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Abstract: Pure polymers of polystyrene (PS), low-density polyethylene (LDPE) and polypropylene
(PP), are the main representative of plastic wastes. Thermal cracking of mixed polymers, consisting
of PS, LDPE, and PP, was implemented by thermal analysis technique “thermogravimetric analyzer
(TGA)” with heating rate range (5–40 K/min), with two groups of sets: (ratio 1:1) mixture of PS
and PP, and (ratio 1:1:1) mixture of PS, LDPE, and PP. TGA data were utilized to implement one
of the machine learning methods, “artificial neural network (ANN)”. A feed-forward ANN with
Levenberg-Marquardt (LM) as learning algorithm in the backpropagation model was performed in
both sets in order to predict the weight fraction of the mixed polymers. Temperature and the heating
rate are the two input variables applied in the current ANN model. For both sets, 10-10 neurons
in logsig-tansig transfer functions two hidden layers was concluded as the best architecture, with
almost (R > 0.99999). Results approved a good coincidence between the actual with the predicted
values. The model foresees very efficiently when it is simulated with new data.

Keywords: pyrolysis; mixed polymers; thermogravimetric analyzer (TGA); artificial neural networks
(ANN)

1. Introduction

Recently, most of the researchers are aiming to deal with machine learning methods
“ANN” for the forecasting of different data since it approved that it has a strong perfor-
mance to deal with non-linearity relationships. Therefore, ANN is considered as another
option to deal with the TGA datum.

The literatures surveyed listed below will be limited only for the papers handling
ANN for TGA data [1–18].

Conesa et al. [1] was the first to explore ANN in the thermal analysis by initiating
a way to treat with the pyrolysis kinetics at different samples for non-isothermal runs.
Bezerra et al. [2] applied the ANN model to the thermal cracking of carbon fiber/phenolic
resin composite laminate. Yıldız et al. [3] examined the oxidation of mixtures of different
ratio by enforcing ANN. Çepelioĝullar et al. [4] extended an ANN to foresee the pyrolysis
of waste fuel. Ahmad et al. [5] established ANN for the pyrolysis of Typha latifolia.
They collected 1021 data for the feed-forward Levenberg–Marquardt back-propagation
algorithm. Çepelioĝullar et al. [6] performed the ANN models for Lignocellulosic forest
residue (LFR) and olive oil residue (OOR) in two different sets: (i) two separate networks
for each sample, and (ii) one network for both samples. Later, Chen et al. [7] studied
the co-combustion characteristics of sewage sludge and coffee grounds (CG) mixtures.
Naqvi et al. [8] suggested an ANN to tip the thermal cracking of one type of sludge and
offered a strong harmonization for the predicted with experimental figures. In this paper, a
richly powerful promoted ANN model (R ≈ 1.0) predicted a pyrolytic behavior of mixed
polymers. Ahmad et al. [9] validated the pyrolysis of Staghorn Sumac by ANN model.

Bi et al. [10] investigated the co-combustion co-pyrolysis of sewage sludge and peanut
shell by ANN model. Bong et al. [11] applied the ANN model for the catalytic pyrolysis of
pure microalgae, peanut shell wastes, and their binary mixtures with the microalgae ash as a
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catalyst. In addition, Bi et al. [12] repeated the study for the co-pyrolysis of coal gangue and
peanut shell. In both papers, they found there was consistency between the experimental
and the ANN model results. Liew et al. [13] predicted the co-pyrolysis of corn cob and high-
density polyethylene (HDPE) mixtures, with chicken and duck egg shells as catalysts. Zaker
et al. [14] investigated the effects of two catalysis (HZSM5 and sludge-derived activated
char) on the pyrolysis of sewage sludge. Dubdub and Al-Yaari [15,16] and Al-Yaari and
Dubdub [17,18] tried to use the ANN to predict the performance for different samples.
They used a feed-forward LM optimization technique for backpropagation process in the
ANN model, in two hidden layers. In the first paper, they applied two input variables,
temperature and heating rate, and one output variable, weight left %, while in the second
paper, catalyst/polymer weight ratio was added as third input.

Almost all of the above-mentioned studies have good agreement between the ex-
perimental collected data and the ANN predicted results efficiently in common. The
architecture details of all the papers above are similar to this work (non-isothermal TGA
data) are summarized in Table 1. Most of these papers used the temperature and the
heating rate for the input variables with weight left % as the only output. This table showed
and approved that the application of ANN to predict TGA data is feasible and promising
research. In this work, the novelty of this work is in applying the ANN for new two mixture
of polymers (PS, LDPE, and PP), and using the final best architecture efficiently in the
simulation of new input data.

Table 1. Literature summary of ANN applications for non-isothermal TGA data.

Author Input Variables Output
Variables

Architecture
Model

No. of Hidden
Layers

Transfer
Function for

Hidden
Layers

Data Points

Bezerra et al. [2] temperature heating rate - mass retained 2-21-21-1 2 1941

Yıldız et al. [3] temperature heating rate blend
ratio Mass loss % 3-5-15-1 2 tangsig-tansig

Ahmad et al. [5] temperature Heating rate - weight loss 2 1021

Çepelioĝullar et al.
[6] Individual temperature heating rate - weight loss

2-20–20-1
(LFR)2-19–16-1

(OOR)
2 tangsig-logsig 4000

Çepelioĝullar et al.
[6] Combined 2-7–6-1 2 8000

Chen et al. [7] temperature heating rate mixing
ratio mass loss % 3-3-19-1 2 tansig-tansig

Naqvi et al. [8] temperature heating rate - weight loss 2-5-1 1 tansig 1400
Ahmad et al. [9] temperature Heating rate - weight loss 2-10-1 1 1155

Bi et al. [10]
(combustion),

(pyrolysis)
temperature mixing ratio - residual mass 2-3-18-1

2-3-15-1 2 tangsig-
tangsig

Bong et al. [11] temperature heating rate - weight loss % 2-(9-12)-(9-12)-1 2
tansig-tansig

and
logsig-tansig

Bi et al. [12] temperature heating rate mixing
ratio

remaining
mass % 3-5-10-1 2 tangsig-

tangsig 5000

Zaker et al. [14] temperature heating rate - weight loss
(%) 2-7-1 1 tansig

Al-Yaari and
Dubdub [17] temperature heating rate mass ratio mass left % 3-10-10-1 2 tansig-logsig 900

2. Materials and Methods
2.1. Thermal Decomposition

Pyrolysis experiments were conducted under nitrogen with different compositions
of three polymers: PP, PS, and LDPE. Table 2 shows six tests of two sets: tests 1–3 (ratio
1:1) binary of PS and PP, and tests 4–6 (ratio 1:1:1) of PS, LDPE, and PP. 10 mg of each
powder sample was used throughout the study. Proximate and ultimate analysis that was
performed to characterize the polymer samples can be found in reference [16]. Thermal de-
composition experiments were conducted under N2 (99.999%) gas flowing at 100 cm3/min
using the thermogravimetric analyzer (TGA-7), manufactured by PerkinElmer, Shelton, CT,
USA [16].
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Table 2. List of six runs of different PS, LDPE, and PP polymers compositions.

Set No. Test No.
Heating

Rate
(K/min)

Weight %
Comment

PP PS LDPE

1
1 5 50 50 0

mixture of
PS, and PP

2 20 50 50 0
3 40 50 50 0

2
4 5 33.3 33.3 33.3 mixture of

PS, LDPE,
and PP

5 20 33.3 33.3 33.3
6 40 33.3 33.3 33.3

2.2. Structure of ANNs

The common procedure for modelling engineering units is to develop a model de-
pending on the basic principles of physics and chemistry and then the values of the model
parameters are estimated from some experimental data by some numerical techniques.
However, formulating any model and finding the values of the parameters are the most
difficult works in most of the cases, especially when the final model is very complicated
with non-linear relations among the variables. In these cases, the ANN may become the
alternative option. One of the strengths of ANN is its ability to model the non-linear func-
tions and complex process by mapping these relations by some approximation functions.
Moreover, ANN can deal with the noisy data.

ANN architecture is ordered in three consecutive layers: input, hidden/s, and output.
Every layer possesses a number of neurons, a weight, a bias, and output [19]. Initially,
one must figure out all the variables, with the effect on the main process being variable.
The data collection, normally established before the ANN steps, becomes the mirror of the
problem area. The best ANN architecture is subjected to learning quality and generalization
ability, which relies on whether the collected data fall within the variation margin of the
variables and are big enough in size [8].

The type of the task to be handled by the ANN is crucial in finding the best architecture.
For better performance of ANNs, the parameters such as the number of neurons in the
hidden layer(s), number of the hidden layers, the momentum, and the learning rates should
be optimized.

The performance of an ANN model in portending the output can be checked and
assessed by five statistical correlations [3,5,7,10,20,21]:

Average correlation factor
(

R2
)
= 1 −

∑
(
(W %)est − (W %)exp

)2

∑
(
(W %)est − (W %)exp

)2 (1)

Root mean square error (RMSE) =

√
1
N ∑

(
(W %)est − (W %)exp

)2
(2)

Mean absolute error (MAE) =
1
N ∑

∣∣∣(W %)est − (W %)exp

∣∣∣ (3)

Mean bias error (MBE) =
1
N ∑((W %)est −

(
W %)exp

)
(4)

Correlation coefficient (R) =
∑n

m=1

(
(W %)exp,m − (W %)exp,m

)(
(W %)est,m − (W %)est,m

)
√

∑n
m=1

(
(W %)exp,m − (W %)exp,m

)2
∑n

m=1

(
(W %)est,m − (W %)est,m

)2
(5)

where

(W %)est: is the estimated value of the weight left % by ANN model;
(W %)exp, is the experimental value of the weight left %; and
(W %): is the average values of weight left %.
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In order to get the best ANN model, it should be targeted to get the lowest error with
(RMSE, MAE, MBE), and the highest with (R2, R) correlations [10]. In this investigation,
weight left % of mixed polymers has been predicted by an ANN model. There are some
advantages and some disadvantages for using ANN. Some of these advantages can be
summarized as being easy to work with linear and non-linear relationships and learning
these relationships directly from the data used, while a disadvantages is that doing the
fitting needs big memory and computational efforts [22].

3. Results and Discussion
3.1. TGA of Mixed Polymers

TGA provides us with the thermogravimetric (TG), and the derivative thermogravi-
metric (DTG) at different heating rates of the pyrolysis of two sets at different polymers
compositions, which are shown in Figures 1 and 2, respectively [16].
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3.2. Pyrolysis Prediction by ANN Model

Neural Network with “Feed-Forward, Back-Propagation” (FFBPNN) was established
in “nntool” function in MATLAB® R2020a based on 358, 752 data for the two sets. This
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type of ANN model is widely used because it is very efficient and simple [3]. Usually, in
the thermal analysis instrument TGA, the raw signal (weight left %) will be the output
of the ANN model and the independent variables (temperature and heating rate in the
non-isothermal TGA data) could be the inputs of the ANN model.

The collected data will be divided by three subsets: training set will be used to
establish the network learning and correct the weights by minimizing the error function;
the validation set checks the performance of the network; and finally, the test set will test
the generalization of the network [23].

The whole data comprising 358, 752 sets are shown in Table 3, and randomly divided
into three sets as follows: 70% for training, 15% for validation and testing. Osman and
Aggour [24] mentioned that collecting large sets of data could help the model with high
accuracy.

Table 3. Data set number of six tests.

Set No. Test No. Heating Rate
(K/min)

Data Set
Number Total

1
1 5 126

3582 20 101
3 40 131

2
4 5 251

7525 20 251
6 40 250

Table 4 listed the parameters of the ANN “nntool” model and Table 5 shows a com-
parison of different ANN structure performance with different numbers of hidden layers
and different numbers of neuron and transfer functions in each hidden layer. Usually, the
best architecture is found by a trial and error process [8]. The value of R is examined as the
criteria in judging the most efficient network architecture for finding the percentage weight
loss %. Values of four statistical correlations will be tabulated only for the last best-selected
architecture.

Table 4. Main parameters of the ANN “nntool” model.

Number of inputs 2 (Temperature (K), Heating rate (K/min)
Number of output 1 (Mass left %)
Number of hidden layers 1-2
Transfer function of hidden layers logsig-tansig
Number of neurons of hidden layers
Transfer function of out layer

10-10
purelin

Data division function Dividerand
Learning algorithm Levenberg-Marquardt (TRAINLM)
Data division (Training-Validation-Testing) 70%-15%-15%

Data number (Training-Validation-Testing) 250-54-54 = 358
526-113-113 = 752

Data number (Simulation) 9-9
Performance function MSE
Validation checks 6
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Table 5. Comparison between different ANN structures for the two sets: (i) mixtures of PS and PP,
(ii) mixtures of PS, LDPE, and PP.

Model
Network Topology (no. of Neurons)

2 Input-Hidden Layers (1 or 2
Layers)-1 Output

Hidden Layers
R1st Transfer

Function
2nd Transfer

Function

i

AN1-A 2-5-1 tansig - 0.99881
AN2-A 2-5-1 logsig - 0.99972
AN3-A 2-10-1 tansig - 0.99995
AN4-A 2-10-1 logsig - 0.99997
AN5-A 2-15-1 tansig - 0.99997
AN6-A 2-15-1 logsig - 0.99999
AN7-A 2-10-10-1 logsig tansig 1.00000

ii

AN1-B 2-5-1 tansig - 0.99976
AN2-B 2-5-1 logsig - 0.99997
AN3-B 2-10-1 tansig - 0.99999
AN4-B 2-10-1 logsig - 0.99999
AN5-B 2-15-1 tansig - 0.99999
AN6-B 2-15-1 logsig - 0.99999
AN7-B 2-10-10-1 logsig tansig 1.00000

The final and best ANN architecture is AN7-A and AN7-B, as shown in Figure 3
for both sets. This network is utilized for the next simulation step. This architecture
constitutes 10 neurons with logsig-tansig functions in the two hidden layers with linear
transfer function for the output layer. Hidden layers with non-linear functions were used to
deal with complex functions [2]. Usually, linear function is not recommended in the hidden
layers in order to avoid a linearly separable prediction, while tansig is more preferable since
it has larger range of output [11]. Most of the researchers mentioned in Table 1 implied
more than one hidden layer [11]. The number of neurons in the hidden layer is a crucial
parameter in the efficiency and the accuracy of the ANN output. To avoid the underfitting
and the overfitting (too many neurons), one should select the number of neurons in such a
way that the performance function will get eventually the optimum value [6,23,25]. There
are different supervised learning algorithms such as Levenberg–Marquardt (LM), Bayesian
Regularization, and Scaled Conjugate Gradient, but LM is used due its best performance
and relevance for this data number [8,10,26]. This optimization LM algorithm technique
will update the values of the weighted and biases factors in order to get the calculated
output close to the target [5,10].
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Figure 4 shows all the results fall close to the diagonal, which confirms a strong agree-
ment and good correlation for ANN prediction with experimental values at minimum
mean square error (MSE) values of 2.1275 × 10−7 and 4.58 × 10−8 of the two sets, respec-
tively (Figure 5). This MSE’s values are too small (<2.1275 × 10−7), which shows that the
prediction of the system is very reliable [8]. Naqvi et al. [8] also pointed out that for a good
prediction ANN, output values should be close to the target values, and ANN model is a
good fit for TGA data.
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The performance of the current AN7-A and AN7-B model in predicting the weight left
% was measured by calculating these four statistical correlations. Table 6 shows all these
four statistical correlations. Notice that values of RMSE, MAE, and MBE are significantly
low. Consequently, this model can powerfully predict the output within an acceptable limit
of error.

Table 6. Statistical parameters of the (A) AN7-A, (B) AN7-B model.

Set

AN7-A AN7-B

Statistical Parameters Statistical Parameters

R2 RMSE MAE MBE R2 RMSE MAE MBE

Training 1.0 0.00055 0.00030 −0.00001 1.0 0.00044 0.00016 1.49 × 10−6

Validation 1.0 0.00046 0.00029 −0.00001 1.0 0.00021 0.00012 −1.74 × 10−6

Test 1.0 0.00058 0.00032 0.000018 1.0 0.00024 0.00014 0.000034
All 1.0 0.00054 0.00030 −0.000012 1.0 0.000389 0.000154 6.018 × 10−6

Once checking the ANN for the two sets, the final architecture will be simulated
by new input data. Table 7 presented the simulation stage with nine datasets for each
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AN7-A and AN7-B for only new input data, and the final network will produce the
simulated output according to the final architecture AN7-A and AN7-B. Figure 6 shows the
comparison between the simulated network with the actual output and indicates very high
performance of the selected network. In addition, Table 8 lists all statistical parameters
for each set: AN7-A and AN7-B. As presented, the value of R is slightly high (>0.9900)
and RMSE, MAE, and MBE have reasonably low values. Finally, Figure 7 shows the error
histogram for the two sets, which is distributed across the zero error normally [11]. The
error lies in a very small value range (−0.00085 to 0.002678) for the first set and (−0.00123
to 0.000489) for the second set, which indicates very good performance of the proposed
ANN model.

Table 7. Simulation input data and output data: mixtures of PS and PP mixtures of PS, LDPE, and PP.

No.

Mixture of PS and PP for AN7-A Mixture of PS, LDPE, and PP for AN7-B

Input Data Output
Data Input Data Output

Data

Heating
Rate

(K/min)

Temperature
(K)

Weight
Fraction

Heating
Rate

(K/min)

Temperature
(K)

Weight
Fraction

1 5 690 0.11471 5 731 0.10335
2 5 668 0.41012 5 697 0.40892
3 5 634 0.70892 5 669 0.70090
4 20 716 0.21154 20 731 0.20736
5 20 698 0.51639 20 705 0.51387
6 20 672 0.80757 20 669 0.80014
7 40 718 0.32648 40 741 0.30962
8 40 700 0.62535 40 717 0.60931
9 40 658 0.90289 40 671 0.90323
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4. Conclusions

Thermal cracking of polymers, consisting of PS, LDPE, and PP, was implemented using
TGA at heating rate range (5–40 K/min), with two groups of sets: (ratio 1:1) a mixture of
PS and PP, and (ratio 1:1:1) a mixture of PS, LDPE, and PP. TGA data are used in modeling
ANN for two sets of PS, LDPE, and PP polymers in order to predict the weight left %.

However, an efficient ANN model has been created to predict the thermal decompo-
sition of these two sets separately. The best architecture of 2-10-10-1 (logsig-tansig-purelin)
transfer functions has been adopted as the highest efficient model. This could foresee the
output very precisely with high regression coefficient value. After that, the best model has
been simulated with untrained input data, and its behavior (calculated output) shows a
close agreement with the actual values (high R > 0.9999).
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