respectively.

3.4. Experimental Results
3.4.1. Longitudinal Uniaxial Stretching

In longitudinal uniaxial tension, the layout of the sample is [(0◦/60◦/0◦/−60◦)4],
as shown in Figure 13a, and apply a load in the reference direction. In the experiment,
the loading force is automatically recorded by the equipment, and the elongation of the
specimen is recorded by the displacement meter.

In the process of cutting the specimen, the inevitable damage causes the two sides of
the specimen to break first. The fibers on both sides are the weakest, and a handful of epoxy
is debonding at the same time. As the experiment goes on, the carbon fiber composite will
fracture layer by layer. When all the fiber layers are broken, the specimen is completely
destroyed. The results show that 0◦ bedding is completely fractured, and the 60◦ fiber
layer is partially broken. Some of the interface is debonded along the fiber direction due to
matrix cracking, as shown in Figure 14.
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(a) Longitudinal (b) Transverse

Figure 13. Two ways of uniaxial stretching.

Figure 14. Longitudinal fracture specimen.

3.4.2. Transverse Uniaxial Stretching

We changed the layout of specimens to measure the transverse elastic modulus
of [(0◦/60◦/0◦/−60◦)4] layering, as shown in Figure 13b. The specimen is stretched
along the reference direction, which is equivalent to the tensile test of the laminated plate
[(90◦/30◦/90◦/−30◦)4]. The experiment is conducted in the same way as that of longi-
tudinal stretching. The results are shown in Figure 15. Part of the fibers on both sides
of the specimen is fractured first, which may be due to weak fibers on both sides caused
by cutting or incomplete alignment of clamping, and then cracks and crack propagation
occurred. The transverse propagation of the crack indicates that the interface between the
fiber and the matrix at the direction of 90◦ is degummed and then the composite layer is
fractured. In the 90◦ direction, the fracture is parallel to the fiber direction, and the force is
borne by the epoxy. In the direction of 30◦, part of the fibers have broken, and some fibers
have interface degumming, so there are fibers laid parallel to 30◦ at the fracture.

As a brittle material with excellent performance, CFRP is characterized by high
strength and high modulus. The stress–strain curve of the longitudinal tensile sample is
shown in Figure 16a. The maximum stress values of the three groups of effective specimens
in the elastic range are 1285 MPa, 1259 MPa, and 1331 MPa, respectively, and the average
stress is 1292 MPa. The result of the experiment is acceptable.
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Figure 15. Transverse fracture specimen.

0.000 0.005 0.010 0.015 0.020
0

300

600

900

1200

1500

St
re

ss
 (M

Pa
)

Strain

 Specimen 1
 Specimen 2
 Specimen 3

(a) Longitudinal stretching

0.000 0.008 0.016 0.024 0.032
0

100

200

300

400

500
St

re
ss

 (M
Pa

)

Strain

 Specimen 1
 Specimen 2
 Specimen 3
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Figure 16. Stress–strain curve.

The transverse elastic modulus of the CFRP sample is obviously smaller than the
longitudinal elastic modulus, which is due to the fact that the fiber bears less force and the
epoxy bears more force in the transverse direction. The stress–strain curve of the transverse
experiment is shown in Figure 16b. The maximum stress of three effective specimens
in the elastic range are 388 MPa, 412 MPa, and 463 MPa, respectively, and the average
stress is 412 MPa. By referring to Hooke’s Law, the elastic moduli of the three specimens
are obtained respectively, and the average value is the transverse elastic modulus of the
laminated plate, which is 12,033 MPa.

3.4.3. Macroscopic Perspective

The homogenized material parameters are used in the simulation, and the results are
shown in Figure 17. The longitudinal and transverse elastic moduli of the specimens are
64,583 MPa and 12,033 MPa, respectively. The longitudinal and transverse elastic moduli of
the simulation model are 63,863 MPa and 11,317 MPa, respectively. The fracture simulation
results of CFRP laminates are compared with the experiment, as shown in Figure 18.
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Figure 17. Macro simulation and test of stress and strain.
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(b) Transverse

Figure 18. Comparison between simulation and experiment.

The elastic modulus of the CFRP obtained from the experiment is larger than that
obtained from the simulation. During the tensile process of specimens, the edges of the
specimens are damaged firstly due to the alignment deviation and initial defect, which
reduces the elongation of the specimen, and finally, a stronger elastic modulus is obtained
in the experiment. The deviation of longitudinal elastic modulus between simulation and
experiment is 1.11% and the transverse elastic modulus is 5.95%. The deviation of theory
and test is 9.54 and 38.76%. There is a large deviation between theoretical and experimental
transverse elastic modulus, which may be due to fiber debonding in the experiment, which
is not considered in the theoretical calculation.

From the microscopic RVE of a fiber and multiple fibers, to the mesoscopic RVE, and
finally, to the macroscopic, their elastic moduli are calculated respectively. Results of the
bridging-scale analysis are shown in Figure 19. The theoretical values and mesoscopic
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simulation values are similar, but the experimental values are smaller because of the
debonding of some fibers. For theory and experiment, in addition to one longitudinal
elastic modulus and one transverse elastic modulus, the theoretical value of the elastic
modulus in the third direction is 5834.6 MPa, and the fiber bearing force in the third
direction is less.

The microscopic RVE has a larger elastic modulus when the load is applied along the
fiber distribution direction, and the fibers endure greater forces than the matrix. In the
mesoscopic model, the fiber distribution at 0◦ and 60◦ is adopted, as a whole. The elastic
modulus of the layout is smaller than that of the composite layer laid at 0◦ completely.
After the material parameters calculated by the mesoscopic model are used in the macro-
scopic model, the error between the elastic modulus of the macroscopic model and the
experimental results is reasonable, so the homogenized material parameters can be used in
the macroscopic model to reduce the complexity of composite layer modeling.
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Figure 19. Elastic moduli at all scales, theoretical and experimental.

4. Mechanical Analysis of Type iii Pressure Vessel

In the study, the blasting pressure of composite pressure vessels is predicted based
on the asymptotic homogenization approach from a macroscopic perspective. The failure
mode is not considered. In order to verify validate simulation results, the model structure
and material parameters in literature [39] are adopted. Type III hydrogen storage pressure
vessels consist of aluminum liner and composite material layers. The lining and composite
material parameters in literature [39] are shown in Tables 4 and 5. The winding mode of
composite layers is [90◦ 2/± 18.5◦/90◦ 2/± 26.8◦/90◦ 2]. The thickness of each layer of
composite material is 0.52 mm, as shown in Figure 20.

The elastic moduli and Poisson’s ratio of RVE are calculated by RVE at the macro-scale
using the homogenization approach. The homogenized material parameters are shown
in Table 6. Using the same model parameters in literature [39], a pressure vessel model
is established as shown in Figure 21. As the pressure vessel is an axisymmetric model, a
quarter model of the pressure vessel is established for convenient calculation, with cyclic
symmetric constraints and fixed constraints at both ends. The lining material of this model
is aluminum, and the outside represents ten layers of composite material. The homogenized
material parameters cannot show the damage to each layer, but the blasting pressure can be
easily predicted. As a matter of experience, the first place to destroy the pressure vessel is
the transition between the head and the cylinder, so the dome is simplified. The simplified
treatment has the advantage of reducing the computational difficulty, at the same time
requiring the prediction of burst pressure to be as unaffected as possible.
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Figure 20. Fiber/epoxy composite layers.

Table 4. Mechanical properties parameters of T700/epoxy composite layer.

T700/epoxy EL(GPa) ET(GPa) νLT νTT GLT(GPa) XT(MPa) XC(MPa) YT(MPa) YC(MPa) S(MPa)

Value 181 10.3 0.28 0.49 5.17 2150 2150 298 298 778

Table 5. Mechanical property of 6061-Al.

Aluminum(6061) E (GPa) ν σs(MPa) σb(MPa)

Value 70 0.3 246 324

Table 6. Material parameters of homogenized CFRP.

E1(MPa) E2(MPa) E3(MPa) ν12 ν13 ν23 G12(MPa) G13(MPa) G23(MPa)

112,359.551 10,288.066 8928.571 0.17 0.18 0.46 5173.306 1484.781 5540.166

For the prediction of the bursting pressure of the composite pressure vessel, the best
way is to apply the maximum strain criterion to the model with the increasing pressure of
0–119 MPa. Observe the numerical magnitude and distribution of circumferential strain
and stress. On the path from one end head to the other end dome (A-B-C-D in Figure 21),
the pressure inside the pressure vessel reaches 119 MPa, and the maximum circumferential
strain of the composite layer occurs at the cylinder, and its value is 0.018. At this point, the
strain value of the composite layer is about 85% of that of the independent fiber, as shown
in Figure 22a, which is in good consistency with reference [39], as shown in Figure 23. The
model is damaged at the shell and the transition firstly, and the circumferential strain of
the liner at the dome is smaller than that composite layer, and the circumferential strain
of the liner is slightly larger than that of the composite layer at the shell. Under normal
circumstances, the blasting pressure is three-tenths of the standard pressure, so the standard
pressure of the design should be below 35 MPa.

The stress distribution of the lining and composite layer is shown in Figure 22c. Due
to homogenization, the microscopic stress distribution can not be seen in the results. The
overall stress distribution can be calculated in ABAQUS. The stress of the composite layer is
obviously greater than that of the lining on the cylinder. For the domes, simulation results
may not be accurate due to simplification. It can be seen from Figure 22b,d that the axial
strain of the lining and composite layer have the same change trend, and the axial stress
value of the lining is much smaller than that of the composite layer.

The results show that circumferential and axial displacements of composite pressure
vessels occur under internal pressure. Circumferential strain and circumferential stress
occur when the cylinder expands. The domes will produce stress and strain due to the
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action of internal pressure, but due to their special structure, the stress and strain of domes
are smaller than the barrel segment, and the weakest region is located in the barrel segment
and the transition. Figures 24 and 25 show the stress and strain distribution of the liner
and composite layer. The maximum von-Mises stress of the liner is located in the transition
layer, but the maximum circumferential stress and strain of the liner are located in the
cylinder. The maximum circumferential strain of the composite layer is located in the
cylinder, and the strain of the transition layer is relatively large. Relevant experiments have
proved that the damage to composite pressure vessels occurs in the cylinder [40], which is
the same as the simulation results.

A

B C

DRVE

CFRP

Aluminum

Figure 21. Simplified geometry model of type III pressure vessel, where A, B, C, and D refer to the
vertices of the dome and cylinder.
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Figure 22. The stress and strain of composite vessel along the path A-B-C-D.
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Figure 25. Stress and strain distribution of CFRP.

5. Conclusions

In this study, the thermal stress homogenization method-based asymptotic homog-
enization approach is used for multiscale analysis of CFRP. The homogenized material
parameters of multilayer CFRP structures are calculated by using ABAQUS and subrou-
tines. From the macroscopic perspective, the tensile experiments of [(0◦/60◦/0◦/− 60◦)4]
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CFRP structure are carried out to validate the homogenized material parameters in predict-
ing the ultimate strength. The CFRP laminates of asymptotic homogenization are applied
to model the filament winding of type III pressure vessel. Findings are drawn as follows:

(1) From a micro perspective, the homogenized elastic moduli of CFRP with the same
fiber volume fraction but different fiber numbers have some deviation but are within
an acceptable range. The homogenized elastic moduli and homogenized Poisson’s
ratio are reasonable. At the mesoscopic level, it is not necessary to establish all the
layering models but to establish partial structural models that can reflect the layering
laws, so as to predict the overall structural parameters.

(2) The simulation results from a macroscopic perspective are consistent with the uniaxial
tensile test results of the specimens, indicating that the ultimate strength and elastic
moduli of CFRP structures can be predicted without considering the failure modes
inside the structure.

(3) A method to solve the properties of CFRP structures is developed by combining the
processive homogenization approach with ABAQUS finite element analysis. Applying
this method to type III pressure vessels, the complexity of the model can be simplified,
and the prediction result of burst pressure is reasonable. The cylinder and the transi-
tion region of the pressure vessel will be destroyed first, and the distributions of stress
and strain can also be predicted.
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