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Abstract: The design of high-performance nanocomposites with improved mechanical, thermal or
optical properties compared to starting polymers has generated special interest due to their use in
a wide range of targeted applications. In the present work, polymer nanocomposites composed of
polyurethane elastomers based on polycaprolactone or polycaprolactone/poly(ethylene glycol) soft
segments and titanium dioxide (TiO2) nanoparticles as an inorganic filler were prepared and charac-
terized. Initially, the surface of TiO2 nanoparticles was modified with (3-iodopropyl) trimethoxysilane
as a coupling agent, and thereafter, the tertiary amine groups from polyurethane hard segments
were quaternized with the silane-modified TiO2 nanoparticles in order to ensure covalent binding
of the nanoparticles on the polymeric chains. In the preparation of polymer nanocomposites, two
quaternization degrees were taken into account (1/1 and 1/0.5 molar ratios), and the resulting
nanocomposite coatings were characterized by various methods (Fourier transform infrared spec-
troscopy, X-ray diffraction, scanning electron microscopy, contact angle, thermogravimetric analysis,
dynamic mechanical thermal analysis). The mechanical parameters of the samples evaluated by
tensile testing confirm the elastomeric character of the polyurethanes and of the corresponding
composites, indicating the obtaining of highly flexible materials. The absorbance/transmittance
measurements of PU/TiO2 thin films in the wavelength range of 200–700 nm show that these par-
tially block UV-A radiation and all UV-B radiation from sunlight and could possibly be used as
UV-protective elastomeric coatings.

Keywords: polyurethane; nanoparticle; nanocomposite; quaternization; mechanical properties;
UV protective

1. Introduction

Thermoplastic polyurethanes (TPUs) are an important category of polymeric ma-
terials synthesized by step-growth polymerization of polyols as soft segments and aro-
matic/aliphatic diisocyanates along with chain extenders as hard segments [1]. In gen-
eral, TPUs are elastomers with a linear molecular structure and glass transition temper-
atures below 0 ◦C that exhibit excellent mechanical properties, high abrasion resistance,
low-temperature flexibility, biocompatibility and a large processing window, for which
thermoplastic polyurethanes are widely used in various applications that include insulat-
ing materials, biomedical devices, degradable implants, electronic appliances and sports
equipment [2–4]. By simply adjusting the nature or the volume fraction of the components
that constitute the soft and hard segments or by modifying the polymerization pathway,
thermoplastic polyurethanes with a unique and wide portfolio of mechanical properties,
flexibility and/or biocompatibility can be obtained, leading to a variety of polymers with
versatile structures [5–8]. The flexibility of the physical properties of polyurethanes is
usually assigned to their complex morphology with alternating hard and soft segments
as elements of the polymeric backbone, which leads to a microphase-separated specific
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organization triggered by the thermodynamic incompatibility between the constituent soft
and hard domains [9–11]. An innovative approach in the polyurethane field was the inser-
tion of ionic sequences into these polymers, which led to the obtaining of polyurethane
ionomers [12–14]. Although the amount of ionic groups in polyurethane backbone is
low (less than 15 mol%) [15,16], their presence in the polymeric material determines the
formation of additional ionic networks through strong interaction via Coulombic forces
or hydrogen bonds, with an effect on the physical and rheological behaviour of the re-
sulting ionomers [16,17]. Regardless on the nature of the charge (positive, negative or
both), all types of polyurethane ionomers, namely cationomers (bearing quaternary am-
monium groups), anionomers (with carboxylate, sulphonate or phosphate units) and
zwitterionomers (sulphobetaine) have been reported in the literature [18–21]. The increased
interest shown in these polymers is generated by the fact that besides the standard proper-
ties of polyurethanes, the presence of ionic sequences determines modifications in the phase
structure of polyurethanes, with an impact on their physical and rheological characteristics
and implicitly on their application potential [18,22].

The recent development of hybrid materials, composed of both inorganic and or-
ganic elements, was triggered by the finding that compared to the raw materials, the
resulting hybrid composites proved to display an improvement of the mechanical, ther-
mal, optical or electrical properties. Up to now, various inorganic nanoparticles (metals,
metal oxides, clays, carbon nanotubes) have been successfully embedded in polyurethane
matrices [19,23–26]. The enhancement of composite properties is conditioned by the ho-
mogeneous and complete distribution of the inorganic phase in the organic matrix, which
favours the increase in the interfacial surface interactions in tandem with the optimization
of the organic–inorganic interactions. However, this goal is more difficult to accomplish,
given the inherent immiscibility between the inorganic and organic phases, so extensive
research has been devoted to the chemical modification of inorganic nanoparticles to im-
prove the compatibility and implicitly the performance and applications of polyurethane
composites [27–29]. Titanium dioxide (TiO2) nanoparticles have been frequently incor-
porated into polymer matrices used for applications in coatings, optical devices, photo-
catalysis, wastewater treatment or UV shielding due to their excellent chemical stability,
optical properties, UV absorption, low cost and environmentally friendly nature [29–31].
It is well documented that TiO2 nanoparticles (NPs) in the anatase phase have a high
refractive index and band gap energy of 3.2 eV with a low absorption coefficient in the
visible range [32,33] and, depending on the envisaged application, can function as UV
absorbers or photocatalysts due to their versatile behaviour in the presence of light tuned
by the composition of the surrounding matrix [34]. Numerous studies have reported the
preparation of transparent nanocomposites assembled of polymer films and inorganic
nanoparticles (amount of 1–10 wt.%) displaying UV-shielding properties attributed to UV
light absorption or UV light scattering phenomena [35,36], observing that a key element in
the obtaining of the desired properties is represented by the degree of dispersion of the
inorganic nanoparticles inside the polymer matrix.

In view of all these facts, this study reports the synthesis of new polyurethane
elastomers with a variable soft-segment composition, along with the preparation of
TiO2/polyurethane nanocomposites, by the quaternization of tertiary amine groups from
polyurethane with silane-modified TiO2 nanoparticles. Thus, by the covalent immobiliza-
tion of the functionalized nanoparticles in the polymer matrix, a controlled dispersion
of TiO2 NPs could be achieved, while the presence of ionic sequences could enhance the
interfacial interactions inside the composites, with an effect on the physicochemical and me-
chanical properties of the resulting coatings. In addition, different quaternization degrees
were considered in order to investigate the influence of TiO2 loadings on the properties of
the formed polymer nanocomposites.
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2. Materials and Methods
2.1. Materials

Polycaprolactonediol (PCL) (average Mn~1250 g/mol), poly(ethylene glycol) (PEG)
(average Mn~1000 g/mol), isophorone diisocyanate (IPDI, 98%), N-methyldiethanolamine
(NMDA, 99%), 1,4-butanediol (1,4-BD, 99%), dibutyltin dilaurate (95%), titanium (IV)
oxide, anatase (TiO2, 99.8%), (3-iodopropyl) trimethoxysilane (IPTMS, ≥95.0%), tetrahy-
drofuran (THF) and toluene (≥99.9%) were purchased from Sigma-Aldrich Chemical Co.
(Taufkirchen, Germany) and used without further purification.

2.2. Synthesis of Elastomeric Polyurethanes

For the synthesis of PU-1 and PU-2 polyurethanes, the same general technique was
employed, for the synthetic details given below refer to the preparation of the PU-1
polyurethane. First, 10 g (8 mmol) of PCL was degassed under vacuum for 2 h at 90 ◦C into
a reaction kettle equipped with a mechanical stirrer, reflux condenser, dropping funnel and
N2 inlet. Then, 5.2 mL (24 mmol) of IPDI and a few drops of catalyst dibutyltin dilaurate
were added and the mixture was stirred at 60 ◦C for 3 h. Finally, 0.95 g (8 mmol) of NMDA
and 0.72 g (8 mmol) of 1,4-BD dissolved in 20 mL anhydrous toluene were added and the
reaction was continued for 10 h. The total disappearance of the isocyanate stretching band
at 2260 cm−1 from the Fourier transform infrared (FTIR) spectrum confirmed the end of the
reaction. For the preparation of the PU-2 polyurethane, a mixture of 8 g (6.4 mmol) of PCL
and 1.6 g (1.6 mmol) of PEG was dehydrated under vacuum, the other steps being kept
unchanged. The resulting polyurethanes (PU-1 and PU-2) were precipitated in methanol
and dried under vacuum for 48 h.

PU-1: 1H NMR [CDCl3, δ ppm]: 4.21 (–O–CH2–CH2–O–CO– and NH–COO–CH2–
CH2–N); 4.04 (–CO–O–CH2–CH2– from PCL and NH–COO–CH2–CH2–CH2–); 3.68 (–
O–CH2–CH2– and >CH–NH–CO); 2.89 (–O–CO–NH–CH2–); 2.29 (–O–CO–CH2–CH2–
from PCL and >N–CH3); 1.63 (–CO–O–CH2–CH2– and –O–CO–CH2–CH2– from PCL),
1.37, 1.04, 0.92, 0.87 (aliphatic protons from IPDI, PCL and BD). FTIR (KBr, cm−1): 3365
(NH); 2866–2956 (CH2); 1699–1738 (C=O); 1532 (amide II); 1237 and 1164 (C–O). Mn
(g/mol) = 42,600; PDI: 2.57; yield: 91.5%.

PU-2: 1HNMR [CDCl3, δ ppm]: 4.22 (–O–CH2–CH2–O–CO– and NH–COO–CH2–
CH2–N); 4.05 (–CO–O–CH2–CH2– from PCL and NH–COO–CH2–CH2–CH2–); 3.68 (–O–
CH2–CH2– and >CH–NH–CO); 3.63 (–O–CH2–CH2–O– from PEO); 2.89 (–O–CO–NH–
CH2–); 2.29 (–O–CO–CH2–CH2– from PCL and >N–CH3); 1.63 (–CO–O–CH2–CH2– and
–O–CO–CH2–CH2– from PCL), 1.37, 1.05, 0.92, 0.87 (aliphatic protons from IPDI, PCL and
BD). FTIR (KBr, cm−1): 3343 (NH); 2868–2949 (CH2); 1730 (C=O); 1533 (amide II); 1238 and
1161 (C–O). Mn (g/mol) = 50,100; PDI: 2.21; yield: 93.1%.

2.3. TiO2 Nanoparticle Functionalization

The functionalization of TiO2 nanoparticles took place in two steps, according to a
previously reported procedure [37]. Initially, 1.00 g of anhydrous TiO2 (12.5 mmol) and
0.1 mL of triethanolamine were mixed in ethanol (50 mL) to produce a homogeneous
suspension. After heating to 60 ◦C, ammonium hydroxide (60 mL) and 1.5 mL of deionized
water were injected into the flask, maintaining vigorous magnetic stirring. Further, the
functionalization agent (3-iodopropyl) trimethoxysilane (IPTMS) (0.78 mL, 4.0 mmol) was
added dropwise. The reaction mixture was maintained at 50 ◦C for 12 h and then was
cooled to room temperature. The final nanoparticles were isolated by centrifugation after
three cycles of purification (repeating washing/centrifugation procedures) to remove the
excess of IPTMS. White-colour, functionalized TiO2 nanoparticles were obtained.

2.4. Quaternization of PU-1/PU-2 with Functionalized TiO2 Nanoparticles in THF

Modified polyurethane compounds containing quaternized ammonium groups were
prepared by the use of two different molar ratios (1/1 and 1/0.5 molar ratios) of polyurethanes/
functionalized TiO2. For example, 1 g of the PU-1 polyurethane (0.45 mmol) was stirred
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in 30 mL of THF until solubilization. Modified TiO2 nanoparticles (0.17 g, 0.45 mmol)
were further added to the flask, and the reaction mixture was maintained at 40 ◦C for
72 h. Drop-casting flexible and homogeneous films were obtained after complete solvent
evaporation. The same experimental procedure was maintained for all polyurethanes and
compositions. For a better view, the molar ratios of the reagents introduced in the synthesis
of polyurethanes and composites are given Table 1.

Table 1. Initial feed ratio of materials in the preparation of polyurethanes and nanocomposites.

Sample PCL
(mol)

PEG
(mol)

IPDI
(mol)

NMDA
(mol)

1,4-BD
(mol)

TiO2-f

(mol) (wt.%)

PU-1 1 0 3 1 1 0 0

PU-1-0.5 1 0 3 1 1 0.5 8.5

PU-1-1.0 1 0 3 1 1 1 17

PU-2 0.8 0.2 3 1 1 0 0

PU-2-0.5 0.8 0.2 3 1 1 0.5 8.5

PU-2-1.0 0.8 0.2 3 1 1 1 17

2.5. Measurements

Fourier transform infrared (FTIR) spectra were registered on a Bruker Vertex 70 FTIR
instrument. Analyses were performed using KBr pellets in transmission mode in the range
of 400–4000 cm−1 at room temperature with a resolution of 2 cm−1. The 1H NMR spectra
were recorded on a BRUKER Avance DRX 400 spectrometer using CDCl3 as a solvent. The
molecular weight and polydispersity index (PDI) of PU-1 and PU-2 polyurethanes was
determined by gel permeation chromatography (GPC) in chloroform solution at 25 ◦C
and at a flow rate of 1 mL min−1 using a WGE SEC/GPC multidetection chromatograph
equipped with two Agilent PL gel 5 µm columns, MIXED D and MIXED C, capable of
separating molecular weights within 200 to 2,000,000 g mol−1. Wide-angle X-ray diffrac-
tion (XRD) patterns for unmodified TiO2 nanoparticles, organically modified TiO2 and
polyurethane/TiO2 hybrid composites were recorded via X-ray diffraction (Rigaku Miniflex
600 diffractometer) using CuKα radiation (λ = 0.154 nm) at ambient temperature in the
angular range of 3◦–90◦ (2θ) with a scanning step of 0.01◦ and a recording rate of 2◦/min.
The diffraction peaks were identified using the Crystallography Open Database (COD) data
and the SmartLab II v. 4 software package for powder X-ray diffraction analysis. Scanning
electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses were
performed on aQUANTA200 environmental scanning electron microscope coupled with
an energy-dispersive X-ray spectroscope (ESEM/EDX), operating at 20 kV in low-vacuum
mode and using a Low vacuum Secondary Electron (LFD) detector. The SEM and EDX
investigations were realized in a cryogenically broken fracture surface and in different
points of the sample to check their reproducibility.

The stability of the polyurethane films (PU-1, PU-2) and of their corresponding com-
posites (PU-1-0.5, PU-1-1.0, PU-2-0.5, PU-2-1.0) was tested as follows: a piece of each
sample (100 mg) was immersed in 10 mL solution with different pH values: pH = 4 (Merck
KGaA buffer solution citric acid/sodium hydroxide/hydrogen chloride), pH = 5.6 (distilled
water), pH = 7 (Merck KGaA buffer solution potassium dihydrogen phosphate/di-sodium
hydrogen phosphate) and pH = 9 (Merck KGaA buffer solution boric acid/potassium
chloride/sodium hydroxide). All solutions with the films inside were heated at 60 ◦C and
kept at this temperature for 3 h. Further, the solutions were cooled on an ice bath, and the
films were removed from the solutions, left to dry in air for 2 h and then dried in an oven
at 60 ◦C for 2 h. Finally, the films were weighed, and the procedure was repeated 7 times.

Static water contact angle measurements were obtained by using the sessile drop
technique with a contact angle instrument (KSV CAM 101 goniometer—KSV Instruments,
Helsinki, Finland), equipped with a special optical system and a charge-coupled device
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(CCD) camera. A drop of liquid (~1 µL) was placed on the films’ surfaces with a Hamilton
syringe, and three different regions were selected to obtain a statistical result. Double
distilled water and ethylene glycol were used as measuring liquids. The analyses were
performed at room temperature, and the maximum error in the contact angle measurement
did not exceed 2%. The thermal behaviour of polymeric materials was evaluated by
thermogravimetric analysis (TGA) on a STA 449 F1 Jupiter apparatus (Netzsch, Selb,
Germany). The measurements were performed in the temperature range of 25–700 ◦C
under a dry nitrogen atmosphere at a heating rate of 10 ◦C·min−1. Sample weights in the
range of 7–10 mg and Al2O3 crucibles were used.

Mechanical parameters of the polyurethane samples were investigated on a Shimadzu
AGS-J deformation apparatus at ambient temperature and at a rate of deformation of
20 mm/min with a load cell capable of measuring forces up to 1 kN and a sample film of
25 mm × 5 mm × 0.3 mm. For each data point, five samples were tested, and the average
value was taken. The dynamic mechanical properties of the samples were measured using
a PerkinElmer Diamond dynamic mechanical analyzer DMA in tension mode operated
at a frequency of 1 Hz, a heating rate of 2 ◦C min−1 and a temperature range of −100 ◦C
to 55 ◦C. The samples used in the study were rectangular with a length of 10.0 mm,
width of 5.0 mm and thickness of 0.2 mm. The UV–VIS absorption and transmittance
spectra of the polyurethane films were measured using a Perkin Elmer Lambda 2 UV–VIS
spectrophotometer (Perkin Elmer Inc., Wellesley, MA, USA) in the wavelength region of
200–700 nm. The UV light stability of polyurethanes (PU-1, PU-2) and composites (PU-1-0.5,
PU-1-1.0, PU-2-0.5, PU-2-1.0) was evaluated by the exposure of the films to UV radiation
with a light intensity of 15 mW/cm2 (Hg–Xe lamp, λ = 365 nm, Hamamatsu Lightningcure
Type LC8, Model L9588, Iwata City, Shizuoka Pref., Japan). The transmittance spectra of
the coatings were measured before and after different UV exposure time intervals.

3. Results and Discussion
3.1. Functionalization and Characterization of TiO2 NPs

Like other functionalization reactions, the aim of TiO2 surface modification was to
improve the specific properties of inorganic nanoparticles regarding their hydrophilic-
ity/hydrophobicity, dispersibility in different solvents, superior photocatalytic efficiency
or, in our case, an enhanced dispersion and covalent attachment of TiO2 nanoparticles in-
side the polyurethane matrix. The effectiveness of titania functionalization was confirmed
thorough FTIR spectroscopy by tracking the characteristic absorption bands of the new
compound (Figure 1a).
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Therefore, besides a broad Ti–O–Ti absorption band (400–700 cm−1), the OH groups’
absorption band (3430 cm−1) or molecular water (3430 and 1626 cm−1), the new TiO2
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functionalized nanoparticles presented the Si–O–Si asymmetric stretching vibration at 1120
and 1034 cm−1 along with the intensification of the methylene groups’ characteristic band
(2923 cm−1). The absorption band due to the vibration of Ti–O–Si new bonds was identified
as a small shoulder at 922 cm−1 [38].

The X–ray diffraction patterns of the commercial and functionalized TiO2 NPs are illus-
trated in Figure 1b. The analysis of the spectra indicated that the pristine TiO2 nanoparticles
are in the anatase structure (peaks identified according to the TiO2 Anatase COD card num-
ber 9015929), information confirmed by the presence of strong diffraction peaks at 25.37◦

and 48.1◦ specific to the anatase phase [39,40]. The crystallinity of the sample is reflected by
the intense XRD peaks, and the crystallite size calculated from the diffraction peaks using
the Debye–Scherer formula is about 45 nm. As expected, after modification with IPTMS,
TiO2-f nanoparticles showed a similar pattern as the starting TiO2, since no phase transfor-
mation or changes in the crystalline structure took place during the functionalization.

3.2. Synthesis and Characterization of Polyurethane/TiO2 Composites

To obtain new hybrid materials based on polyurethane matrices and functionalized
TiO2 nanoparticles, the quaternization of tertiary amino units from polyurethanes with
iodide-modified TiO2 NPs was performed (Figure 2), aiming at achieving a covalent
bonding between the organic and inorganic components, which subsequently could lead
to polymer composites with improved properties. In the preparation of the materials, the
functionalized nanoparticles were mixed in 1/1 and 1/0.5 molar ratios with polyurethane
solutions in THF, which allowed the obtaining of four composites, namely PU-1-0.5, PU-1-
1.0, PU-2-0.5 and PU-2-1.0 (initial molar compositions are given in Table 1).
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Figure 2. Representation of quaternization reaction between PU-1 and TiO2-f nanoparticles.

The structural, morphological, thermal and mechanical properties of the resulting
composites were investigated comparatively with the pristine polyurethanes. In the FTIR
spectra of PU-1, PU-1-0.5 and PU-1-1.0 samples, illustrated in Figure 3a, a board absorption
peak in the region of 3200–3500 cm−1 was attributed to the stretching vibration of N–H
units from the urethane groups, while the absorption band of C=O units is evident at
1730 cm−1. The absorption bands centred at 2950 cm−1 and 2866 cm−1 are associated with
the C–H symmetric and asymmetric stretching vibrations of the aliphatic –CH2– groups, the
peak at 1531 cm−1 is attributed to the amide II vibration, while the peaks at 1238 cm−1 and
1165 cm−1 are given by the stretching vibration of the C–O–C linkages. The contribution
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of inorganic sequences is slightly visible on the peak at 1040 cm−1, where the Si–O–Si
stretching vibration is noticeable, although the initial PU–1 polyurethane has a peak in
the same region [41], attributed also to the stretching of C–O–C bonds in polyurethanes.
Significant changes in the investigated FTIR spectra are evident in 755–400 cm−1, where
the contribution of TiO2 NPs is exhibited by the appearance of a broad absorption band
attributed to Ti–O–Ti vibrations.
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The XRD profiles of the PU-2 polyurethane and PU-2-0.5/PU-2-1.0 nanocomposites
are shown in Figure 3b. The XRD pattern of the PU-2 sample showed a broad peak in the
range of 15◦–25◦, confirming the amorphous nature of the polyurethane, although the sharp
peaks at 21.4◦ and 23.7◦ are given by the orthorhombic crystalline domains of PCL and can
be assigned to the (110) and (200) lattice planes [42]. For the PU-2-0.5 composite, the XRD
diffraction pattern has a similar profile as the pristine polyurethane in the 10◦–24◦ domain,
while above these values, the diffraction peaks characteristic to TiO2 nanoparticles are
visible. However, in the case of the PU-2-1.0 sample, the peaks corresponding to crystalline
PCL sequences are considerably diminished, the broad diffraction peak suggesting the
presence of a semi-crystalline or mostly amorphous polymer. It can be assumed that the
high amount of TiO2 NPs included in the PU-2-1.0 composite (about 17 wt.%) could hinder
the crystallization pattern of PCL chains, leading to a lower crystallinity of the polymer.
In addition, the peak at 25.38◦ specific to the anatase TiO2 (110) plane, is slightly shifted
to 25.68◦ in the PU-2-1.0 sample, indicating an enhanced interaction with the polymer
chains [43].

Scanning electron microscopy (SEM) images were taken to investigate the micro-
morphology of the prepared polyurethane-based films with a different molar ratio of TiO2
nanoparticles in the blends (Figure 4). All photographs were taken on the fractured films’
surfaces at room temperature. As expected, the neat PU-2 film (Figure 4a) was characterized
by a smooth, flat and compact network structure, without irregular formations due to the
incompatibility of the polyurethane components. Instead, the presence of TiO2 particles
was clearly observed in the SEM images for the PU-2-0.5 composite (Figure 4b). Moreover,
the particles seemed to be uniformly dispersed inside the polyurethane matrix, which
provides direct evidence regarding the micro-structure and the formation of PU-2-0.5
nanocomposites. Moreover, this homogeneity in the dispersion of the TiO2 nanoparticles
in the polyurethane matrix will certainly help to improve the mechanical properties of the
prepared blends.
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However, for PU-2 nanocomposites with a higher TiO2 content (1:1 molar ratio, see
PU-2-1.0), some small particle clusters appeared (Figure 4c), in addition to the homoge-
neously distributed primary nanoparticles. It seems like a high percentage of the inorganic
component does not particularly help to form a film with a uniform distribution of particles,
suggesting, moreover, that the interfacial interaction between the constituents is not so
strong in order to suppress the formation of aggregates. In addition, the presence of TiO2
nanoparticles in the micro- and nanostructures of PU-2-0.5 and PU-2-1.0 composite films
was confirmed by EDX measurements performed on randomly selected areas of the cross
sections of the films at the same time as SEM imaging (see Figure 4). As expected, the
results indicated that the elements of C, O, Si, I and Ti were present on the surface of
composite films (Figure 4e,f) but only C, N and O were found on the surface of pure PU-2
replicas (Figure 4d). Moreover, the atomic content of Si and Ti elements registered for
PU-2-1.0 is higher with respect to the PU-2-0.5 formulation, in accordance with the content
of TiO2 nanoparticles embedded in each composite.

The thermal/hydrolytic stability of polymers represents an important parameter,
especially for systems intended to be applied in medical, biomedical or food domains, and
numerous protocols of testing were proposed in the literature [44]. In our study, to assess
the films’ stability at different pH values and under repetitive heating–cooling cycles, only
some preliminary tests were performed by measuring the samples’ weights before and after
each heating–cooling cycle of the films immersed in solution at different pH values (4, 5.6, 7
and 9). The polyurethane films (PU-1, PU-2) and polyurethane/TiO2 composites (PU-1-0.5,
PU-1-1.0, PU-2-0.5, PU-2-1.0) displayed good hydrolytic stability, and the investigated
samples did not show weight loss after seven heating–cooling cycles in solutions with
different pH values.

The contact angle measurements have commonly been employed as a simple method to
evaluate the surface properties of polyurethane films, especially wettability/hydrophobicity
properties. Generally, the contact angle (θ) is recognized as the angle formed between the
baseline and the tangent to the liquid drop at the three-phase point [45]. By convention, all
surfaces having a contact angle greater than 90◦ are defined as being hydrophobic, while
surfaces with values smaller than 90◦ are considered hydrophilic ones. According to the
above information, the contact angle data shown in Figure 5 indicate the tendency of the
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surfaces to change their nature from a predominantly hydrophobic (neat PU-1 film, contact
angle 98.8◦) to a slightly hydrophilic one (89.4◦ for PU-1-0.5 and 86.7◦ for PU-1-1.0).
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This behaviour is the result of changes in the composition of the polyurethane com-
posites, more precisely the introduction of the inorganic filler (TiO2 nanoparticles) to the
polyurethane matrix. The neat PU-1 film exhibited an average contact angle of 98.9◦ (sug-
gesting a hydrophobic surface), and the value decreased to 89.4◦ (PU-1-0.5) and 86.7◦

(PU-1-1.0). As mentioned, this trend indicated an increase in hydrophilicity (better wet-
tability) of the film surface for the nanocomposites compared to the neat polyurethanes,
more probably due to arising of the polar sequences (hydroxyl from the TiO2 surface or
ionic units), which determines an increase in the surfaces’ hydrophilicity [46,47]. Moreover,
these results are correlated with the content of the filler: the higher the amount of inorganic
material added to the composite, the lower the value of the contact angle. Similar results
were observed when ethylene glycol was used to determine the contact angle, too.

TGA experiments were also performed in this study in order to determine the thermal
stability of the neat PU-2 material and PU-2/TiO2nanocomposites (with different molar ra-
tios of TiO2). Generally, the polyurethanes’ thermograms refer to a complex decomposition,
usually in two degradation stages: the process starts with the scission of the hard segment
and continues with the degradation of the soft segment in a second threshold. According
to the literature data [48,49], the first TGA peak is attributed to the overlapping of urethane
bond degradation and char-forming secondary reactions (e.g., dimerization, crosslinking,
etc.). At this level, the breaking of low-energy urethane bonding with the release of CO,
CO2, amines and aldehydes takes place. At the same time, the second peak is associated
with the decomposition of the stabilized urea/isocyanurate structures and is related to
the breaking of high-energy bonds, such as C–C, C–O, C–H, C=C and C=O. Given all
this information, Figure 6 presents the thermogravimetric curves of the studied PU-2 and
PU-2/TiO2nanocomposite materials. As observed, two main degradation/decomposition
stages were evidenced: a first one between 220 and 350 ◦C (point 1) and a second one
around 350–420 ◦C (points 2, 3 and 4). The TGA curve for the neat PU-2 presented a clear
stage for the degradation of the urethane linkage, with a Tmax = 332 ◦C, while the step
corresponding to the degradation of the soft segment was not so prominent and could be
spotted around 392 ◦C.
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The equivalent nanocomposite materials (PU-2-0.5 and PU-2-1.0) showed essentially
similar TGA profiles, but the degradation stages were more distinct compared to the neat
PU-2 case. The process began with the scission of the hard segment (at an inferior tempera-
ture than the neat polyurethane) and continued with the degradation of the softsegment
in a second distinct threshold. As observed, the first stage of decomposition began at a
lower temperature, but this is not necessarily synonymous with a low thermal stability
of the systems. Most probably, this is due to the removal of volatile components or other
low-molecular-weight materials that arise after the corresponding functionalization process
of the TiO2 nanoparticles. Moreover, PU-2-0.5 and PU-2-1.0 composites showed a second
decomposition peak shifted to a higher temperature range with 10–20 ◦C than in the case
of the starting PU, probably associated with a strong interfacial interaction between the
polyurethane matrix and TiO2 nanoparticles. Consequently, this feature indicates improved
thermal stability of the systems due to the presence of the inorganic component. After
500 ◦C, no mass loss was observed, meaning that the mass of the materials remained
constant, and probably only changes in the crystal structure of the inorganic component
were expected. Furthermore, at 700 ◦C, the starting PU-2 presented no mass residue, while
for nanocomposites, the percentage of residues increased from 5% to 12% with the augmen-
tation of the molar ratio between the components for PU-2-0.5 and PU-2-1.0, respectively.

The mechanical properties of polyurethanes and composite samples were measured by
tensile testing, and the achieved results are illustrated in Figure 7. The stress–strain curves
of PU-1 and PU-2 polyurethanes suggest an elastomeric behaviour since the maximum
tensile strength is 1.73 MPa for PU-1 and 1.74 MPa for PU-2, while the elongation at break
is 1335% for PU-1 and 1600% for PU-2, indicating the obtaining of highly flexible materials
(Figure 7a,b). However, the shape of the curves is slightly different, as the tensile curve
of the PU-1 polyurethane containing only PCL polyol displays a yield point, followed
by an ascending shape of the graph, while PU-2 does not exhibit a yield point, which
demonstrates better elastomeric properties that can be attributed to the PCL/PEG polyol
mixture. The inclusion of functionalized TiO2 NPs through quaternization on polyurethane
chains determines the formation of yield points in all composites, accompanied by a
decrease in elongation at break, suggesting the stiffening of polymer chains.
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However, despite the large amount of NPs introduced, polyurethane composites with
strains at a break above 780% were achieved. The Young modulus evaluated from the
low-strain region of the stress–strain curves varied between 5.0 MPa for PU-1 and 18.1 MPa
for PU-2-1.0 (Figure 7c). In both polymer series, an increase of Young modulus values
with increasing TiO2 nanoparticle content can be noticed, the filler particles behaving as
reinforcing points in the polyurethane structure.

Furthermore, the toughness, another important mechanical property that characterize
the ability of a material to absorb energy and plastically deform without fracturing and
defined as the area under the stress–strain curve before rupture, was evaluated, and the
results are graphically illustrated in Figure 7c. Toughness variation in the case of the PU-1
series is low (±10%), suggesting good dispersion and enhanced interconnectivity between
the polyurethane and TiO2 nanoparticles [50], preserving thus the ductility of the resulting
composites. However, in the PU-2 series, the composite toughness decreases by about 15%
for PU-2-0.5, while for the PU-2-1.0 sample, the toughness decreased to a greater extent
(about 35%), which may suggest the agglomeration of some TiO2 NPs that may act as
defects and reduce the ductility of the composite.

A preliminary study concerning the dynamic mechanical properties of the PU-2
polyurethane and PU-2-0.5/PU-2-1.0 composites was performed in order to establish the
influence of TiO2 nanoparticles on the storage modulus (E′) and tan delta (Tg) parame-
ters. The results of DMA tests, performed in the temperature range of −100÷55 ◦C, are
graphically illustrated in Figure 8. The storage modulus (E′) represents the contribution of
the elastic component of the films, and as can be observed from Figure 8a, in the glassy
region (−100÷−30 ◦C), the storage modulus values for the PU-2 sample are higher than for
the corresponding composites, a behaviour that may be assigned to the agglomeration of
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some inorganic nanoparticles [51]. However, in the rubbery region (25÷50 ◦C), the storage
modulus increased for the filled coatings (PU-2-0.5 and PU-2-1.0) as compared to the neat
polyurethane, implying that the presence of TiO2 nanoparticles caused an improvement
of the modulus for the nanocomposite coatings. It should be noticed that given the high
amount of TiO2 nanoparticles included in the polyurethane matrix, the differences in
storage modulus are not significant over the entire temperature range. At temperatures
above 50 ◦C, the storage modulus decreases to low values due to the irreversible polymeric
chain flow triggered by the elastomeric character of polyurethanes [52], suggesting that the
proposed nanocomposites may be successfully used at moderate temperatures.
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Tan δ (loss factor/damping ratio), defined as the ratio of the loss modulus to the
storage modulus, was also evaluated for the PU-2 series coatings (Figure 8b). It was
observed that the pure PU-2 film showed a damping peak at 13.8 ◦C assigned to the Tg
of the hard segment, while the peak position of tan δ shifted to a lower position for the
PU-2-0.5 sample (12.3 ◦C) and to a higher value (16 ◦C) for the PU-2-1.0 sample. In addition,
a reduction in the peak height was noticed for the nanocomposites as compared to neat
polyurethanes, suggesting efficient stress transferring and a stronger nanoparticle/polymer
interaction [53].

3.3. Optical and UV-Shielding Properties of Polyurethane/TiO2 Composites

The optical properties of pure PU-1, PU-2 films and TiO2/PU-1 andTiO2/PU-2
nanocomposite films were investigated through UV–VIS spectroscopy by measuring their
UV–VIS absorption and transmittance spectra. The pure polyurethane films PU-1 and PU-2
show a weak absorption band at around 280 nm (Figure 9), in the UV-B radiation range
from sunlight (280–320 nm). The incorporation of TiO2 nanoparticles in the polyurethane
matrix led to the appearance of a new absorption band at 373 nm, corresponding to the
UV-A radiation domain from sunlight (320–400 nm), indicating that polyurethane/TiO2
composite films have UV light absorption ability. In addition, it can be noticed that the
composites with a higher TiO2 content (PU-1-1.0 and PU-2-1.0) have absorption bands with
higher intensity; thus PU-1-1.0 and PU-2-1.0 are more efficient as UV absorbers.
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Moreover, analyzing the transmittance spectra (Figure 10), it was observed that the
pure polyurethane films (50 µm thickness) display good transmittance in the range of
250–700 nm: 95% for PU-1 and 98% for PU-2. The incorporation of TiO2 nanoparticles in
the PU-1 and PU-2 matrix confers UV-shielding properties to the materials, the composites
PU-1-0.5, PU-1-1.0, PU-2-0.5 and PU-2-1.0 being able to shield all UV-B radiation (until
320 nm), as can be seen in Figure 10a,b. In addition, the composite films also shield part
of the UV-A radiation, their transmittance measured at 350 nm being as follows: 39% for
PU-1-0.5, 33% for PU-1-1.0, 43% for PU-2-0.5 and 37% for PU-2-1.0.
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Even if the polyurethane/TiO2 composites lose part of their transparency to visible
light (transmittance at 550 nm: 48% for PU-1-0.5, 35% for PU-1-1.0, 41% for PU-2-0.5, 29%
for PU-2-1.0), they block between 57% and 67% of UV-A radiation and all UV-B radiation
from sunlight; thus our materials are recommended as UV-protective coatings in various
domains. Even if the particles are uniformly dispersed inside the polyurethane matrix, the
transparency to visible light of the composite films is reduced due to the relatively large
size of commercial TiO2 NPs. To preserve the transparency of the films in visible light,
as already reported in the literature for various TiO2 coatings [54,55], it is recommended
to use TiO2 nanoparticles with smaller dimensions, synthesized in the laboratory at the
desired size, a topic that will be developed in a subsequent study. In this report, we
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investigated whether the presence of TiO2 nanoparticles affects polyurethane properties
(thermal, mechanical) and whether they bring UV-shielding features to the final materials.

The literature data reported the preparation of numerous TiO2/polymer systems used
in various chemical engineering processes [33], where chemical, thermal or mechanical
stability is required. However, to verify whether the proposed films can be used as UV-
protective coatings for a long period of time, some preliminary tests concerning the stability
of the samples under UV radiation were performed. Each prepared film was exposed to
UV light with the intensity of 15 mW/cm2 (which is the intensity of UV radiation from
sunlight in the summer), and their transmittance spectra were registered after different UV
exposure time intervals. After a total exposure time to UV radiation of 10 h, no significant
changes were observed in the transmittance spectra, as presented in Figure 11 for the PU-2
film and composites.
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Figure 11. Transmittance values at 350 nm (a) and 550 nm (b) of PU-2, PU-2-0.5 and PU-2-1.0 films after different UV
exposure time intervals. The inset is the transmittance spectra of PU-2-1.0 after different UV exposure time intervals (2, 4, 6,
8 and 10 h).

The transmittance values of the films at 350 nm after 10 h of UV irradiation decreases
with about 1.8%; meanwhile, the transmittance in the visible domain (at 550 nm) decreases
with 1.5% after the first 2 h of irradiation, and then it is maintained at approximately the
same value. Hence our films are stable under UV radiation, confirming once again that
they can be used as UV-protective coatings for a long period of time.

4. Conclusions

Elastomeric polyurethane composites were prepared by the quaternization of tertiary
amino units from polyurethanes with iodide-modified TiO2 NPs. The functionalization
of the TiO2 surface with organic moieties ensures a homogeneous dispersion of TiO2
nanoparticles inside the polyurethane matrix, together with the covalent bonding between
the organic and inorganic components. The inclusion of functionalized TiO2 NPs in
the polyurethanes improved the thermal stability of the resulted systems. In terms of
mechanical properties, the filler particles behave as reinforcing points in the polyurethane
structure, and also, the composite materials preserve the high flexibility and ductility
of the pure polyurethanes. TiO2/PU-1 andTiO2/PU-2 nanocomposite films are efficient
UV absorbers, shielding between 57–67% of UV-A radiation and all UV-B radiation from
sunlight. The prepared elastomeric materials are recommended as UV-protective coatings
in various domains.
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