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Abstract: In this article, the effect of plasma treatment of polyethylene powder and glass fibers on the
adhesion between polyethylene and glass fibers in composites prepared by rotational molding was
studied. In contrast to other processing techniques, such as injection molding, the rotational molding
process operates at atmospheric pressure, and no pressure is added to ensure mechanical interlocking.
This makes reinforcing the rotomolded product very difficult. Therefore, the formation of chemical
bonds is necessary for strong adhesion. Different combinations of untreated polyethylene (UT.PE),
plasma-treated polyethylene (PT.PE), untreated and plasma-treated glass fibers were manually mixed
and processed by rotational molding. The resulting composites were cut and tested to demonstrate
the effect of the treatment on the adhesion between the composite components and on the mechanical
properties of the final composites. The results showed that the treatment of both powder and fiber
improved the adhesion between the matrix and fibers, thus improving the mechanical properties of
the resulting composites compared to those of pure polyethylene samples and composites prepared
using untreated components. The tensile strength, tensile modulus, and flexural modulus of the
composites prepared using 10-min treated powder with 20 wt% of 40-min treated fibers improved by
20%, 82%, and 98%, respectively, compared to the pure polyethylene samples.

Keywords: rotational molding; polyethylene; glass fiber; composites; plasma treatment; adhesion

1. Introduction

Rotational molding is a molding technique used to produce hollow plastic parts with
equal wall thickness and very low residual stresses in the final products.

The process is used to produce a wide range of predominately hollow products
of different sizes and shapes including storage tanks, shipping containers, kayaks, and
barriers [1,2]. Manipulation of parameters such as the reduction of cycle time [3–5] and
bubble removal [6,7] improved the properties of rotomolded samples to a greater extent [8].

However, the main disadvantages of this process are high temperature and long
production cycle requirement, which limit the materials that can be constructed into a
specific type of polymers capable of withstanding elevated temperatures for a relatively
long period. These materials which are dominated by different grades of polyethylene are
considered unsuitable in applications where product strength and rigidity are important.
Therefore, the production of composite materials with improved mechanical properties
and thermal stability by rotational molding has attracted the attention of researchers over
the past few decades.

There have been many attempts to incorporate different fiber types into the rota-
tional molding process. The first attempt to produce composites via rotational molding
was conducted by Torres et al. in 2003 [9]. In this study jute, wood, cabuya, pecan,
sisal fibers and different types of rice shell flour were used as a filler for high-density
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polyethylene. Following this, many studies investigating the possibility of producing
composites via rotational molding were conducted. Different natural fibers such as flax [10],
banana and abaca [11], agave [12–14], coir [12,14,15], pine [12], maple [16,17], wood [18,19],
buckwheat husk [20], glass fibers [21,22], carbon fibers [22], glass particles [23,24], other
synthetic particles [24,25] and nanoparticles [26–30] as reinforcements with different grades
of polyethylene [9,11,12,14,15,17,21,22,31], polyamide [26], polylactic acid [13,20], and
polypropylene [18] as matrix were used in the studies.

However, no research has yet been reported using it successfully in industry. Contrary
to other processing techniques such as injection molding and pressure molding, the rota-
tional molding process operates at atmospheric pressure which makes reinforcing of the
rotomolded product very difficult. The main problems that arise while using reinforcements
in rotational molding are nonuniform distribution of the filler inside the matrix and poor
adhesion between the fillers and the matrix, as no pressure is added to ensure mechanical
adhesion between the two phases. This leads to the segregation and the agglomeration of
the reinforcements. To overcome these problems, researchers have tried different chemical
surface treatments of the fillers and/or the addition of coupling agent to the polymer
matrix. Wang et al. studied the effect of three different chemical treatments of flax fibers on
the mechanical properties of LLDPE/flax fiber composites prepared via rotational mold-
ing. Silane, benzoylation, and peroxide were used for treatment; they reported that silane
treatment was the best for improving mechanical properties and water absorption rate [10].
Ortega et al., prepared two- and three-layered banana and abaca fibers/polyethylene com-
posites via rotational molding, and studied the effect of NaOH treatment of the fibers on the
resulted composites. The results of the mechanical tests showed that the addition of banana
and abaca fibers improved the tensile and flexural modulus, while the tensile and impact
strength decreased, and NaOH treatment improved the properties of the composites [11].
Lopez et al. used agave, coir, and pine as reinforcements for LLDPE, with and without
MAPE (maleic anhydride grafted polyethylene). The morphological tests showed that
surface treatment helped to achieve better adhesion between the fibers and the polymer
in all cases. In addition, mechanical properties of the composites with 20 wt% treated
fibers were higher than the mechanical properties of net polyethylene and of composites
prepared using untreated fibers [13]. Hanana et al., tried maple fibers as reinforcement
for the LLDPE matrix and produced a composite using rotational molding. Maple fibers
were treated with malleated polyethylene (MAPE) and properties of the composites were
compared to composites prepared with untreated fibers. Tensile and flexural modulus
increased for both composites prepared using treated and untreated fibers compared to the
net samples. However, in all cases composites with treated fibers exhibited higher values
compared to composites with untreated fibers. The tensile strength of the untreated fibers
composites decreased with increasing fiber content compared to unfilled samples, while
the tensile strength of the treated-fiber composites was slightly above the unfilled samples.
Impact strength decreased with increased fiber content for all composites, with slightly
higher values for treated-fiber composites compared with untreated-fiber composites [17].

Cold plasma treatment for adhesion improvement has attracted the attention of re-
searchers as an effective and environmentally friendly alternative of chemical treatment.
The treatment can be used to treat both matrix and fibers to improve their wettability and
draft different functional groups on their surfaces. The type of functional group depends on
plasma composition, and predominately carboxyl, hydroxyl, amine, or aldehyde groups are
investigated as a tool for improvement of filler–matrix interfacial properties [32]. Plasma
treatment of glass fibers improved their adhesion to both polyester and epoxy resins [33,34].
J. Trejbal et al. reported that oxygen plasma treatment of glass fibers increased their wet-
tability by 25% when compared with untreated glass fibers [35]. Plasma treatment of
wood fibers improved the tensile strength and modulus of polypropylene composites pre-
pared using the treated fibers when compared with composites prepared using untreated
fibers [30]. Similarly, plasma-treated coir fibers/starch composites [36] and plasma-treated
flax fibers/LDPE composites [37] had better mechanical properties when compared with
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composites prepared using untreated fibers. Another study reported that plasma treatment
of carbon successfully improved their adhesion to different matrixes [38–40].

In rotational molding, Rodrguez et al. used a mixture of polyethylene with untreated
and plasma-treated carbon nanofibers to prepare nanocomposites with different fiber
content (0.01, 0.1, and 1.0 wt%). SEM images showed that the treated carbon fiber had
a better distribution inside the matrix as a result of good adhesion and fiber wetting.
Mechanical testing showed that plasma-treated nanofibers increased the impact strength of
composites compared to net polyethylene and composites prepared by untreated nanofibers.
The tensile modulus and tensile strength also increased by 20% and 8%, respectively. S.
Panikkassery Sasidharan et al. studied rotomolded composites prepared with untreated
polyethylene (PE) and plasma-modified polyethylene (PPE) and 5 wt% of untreated and
alkali-treated coir fiber. The results showed that the composites prepared using treated
matrix and treated fibers had the lowest water absorption rate and the studied mechanical
properties of these composites improved compared to untreated materials [15].

In this article, the effect of plasma treatment of both LLDPE and glass fibers on tensile
strength and modulus, flexural modulus and impact strength of their composites prepared
by rotational molding were studied. In addition, the effect of the treatment on adhesion
between the composite’s components was also investigated.

2. Materials and Methods
2.1. Materials

Linear low-density polyethylene (LLDPE) ‘DOWLEX 2629UE’ was used as matrix,
with density 935 kg/m3 and melt flow index (MFI) (190 ◦C/2.16 kg) 0.004 kg/10 min from
Dowlex Chemical Company, (Midland, MI, US). Plasma modification of PE powder was
carried out by Surface Treat, a.s. (Turnov, Czech Republic).

Short, milled glass fibers with an average length of 0.19 mm and an average diameter
of 14 µm by LanXESS Company (Cologne, Germany) were used as reinforcement.

The release agent was Rotorelease®MKX-17-014 from Münch Chemie International
GmbH (Weinheim, Germany).

2.2. Plasma Treatment

Plasma treatment of the powder and the fibers was conducted in a laboratory device
LA 400 (Surface Treat, a.s., Turnov, Czech Republic), with a vacuum working chamber and
microwave discharge (1 kW, pulse mode, 0.25 kg of powder), pressure 100 Pa, oxygen was
used as working gas with flow 100 sccm, powder was treated for 1 min, 3 min, 5 min and
10 min, while glass fibers were treated for 20, 40 and 60 min. A detailed description of the
plasma reactor and plasma-treatment process is provided in the previous publications of H.
Sourkova and P. Spatenka [41].

2.3. Samples Preparation

The samples were prepared using a laboratory-scale ‘rock and roll’ rotational molding
machine with electrical heating (Figure 1a). The machine is designed to undergo full 360◦

rotation motion of the mold around one axis (rolling) and swinging action of the oven
around a perpendicular axis (rocking). The oven is heated using four electric resistance
heaters placed at the bottom of the oven. Cooling is carried out using a fan fixed under the
oven. The temperature inside the oven and the molds are monitored using two sensors,
one is fixed in the oven to measure the oven temperature, and the other is inserted inside
the mold after fixing the mold in the oven, which measures the internal air temperature
of the mold (PIAT). The rotation speed was fixed at 10 rmp for all experiments, and
the swing angle was 45◦. The mold was a rectangular aluminum box with dimensions
250 mm × 95 mm × 95 mm. The shape of the mold and of the rotomolded samples are
presented in Figure 1b. Before loading the material into the mold, the release agent was
applied to the inner surface of the mold.
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The weight of the material used to produce each sample was 0.3 kg. The material
used was pure PE powder or PE powder/glass fiber mixture to produce samples with wall
thicknesses between 3 and 4 mm. The powder and fibers were mixed before molding for
5 to 10 min using a kitchen mixer to ensure proper distribution of the fibers in the matrix.

In the first stage of the research, the effect of plasma treatment of the polyethylene
powder was studied. Polyethylene powder was treated for 1, 3, 5, and 10 min. The selected
treatment times were chosen according to the findings of H. Sourkova and P. Spatenka [41].
They demonstrated that a significant increase in wettability can be observed at up to 10 min
of treatment time, while concentration of the oxygen groups increases with increasing
treatment time. The treated powder was mixed with 10 wt% untreated glass fibers and
then used to prepare the composites. The material was heated to an oven temperature of
250 ◦C and held at this temperature until the PIAT temperature reached 220 ◦C, at which
point the heating was stopped, and cooling process started.

In the second stage, we studied the effect of the heating process on the final properties
of the composites. Two different temperatures were tested. Instead of using the PIAT
temperature to determine when to stop heating and start cooling, in this stage the oven
was heated to 250 ◦C or 220 ◦C and held at these temperatures for different periods and at
the end the of the holding period, the heating was stopped, and the cooling process was
started. The hold time at the oven max temperature was 15 min, 30 min, 45 min and 60 min.
Composites were prepared using 5-min treated powder and 10 wt% untreated fibers.

In the third stage, the effect of plasma treatment of glass fibers was studied. Glass
fibers were treated for 20, 40 and 60 min and then mixed with untreated powder and 10-min
plasma-treated powder. The composites were prepared at oven temperature 220 ◦C and
hold time 30 min.

Finally, the effect of different fiber content was studied by preparing composites using
10-min treated powder mixed with 10, 15 and 20 wt% of 40-min treated glass fibers. The
oven temperature was 220 ◦C with a hold time of 30 min.

2.4. Testing Methods

Tensile strength and modulus were measured according to ASTMD638 using the
TINUS OLSEN H50KT universal testing machine (Tinius Olsen, Ltd., Salfords Surrey, UK)
at a gauge length of 60 mm and a speed of 50 mm per minute at room temperature. The
three-point bending test was performed according to ASTM D790 using MTS Exceed E42
bending machine (MTS Systems, Eden prairie, MN, USA), and the testing speed was
10 mm/min. Charpy impact tests were performed using CEAST 7.5 J (Instron, Norwood,
MA, USA), according to ASTM D6110. The samples were notched with a 2 mm offset. The
tests were performed at room temperature.

Scanning electron microscopy (SEM) images were captured using a scanning electron
microscope (Lyra3, Tescan) (Tesacan, Brno, Czech Republic) and optical microscopy images
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(OM) images were obtained using a Nikon SMZ 1500 stereomicroscope (Nikon, Tokyo,
Japan) equipped with a CCD camera.

The reported values of all the tests are the averages of at least five specimens. To
obtain the specimens, we first prepared the rotomolded samples via rotational molding for
each combination in each stage. The rotomolded boxes were cut into 6 sheets (4 side walls
and upper and lower walls) using an electrical cutting machine. Specimens for each test
method with suitable shape and dimension were then cut from the different side walls of
different rotomolded samples using laser cutting machine Snapmaker A250T (Snapmaker,
Shenzhen, China).

3. Results and Discussion
3.1. The Effect of Different Factors on the Selected Mechanical Properties of the Composites
3.1.1. Effect of Plasma Treatment of Polyethylene Powder

The tensile strength of the composites prepared using powder treated for different
lengths of time is presented in Figure 2. The tensile strength of the composites prepared
using untreated powder maintained almost the same values as the net polyethylene samples.
Increasing the plasma treatment time of the powder slightly increased the tensile strength.
Composites prepared using 10-min treated powder had a tensile strength 7% higher than
the tensile strength of pure polyethylene and 9% higher than composites prepared using
untreated powder.
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The reason that significant improvement in the tensile strength was not achieved as
a result of different treatment times could be that at short treatment times (1 and 3 min)
the treatment was not yet sufficient to improve the adhesion between the fiber and the
matrix, while at long treatment times (5 and 10 min) the reason could be an increased
number of bubbles on the outer surface of the samples and uneven inner surface indicating
agglomeration of the fiber.

The tensile modulus is presented in Figure 3. All composites showed a higher modulus
than pure polyethylene, the tensile modulus of the composites increased from 272.2 MPa
for composites prepared with untreated powder to 343.8 MPa for composites prepared
using 3-min treated powder. The reason for this increase is the presence of rigid fibers
in the matrix. However, the modulus decreased when using 5-min and 10-min treated
powder; this decrease resulted from the higher bubble content in the composites and
uneven inner surface.
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produced using treated powder and 10 wt% untreated glass fibers.

The flexural modulus presented in Figure 4 showed a similar trend to the tensile
modulus. The composites showed a higher modulus than the net polyethylene in all cases,
and the highest modulus was reached when 1-min treated powder was used to prepare the
composites which was 47% higher compared to the modulus of net polyethylene. This is
also similar to the tensile modulus where a slight decline can be noticed in the modulus
when using longer time treated powder, but this decline appeared earlier in the case of
flexural strength where a 10% decrease in the modulus can be noticed when using 3-min
treated powder compared to composites prepared using 1-min treated powder.
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W. Chang et al. [21] and Höfler et al. [22], also reported the improvement of both
tensile and flexural modulus of the samples prepared via rotational molding as a result of
incorporation of different types of glass fibers to the polyethylene compared to unfilled
samples. S. Panikkassery Sasidharan et al. [15] reported the improvement of tensile modu-
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lus of coir fiber/plasma treated polyethylene composites prepared via rotational molding
comparing with unfilled samples and with composites prepared using untreated powder.
Improvements in tensile modulus and flexural modulus of other natural fiber composites
prepared by rotational molding compared to unfilled samples were also reported in other
studies [12,14,17].

The impact strength of the composites is presented in Figure 5. All composites showed
lower impact strength than those of unfilled samples; this is a result of the presence of
hard phase in the mixture. Increasing the treatment time also contributed to a further
reduction of impact strength, which as mentioned previously, is a result of a higher number
of bubbles on the surface of composites prepared using powder treated for more than 1 min.
The highest reduction in impact strength was observed for composites prepared using
5-min treated powder where the reduction reached 21% compared to unfilled samples,
while a recovery can be noticed when 10 min powder was used. However, the value of the
impact strength was still less than that of net polyethylene. Similar reductions in impact
strength were noticed in references as a result of the use of glass fibers for reinforcement in
rotational molding [21,22]. Contrary to the glass fibers, one of the natural fibers composites
showed to be more effective in improving the impact strength of the composites prepared
via rotational molding [14,15].
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Figure 5. The effect of the PE powder treatment time on the impact strength of the composites
produced using treated powder and 10 wt% untreated glass fibers.

OM images of the outer surface of samples prepared using different treated powders
are presented in Figure 6. An increase in bubble numbers can be noticed with increasing
treatment time.

This behavior can be explained by the fact that the powders treated for a longer time
need longer sintering times to achieve a uniform and proper even layer [42]. In the first
step of the experiment, the holding time at the maximum oven temperature 250 ◦C was
only 5 min, and this could not be sufficient for proper sintering of the mixture of glass fiber
and powder treated for a longer time.
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Commented [M3]: 图里的 C 应该是小写 Figure 6. Optical microscopy images of the outer surface of samples prepared using untreated and
plasma-treated polyethylene with 10 wt% untreated glass fibers: (a) untreated PE without fiber, (b)
composites with untreated PE, (c) composites with 1-min treated PE, (d) composites with 3-min
treated PE, (e) composites with 5-min treated PE, (f) composites with 10-min treated PE.

3.1.2. Effect of Oven Temperature and Holding Time

The tensile strength of the composites prepared at different oven temperatures and
different holding times are presented in Figure 7.
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Figure 7. The effect of oven temperature and holding time on the tensile strength of the composites
prepared using 5-min treated powder and 10 wt% untreated fibers.

Preparation of the composites at an oven temperature of 250 ◦C for 15-min holding
time improved the tensile strength by 9% compared with composites prepared at an oven
temperature of 250 ◦C and PIAT 220 ◦C (holding time in this case was only 5 min). However,
30-min holding time at 250 ◦C decreased the tensile strength again to 18.4 MPa and the
samples already showed degradation signs. This is why no longer holding times were
tested at this temperature, instead a lower temperature of 220 ◦C was tested for different
holding times. Composites prepared at 220 ◦C for 15 min had the lowest tensile strength,
and visual inspection showed an abundance of bubbles on the outer surface and an uneven
inner surface. Increasing the holding time to 30 min at the same temperature increased the
tensile strength to a value similar to that of the composites prepared at a temperature of
250 ◦C with a holding time of 15 min. Further increases of holding time did not cause any
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further improvement in tensile strength. The improvement of tensile strength as a result of
longer holding time could be explained by better sintering of the samples. No bubbles were
noticed on the outer surface, and the inner surface was smooth and even, which indicates
better sintering of the powder and better distribution of the fibers in the matrix.

The effect of different oven temperature and holding time on the tensile modulus is
presented in Figure 8. The highest tensile modulus value was obtained for the composite
prepared at an oven temperature of 220 ◦C for 30 min, and it was 16% higher compared
to our original composites prepared at oven temperature 250 ◦C with 5-min holding time.
This resulted from less bubbles and smoother inner surface.
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Figure 8. The effect of oven temperature and holding time on the tensile modulus of the composites
prepared using 5-min treated powder and 10 wt% untreated fibers.

Similarly, it was found that the flexural modulus of composites prepared at an oven
temperature of 220 ◦C for a holding time of 30 min was the best, which is 26% better than
composites prepared at an oven temperature of 250 ◦C and holding time of 5 min (Figure 9).
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Figure 9. The effect of oven temperature and holding time on the flexural modulus of the composites
prepared using 5-min treated powder and 10 wt% untreated fibers.
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The effect of different temperatures and holding times on the impact strength of the
composites is presented in Figure 10. A different temperature and longer holding time at
the peak temperature of the oven helped to increase the impact strength slightly as a result
of decreasing the number of bubbles and a smoother inner surface, but the impact strength
in all cases stayed less than the impact strength of unfilled samples.
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Figure 10. The effect of oven temperature and holding time on the impact strength of the composites
prepared using 5-min treated powder and 10 wt% untreated fibers.

Figure 11 shows the optical microscopy images of the outer surface of samples pre-
pared at oven temperature 220 ◦C for 30 min, and no bubbles can be noticed. This indicates
that a longer heating time is needed to prepare composites using powder treated for a
longer time. These results correspond with the results obtained by Z. Weberova et al., on
the sintering of plasma-treated polyethylene on glass rods in an oven which showed that
plasma treatment time of the polyethylene powder affected their sintering behavior and
longer time is needed to obtain a proper sintering of the powder [42].
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3.1.3. Effect of Plasma Treatment of Glass Fibers

The tensile strength of the composites prepared using treated and untreated glass
fibers is presented in Figure 12. Tensile strength of composites prepared using a mixture
of untreated powder with plasma treated fibers had almost the same tensile strength as
the composites prepared using untreated powder and untreated fiber. On the other hand,
composites prepared using mixture of treated powder and treated fiber had higher tensile
strength values compared with composites prepared using untreated fiber. Using both
treated powder and treated fibers increased the tensile strength to 21.8 MPa for composites
prepared using 10-min treated powder and 40-min treated fibers, which is 17% higher
than unfilled PE and 15% higher than composites prepared using untreated powder and
fibers. The reason for this increase could be that the treatment of glass fibers added oxygen
groups to the fiber surfaces and increases in their surface energy with respect to the surface
energy of the powder, increasing their wettability, and hence the adhesion between the
matrix and the fibers. As is well known, for optimal wetting of any substrate by a liquid,
the surface energy of the liquid should be higher than the surface energy of the substrate.
Plasma treatment of polyethylene powder increases not only the concentration of the
active groups on the powder surface but also the surface energy of the powder to values
which could become close or even higher to the glass fibers surface energy, which could
decrease the wettability. Therefore, treatment of the fibers was necessary to ensure that
their surface energy was higher in relation to the powder surface energy. A. Haji et al.,
reported improvement of the tensile strength of epoxy/glass fibers composites as a result
of the plasma treatment of the glass fibers when compared with composites prepared from
untreated fibers [34].
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Figure 12. The effect of glass fiber treatment time on the tensile strength of the composites prepared
using untreated and 40-min treated PE with 10 wt% untreated and plasma-treated glass fibers.

Plasma treatment of the fibers did not significantly affect the tensile modulus
(Figure 13). Composites prepared using untreated powder with treated glass fibers had al-
most the same values as composites prepared using untreated powder and untreated glass
fibers. A very small decline less than 5% can be observed for composites prepared using
untreated powder with 20-min treated fibers. Similarly, a minor decline of all composites
prepared using treated powder and fibers was noticed when compared with composites
prepared with untreated fibers.
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Figure 13. The effect of glass fiber treatment time on the tensile modulus of the composites prepared
using untreated and 40-min treated PE with 10 wt% untreated and plasma-treated glass fibers.

Figure 14 presents the flexural modulus of composites prepared using treated glass
fiber. The flexural modulus of composites prepared using untreated powder and 20-min
treated fiber improved by around 10% compared to composites prepared by untreated
powder with untreated fibers; no further improvement was observed as a result of using
treated glass fibers treated for 40 and 60 min. The composites prepared with treated powder
and treated fibers maintained almost the same values as the composites prepared using
untreated components, regardless of the fiber treatment time.
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Figure 14. The effect of glass fiber treatment time on the flexural modulus of the composites prepared
using untreated and 40 min treated PE with 10 wt% of untreated and plasma-treated glass fibers.

Figure 15 presents the effect of plasma treatment of glass fibers on the impact strength
of composites. Composites with treated powder and treated fibers maintained the same
impact strength compared to those of untreated components. Similar behavior was also
noticed for composites prepared with both treated powder and glass fibers; the only
exception was a minor decline by 7% noticed for composites containing 20-min treated
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fibers. Fiber treatment did not help to increase the impact strength to values higher than
net polyethylene values.
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Figure 15. The effect of glass fiber treatment time on the impact strength of the composites prepared
using untreated and 40-min treated PE with 10 wt% of untreated and plasma-treated glass fibers.

3.1.4. Effect of Glass Fibers Content

The effect of fiber content on the tensile strength of the composite is presented in
Figure 16. The composites were prepared using 10-min treated powder and 40-min treated
glass fibers at oven temperature 220 ◦C and 30-min holding time. The tensile strength
of composites increased by increasing fiber content up to 20 percent. Tensile strength of
composites containing 20 wt% fibers increased by 20% compared to net polyethylene. This
resulted from optimizing the process conditions and using both treated powder and treated
glass fibers, which improved the adhesion between the fibers and the matrix.
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Figure 16. The effect of fiber content on the tensile strength of the composites prepared using 10-min
treated powder and 40-min treated fibers.

The effects of the fiber content on the tensile and flexural modulus of composites prepared
using 10-min treated powder and 40-min treated fibers are presented in Figures 17 and 18,
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respectively. Both moduli increased with the addition of a higher content of fibers, which
was the result of the incorporation of a greater number of rigid fibers in the matrix. The
tensile modulus increased by 82% for composites containing 20% fibers, while flexural
modulus increased by 99% of the same composites compared to unfilled PE samples.

Polymers 2022, 14, 2592 14 of 21 
 

 

3.1.4. Effect of Glass Fibers Content 
The effect of fiber content on the tensile strength of the composite is presented in 

Figure 16. The composites were prepared using 10-min treated powder and 40-min 
treated glass fibers at oven temperature 220 °C and 30-min holding time. The tensile 
strength of composites increased by increasing fiber content up to 20 percent. Tensile 
strength of composites containing 20 wt.% fibers increased by 20% compared to net poly-
ethylene. This resulted from optimizing the process conditions and using both treated 
powder and treated glass fibers, which improved the adhesion between the fibers and the 
matrix. 

 
Figure 16. The effect of fiber content on the tensile strength of the composites prepared using 10-
min treated powder and 40-min treated fibers. 

The effects of the fiber content on the tensile and flexural modulus of composites 
prepared using 10-min treated powder and 40-min treated fibers are presented in Figures 
17 and 18, respectively. Both moduli increased with the addition of a higher content of 
fibers, which was the result of the incorporation of a greater number of rigid fibers in the 
matrix. The tensile modulus increased by 82% for composites containing 20% fibers, while 
flexural modulus increased by 99% of the same composites compared to unfilled PE sam-
ples.  

 
Figure 17. The effect of fiber content on the tensile modulus of the composites prepared using 10-
min treated powder and 40-min treated fibers. 

0

5

10

15

20

25

0% 10% 15% 20%

Te
ns

ile
 st

re
ng

th
,M

Pa

Fibers content %

Tensile strength of composites prepared contain different 
content of glass fibers.

0

100

200

300

400

500

0% 10% 15% 20%

Te
ns

ile
 m

od
ul

us
,M

Pa

Fibers content %

Tensile moudulus  of composites prepared contain different content 
of glass fibers.

.

Figure 17. The effect of fiber content on the tensile modulus of the composites prepared using 10-min
treated powder and 40-min treated fibers.
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Figure 18. The effect of fiber content on the flexural modulus of the composites prepared using
10-min treated powder and 40-min treated fibers.

The results of a higher content of glass fiber on the impact strength is presented in
Figure 19. As shown, the impact strength kept decreasing with increasing fiber content to
reach 38% at 20 wt% glass fiber content when compared with unfilled samples. This could
be a result of the presence of bigger amount of rigid phase, which hinders the movement of
polymer chains and decreases the total ability to absorb and transfer impact energy.
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Figure 19. The effect of fiber content on the impact strength of the composites prepared using 10-min
treated powder and 40-min treated fibers.

3.1.5. The Effect of Plasma Treatment of the Powder and the Fibers on the Stress-Strain
Behavior of the Composites

Stress–Strain diagram obtained from the tensile test is presented in Figure 20. The
stress–strain diagram of composites prepared from untreated powder and fibers was
identical to that of the unfilled samples diagram, while treatment of the powder for 10 min
changed the behavior of the composites. As can be noticed, the composites prepared using
the treated powder endured higher stress and showed less deformation under the stress
compared to unfilled samples and to the composites prepared with untreated components.
This indicated that the plasma treatment was successful in creating adhesion between
the powder and the fibers, leading to efficient reinforcement of the polyethylene by the
fibers and subsequently better tensile behavior of the composites. Further improvement in
the tensile behavior can be noticed as a result of the treatment of the glass fibers and the
increase of fiber content to 20%.
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Figure 21 presents stress–strain diagram of flexural properties. Similar to tensile
behavior, incorporation of fibers to the polyethylene changed its bending behavior. The
composites tolerated higher stress with less deformation compared to unfilled samples.
The plasma treatment and the higher fibers content also had a positive effect on the values
of maximum stresses.
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3.2. Morphology

SEM images of fractured surfaces of composites prepared using powder treated for
different times are presented in Figure 20. The surface of composites prepared using the
untreated power (Figure 22a) shows no adhesion between the fibers and the matrix; a gap
between them can be clearly seen. For composites prepared with 1-min treated powder
(Figure 22b), the gap between the matrix and the fibers can still be seen and no trace of
polyethylene is shown on the fiber surface. With increasing of the treatment time to 3 min
(Figure 22c), the gap disappeared, and little trace of polyethylene can be seen on the fiber
surface. Evidence of even better adhesion can be seen in Figure 22d,e, which presents the
fracture surface of samples prepared using 5-min and 10-min treated powders, respectively.
The images show that there are no gaps between the fibers and PE matrix, and there is an
increase in the amount of polyethylene residue left on the fiber surface after breaking; this
indicates good adhesion between the fiber and the matrix. These images are consistent
with those of Zuzana et al. [42]. on the adhesion between treated material and glass rods.

SEM images taken from different locations on the fracture surface of the composites
prepared using 10-min treated powder with 40-min treated fibers are presented in Figure 23.
Improved adhesion between the powder and the fibers as a result of the use of treated
powder along with treated fibers can be clearly seen. Figure 23c shows a broken fiber
completely covered with polyethylene that indicates a very good adhesion between the
fiber and the matrix. Other broken fibers can be observed in Figure 23a,b. This could
be due to a higher concertation of the functional group on the surface of treated glass
fibers and treated polyethylene powder, and a higher surface energy of glass fibers after
treatment. Similarly, good adhesion was not achieved in the literature where short glass
fibers were dry mixed with the powder and used as reinforcements for composites prepared
by rotational molding [21,22]. Only an improvement in the adhesion was noticed when the
fibers and the powder were pre-compound prior to molding [21].
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Figure 22. SEM images of fracture surface of composites prepred uisng untreated and plasma-
treated polyethylene: (a) composites with untreated PE, (b) composites with 1-min plasma-treated
PE, (c) composites with 3-min plasma-treated PE, (d) composites with 5-min plasma-treated PE,
(e) composites with 10-min plasma-treated PE.
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SEM images with higher magnification of the interface between the fiber and the
matrix are presented in Figure 24. Figure 24a shows the interface between untreated
powder and untreated glass fiber. A gap can be clearly seen between the fiber and the
matrix due to poor adhesion between two nonpolar surfaces. Moreover, the fiber surface is
totally clean, and no polyethylene is left. Figure 24b shows the interface between 10-min
plasma-treated powder and 40-min plasma-treated fiber, it is clearly observed that the fiber
surface is covered by polymer matrix, which indicates that treatment of both powder and
glass fibers was necessary to achieve sufficient adhesion between the fibers and the matrix.
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4. Conclusions

Plasma treatment of polyethylene and glass fibers proved to be a successful method
for improving the adhesion between the matrix and the fibers in composites prepared
via rotational molding. The results showed that treatment of both powder and fibers is
necessary to achieve optimum adhesion and improve the tested mechanical properties of
the composites. Different treatment times for both powder and fibers were tested, and the
results indicated it is necessary to treat the polyethylene powder for more than 5 min to
improve adhesion. However, increasing the powder treatment time affected its sintering
behavior and a longer heating time was needed to obtain good composites. The optimum
composites were produced at an oven temperature of 220 ◦C for 30 min holding time, using
a mixture of 10-minute treated powder and 40-minute treated fiber. The tensile strength,
tensile modulus, and flexural modulus of these composites were improved by 20%, 82%
and 98%, respectively, compared to pure polyethylene samples.
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