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Abstract: The water–salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-
oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane
and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and
poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts.
Their concentration varied from 0–0.154 M. On heating, a phase transition was observed in all
studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated
stars depends on the structure of the salt and polymer and on the salt content in the solution. The
phase separation temperature decreased with an increase in the hydrophobicity of the polymers,
which is caused by both a growth of the side radical size and an elongation of the monomer unit.
For NaCl solutions, the phase separation temperature monotonically decreased with growth of
salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the
phase separation temperature on the salt concentration was non-monotonic with minimum at salt
concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-
oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more
sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.

Keywords: star-shaped polymer; poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines; saline solu-
tion; thermoresponsive polymers

1. Introduction

The key property of “smart polymers”, which determines a wide range of their prac-
tical use, is a nonlinear response to an external signal. In the case of thermoresponsive
polymers, the phase transition in aqueous solutions is induced by temperature change.
Accordingly, the temperature variation is a simple way to control the behavior of their solu-
tions [1–6]. Thermoresponsive polymers are highly appealing for medical applications and
biotechnology if the phase separation temperature is close to body temperature [7–14]. Poly-
mers used in biomedical applications must be non-toxic, biocompatible, stable in biological
media, biodegradable, and/or completely excreted from the body. These requirements are
satisfied by poly-2-alkyl-2-oxazolines (PAlOx) and poly-2-alkyl-2-oxazines (PAlOz), many
of which exhibit a thermosensitivity with a lower critical solution temperature.

PAlOx and PAlOz, sometimes called pseudo-polypeptoids, are obtained by (living)
cationic ring-opening polymerization of corresponding monomers [15–21]. In recent years,
a large number of thermoresponsive PAlOx of various chemical structures have been ob-
tained, including statistical, block and gradient copolymers, and graft and star-shaped
polymers [22–25]. The processes of polymerization, in particular, the kinetics of polymer-
ization upon initiation by alkyl halides, tosylates, nosylates, and triflates have been studied
in detail [26,27]. Regularities of behavior in aqueous solutions with temperature variation
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were established for PAlOx, and features that distinguish them from other thermosensitive
polymers were revealed [28–34]. It has been found that the introduction of fragments ready
for effective binding of inorganic ions and organic compounds, for example, azamacro-
cycles, is an effective strategy for the construction of supramolecular structures, thereby
allowing to simulate the processes occurring in living nature [35–37].

The polymerization process of PAlOz is characterized by low polymerization rate
constants and a high chain transfer rate, which makes it difficult to obtain high molar mass
samples [19,21]. Until recently, this was one of the reasons for the small number of works
devoted to the study of this promising class of thermosensitive polymers. Nonetheless, at
the present time, the effect of the structure of the monomer unit and end groups on the
properties of linear PAlOz [14,19,21,38–40], including their thermosensitivity [14,41,42], has
been established. It was shown that the hydration of PAlOz is determined by the structure
of the side radical. An additional methylene group in the backbone makes PAlOz more
hydrophobic than PAlOx with the same side alkyl radical, which leads to a decrease in the
cloud point of aqueous solutions [42]. The most significant is that an increase in the binding
of water-insoluble drugs was found for PAlOz in comparison with PAlOx [14,41,43]. The
latter indicates good prospects for the use of PAlOz and their copolymers in medicine.

It is well known that star-shaped polymers have very good prospects for use in
medical applications [44,45], for example, for drug delivery [46], for selective adhesion
of cancer cells [47], in tissue engineering, and cell uptake [48,49]. This circumstance has
intensified research in the field of synthesis and determination of the properties of stimuli-
sensitive polymers with complex architecture [50,51], including star-shaped PAlOx. The
studies performed have revealed a number of interesting regularities in the behavior of
polymers with complex architecture in aqueous solutions. For example, for a number of
classes of star-shaped polymers, the influence of the core structure, the length and number
of arms on the self-organization and aggregation has been established [12,52–57]. Recently,
for the first time, star-shaped PAlOz were synthesized and studied [58–60].

The use of thermoresponsive PAlOx and PAlOz as materials for drug delivery is
due to their ability to form intra- and intermolecular hydrogen bonds, resulting in the
compaction and aggregation of individual polymer chains [61–65]. The physiological
media is a complex system containing a variety of ions that affect the balance of hydrogen
bonds. Accordingly, the behavior of thermoresponsive polymers in aqueous solutions and
physiological media can differ significantly. For example, even a small NaCl content in
the solution significantly changed the phase separation temperatures [66–68]. Moreover,
the presence of salt affects the thermosensitivity of the linear and star-shaped polymers in
different ways [60–69].

The goal of this work is to analyze the effect of the chemical structure and concentration
of low molecular weight salts on the behavior of the star-shaped PAlOx and PAlOz in water–
salt solutions. Four star-shaped polymers with a hexaase[26]orthoparacyclophane (CPh6)
core were investigated, namely, poly-2-ethyl-2-oxazine (CPh6-PEtOz), poly-2-isopropyl-2-
oxazine (CPh6-PiPrOz), poly-2-ethyl-2-oxazoline (CPh6-PEtOx), and poly-2-isopropyl-2-
oxazoline (CPh6-PiPrOx) (Figure 1). NaCl and N-methylpyridinium p-toluenesulfonate
(N-PTS, Figure 2) were used as salts. N-PTS can be considered as a model for cetylpyri-
dinium chloride known for its antimicrobial and antifungal effects. N-PTS influences the
self-organization in solution of thermoresponsive polymers [70], because both N-methyl
pyridinium cation and tosylate anion affect the hydrogen bond network of water [71–74].



Polymers 2021, 13, 1152 3 of 15
Polymers 2021, 13, x FOR PEER REVIEW 3 of 16 
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alkyl-2-oxazolines (CPh6-PAlOx) and poly-2-alkyl-2-oxazines (CPh6-PAlOz) with a 
hexaase[26]orthoparacyclophane core has been described in detail previously [59]. CPh6-
PAlOx and CPh6-PAlOz were synthesized by cationic ring-opening polymerization of the 
corresponding 2-alkyl-2-oxazoline or 2-alkyl-2-oxazine derivative. The molar masses 
(MM) and hydrodynamic characteristics of the samples were determined in chloroform 
dilute solutions using the sedimentation-diffusion analysis and viscosity. MM were 
moderate: 23,000 g⋅mol−1 for CPh6-PEtOz, 20,000 g⋅mol−1 for CPh6-PiPrOz, 15,000 g⋅mol−1 
for CPh6-PEtOx, and 14,000 g⋅mol−1 for CPh6-PiPrOx [59]. Accordingly, the molar masses 
of CPh6-PAlOz are slightly higher than MM of CPh6-PAlOx. 

The solvents and reagents (all Sigma Aldrich, St. Louis, MO, USA) were purified and 
dried according to the standard techniques. Trianglamine (1) [11] as well as 2-alkyl-2-
oxazolines and 2-alkyl-2-oxazines [41] were synthesized by the generally applied 
methods. 

2.2. Solution Investigation 
The behavior of CPh6-PAlOz and CPh6-PAlOx in water–salt solutions was studied 

at polymer concentration c = 0.0050 g⋅cm−3. For NaCl solutions, the salt concentrations csalt 

were selected as one NaCl formula unit per one macromolecule, per one arm of the 
polymer star and per one monomer unit. Besides, physiological saline (0.154 M) and pure 
aqueous solutions were investigated. In the case N-PTS solutions, the csalt values were 
chosen in a similar way: one N-PTS molecule per one macromolecule, per one arm of the 
polymer star, and per one monomer unit. To expand the range of N-PTS content, solutions 
at csalt ≈ 0.10 and 0.15 M were prepared and studied. Thus, for both water–salt solvents, 
the salt concentration varied from 0–1.54 M. 
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2. Materials and Methods
2.1. Polymer Star Synthesis

The synthesis and characterization of star-shaped six-arm thermoresponsive poly-2-
alkyl-2-oxazolines (CPh6-PAlOx) and poly-2-alkyl-2-oxazines (CPh6-PAlOz) with a
hexaase[26]orthoparacyclophane core has been described in detail previously [59]. CPh6-
PAlOx and CPh6-PAlOz were synthesized by cationic ring-opening polymerization of
the corresponding 2-alkyl-2-oxazoline or 2-alkyl-2-oxazine derivative. The molar masses
(MM) and hydrodynamic characteristics of the samples were determined in chloroform
dilute solutions using the sedimentation-diffusion analysis and viscosity. MM were moder-
ate: 23,000 g·mol−1 for CPh6-PEtOz, 20,000 g·mol−1 for CPh6-PiPrOz, 15,000 g·mol−1 for
CPh6-PEtOx, and 14,000 g·mol−1 for CPh6-PiPrOx [59]. Accordingly, the molar masses of
CPh6-PAlOz are slightly higher than MM of CPh6-PAlOx.

The solvents and reagents (all Sigma Aldrich, St. Louis, MO, USA) were purified
and dried according to the standard techniques. Trianglamine (1) [11] as well as 2-alkyl-2-
oxazolines and 2-alkyl-2-oxazines [41] were synthesized by the generally applied methods.

2.2. Solution Investigation

The behavior of CPh6-PAlOz and CPh6-PAlOx in water–salt solutions was studied
at polymer concentration c = 0.0050 g·cm−3. For NaCl solutions, the salt concentrations
csalt were selected as one NaCl formula unit per one macromolecule, per one arm of the
polymer star and per one monomer unit. Besides, physiological saline (0.154 M) and pure
aqueous solutions were investigated. In the case N-PTS solutions, the csalt values were
chosen in a similar way: one N-PTS molecule per one macromolecule, per one arm of the
polymer star, and per one monomer unit. To expand the range of N-PTS content, solutions
at csalt ≈ 0.10 and 0.15 M were prepared and studied. Thus, for both water–salt solvents,
the salt concentration varied from 0–1.54 M.

The solutions and solvent were filtered into cells previously dedusted by benzene.
Chromafil Xtra filters (Macherey-Nagel, Dueren, Germany) with a PTFE membrane with
the pore size of 0.45 µm were used.

The self-organization in water–salt solutions of CPh6-PAlOz and CPh6-PAlOx was
studied by light scattering and turbidimetry on a PhotoCor Complex setup (Photocor In-
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struments Inc., Moscow, Russia) with a sensor for measuring optical transmission. The light
source was the Photocor-DL diode laser with wavelength λ = 659.1 nm and controllable
power up to 30 mW. The correlation function of the scattered light intensity was obtained
using the Photocor-PC2 correlator with 288 channels and processed using the DynalS soft-
ware. The solution temperature T was changed discretely within the interval from 9–80 ◦C,
with the steps ranging from 0.5 (near phase separation) to 6 ◦C (low temperatures). The
temperature was regulated with the precision of 0.1 ◦C. The heating rate was 1.5 ◦C·min−1.

The measurement procedure has been described in detail previously [55]. After the
given temperature was achieved, all solution characteristics (light scattering intensity I,
optical transmittance I*, and hydrodynamic radii Rh of the scattering particles) began to
change with time t. If intensity I changed at a high rate, the dependence of I (at the scattering
angle 90◦) and I* on time was measured only. The analysis of these dependencies makes it
possible to determine the time of establishment of the “equilibrium” state of the system,
in which I, I* and Rh cease to change in time at given temperature. The hydrodynamic
radii Rh of dissolved particles were determined when the intensity changed very weakly
or independent of t. It should be noted that the values of Rh can be obtained correctly if the
light scattering intensity differs no more than 1% from its average value. Figure 3 as an
example demonstrates the dependences of relative intensity I/Imax of scattered light on the
hydrodynamic radius Rh of scattering species for CPh6-PEtOz water–salt solutions (Imax is
the maximum value of light scattering intensity I for a given solution). It is necessary to
emphasize that the experiment time was equal to 1800 s at least at each temperature even
if the measured characteristics did not depend on time. In “equilibrium” conditions, the
angle dependences of I and Rh were also analyzed within intervals from 45–135◦ in order
to justify the diffusion process (Figure 4).
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3. Results and Discussion
3.1. Behavior of Star-Shaped Six-Arm Pseudo-Polypeptoids in Water-Salt Solutions at
Low Temperatures

The behavior of water–salt solutions of the studied polymer stars depends on the
chemical structure of both the arms and the salts. In CPh6-PAlOx solutions, the addition
of NaCl and N-PTS does not change the set of scattering objects. Figure 5 shows the
dependences of the hydrodynamic radii Rh of the particles present in the solutions on the
salt concentration csalt for CPh6-PAlOx. For all values of csalt, two types of particles with
radii Rm (small particles) and Rs (large particles) were found in CPh6-PAlOx solutions.
For both salts, Rm did not depend on the salt content. In the case of CPh6-PEtOx, the
average values <Rm> = (7.4 ± 0.4) nm for NaCl solutions and (7.0 ± 0.4) nm for N-PTS
solutions are approximately 2.5× larger than the hydrodynamic radius Rh–D = 3.0 nm of
CPh6-PEtOx molecules [59]. For the more hydrophobic CPh6-PiPrOx, the hydrodynamic
radius <Rm> is about 18 nm in both solvents, while the macromolecule radius Rh–D was
2.6 nm [59]. Consequently, just as in pure water in water-salt solutions of CPh6-PAlOx,
the species with radius Rm are small aggregates, the reason for the formation of which is
the interaction of hydrophobic CPh6 cores. These so-called micelle-like structures [75–78]
were often observed in solutions of star-shaped PAlOx [79,80]. Taking into account that
the form of star-shaped macromolecules with short arms and micelle-like structures [81] is
close to spherical, the aggregation degree magg can be estimated by comparing the volumes
of macromolecules and aggregates using the formula:

magg ≈ (Rm/Rh-D)3 (1)
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Figure 5. Dependences of hydrodynamic radii Rm and Rs of scattering objects on salt concentration
csalt for solutions of CPh6-PiPrOx at 11 ◦C and CPh6-PEtOx at 21 ◦C. In the Figures 5, 6, 11 and 12 for
all polymers and for both salts, the first point on the dependences refers to an aqueous solution, and
the second, third and fourth points correspond to the following salt contents: one salt molecule per
one macromolecule, per one arm of the polymer star, and per one monomer unit, respectively.
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Using Equation (1), it is also assumed that the densities of macromolecules and micelle-
like structures are the same. For CPh6-PEtOx, the aggregation degree is low (magg ≈ 15),
whereas for the more hydrophobic CPh6-PiPrOx, the magg value approaches 300.

As for large scattering objects with a hydrodynamic radius Rs, these are large loose
aggregates. The addition of NaCl and N-PTS to the solution has a different effect on the
size of these aggregates. The value Rs is independent of the concentration of N-PTS and
increases with growth of NaCl content in solution (Figure 5).

In the case of CPh6-PAlOz, the addition of salts leads to a change in the set of scattering
objects (Figure 6). At low temperatures, two types of species were also observed in aqueous
solutions of these star-shaped polymers. However, unlike CPh6-PAlOx, the smaller parti-
cles were macromolecules. Indeed, the hydrodynamic radius Rf of these objects coincided
within the experimental error with the radius Rh–D of macromolecules [59]. In NaCl solu-
tions of CPh6-PiPrOz, macromolecules and large aggregates were present in the studied
range of the salt concentration csalt. The Rf value did not depend on the NaCl content, while
the Rs radius increased with the growth of NaCl concentration. A completely different be-
havior was observed for CPh6-PiPrOz solutions in the presence of N-PTS. Macromolecules
were detected only at low N-PTS content. At csalt = 0.039 M, particles with a hydrodynamic
radius Rm appeared in solutions, and at csalt > 0.01 M, species with radius Rf were not
observed by dynamic light scattering (Figure 6). The Rm values do not depend on the salt
concentration. The average value <Rm> = (6.1 ± 0.4) nm, and therefore, taking into account
that Rh–D = 3.0 nm [59], the aggregation degree is magg ≈ 8. This is half the magg value for
N-PTS solutions of CPh6-PEtOx. At a low N-PTS content, the hydrodynamic size of large
aggregates is close to 70 nm, and at csalt > 0.05 M, the Rs value increased, reaching 110 nm.
Thus, at csalt > 0.07 M in N-PTS solutions of CPh6-PiPrOz, micelle-like structures and large
aggregates existed, which coincides with the set of scattering objects in water-salt solutions
of CPh6-PAlOx.

In both water–salt solutions, the behavior of CPh6-PEtOz was similar to that observed
for N-PTS solutions of CPh6-PiPrOz, namely, at a certain concentration csalt, micelle-like
aggregates were formed in the solutions. Their hydrodynamic radius Rm did not change
with csalt. The average values <Rm> were (6.6 ± 0.4) nm and (6.9 ± 0.4) nm for solutions
with NaCl and N-PTS, respectively. Small radii of micelle-like aggregates indicate that
they contain a small number of macromolecules, and the estimation of the aggregation
degree according to Equation (1) leads to a value of magg ≈ 7. Thus, the size of micelle-like
aggregates formed in water–salt solutions of CPh6-PAlOz is smaller than the corresponding
characteristics for CPh6-PAlOx. This can be explained by the fact that the arms of the CPh6-
PAlOz molecules are longer [59] and better screen the nucleus. As regards the size of
large aggregates, for CPh6-PEtOz, the Rs value does not depend on the N-PTS content and
increases with the NaCl concentration (Figure 6).

Concluding the discussion of the behavior of water–salt solutions of CPh6-PAlOz
at low temperatures, the following fact should be noted. The appearance of micelle-like
aggregates in all cases occurs at a concentration csalt, which approximately corresponds to
one salt molecule per one arm of a polymer star.

3.2. Temperature Dependences of Characteristics of Star-Shaped Pseudo-Dendrimers
Water-Salt Solutions

All the results discussed below were obtained for a state of the investigated solutions
when their characteristics (light scattering intensity I, optical transmission I*, hydrodynamic
radii of scattering species Rh, etc.) do not change with time. For the systems under study,
the establishment time teq of such “equilibrium” state after a discrete change in temperature
is rather long. This is illustrated in Figure 7, which shows typical dependences of I and
I* on time t. The moment when the solution temperature reached a given value was
taken as t = 0. For each solution, the teq value depended on temperature. As well as for
other thermoresponsive polymers [82], at each csalt value, the establishment time teq had
a maximum value teq

(max) near the onset of phase separation. For the studied polymer
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stars, no systematic change in teq
(max) was found with a change in the salt content. Average

values <teq
(max)> of maximum value of establishment time for each polymer are given in

Table 1. They are noticeably less than <teq
(max)> for star-shaped eight- and four-arm PAlOx

with a calix[n]arene core [82]. This is probably the effect of the structure of the branching
center on the rate of self-organization of star-shaped polymers. The data in Table 1 show
that the maximum establishment time for stars with side isopropyl groups is greater than
<teq

(max)> for polymers with ethyl groups. Thus, an increase in the volume of the side
radical slows down the aggregation processes in water–salt solutions of the star-shaped
CPh6-PAlOz and CPh6-PAlOx. Note that earlier a decrease in the <teq

(max)> value with the
passage from PiPrOx to PEtOx was found for PAlOx stars with a calix[n]arene core [81].
On the other hand, the influence of the salt structure on the times of establishing the
equilibrium state has not been revealed. Indeed, for all studied polymers, the values of
<teq

(max)> in solutions with NaCl and N-PTS coincide within the experimental error.

Polymers 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 7. Dependences of relative light scattering intensity I/I0 (1, 3, 5, and 7; closed symbols) and 
optical transmission I*/I*0 (2, 4, 6, and 8; open symbols) on time t for water–salt solutions of 
investigate polymer stars. Left panel: CPh6-PEtOz solutions at NaCl concentration csalt = 0.00674 M 
and T = 62 °C (1 and 2) and at N-PTS concentration csalt = 0.00892 M and T = 31 °C (3 and 4). Right 
panel: CPh6-PiPrOx solutions at NaCl concentration csalt = 0.00641 M and T = 38 °C (5 and 6) and at 
N-PTS concentration csalt = 0.00803 M and T = 27 °C (7 and 8). Vertical lines mark the teq value. I0 
and I*0 are values of light scattering intensity and optical transmission at t = 0, respectively. In this 
Figure 7 and in Figures 8 and 9, the salt concentrations correspond to one salt molecule per one 
arm of the polymer star. 

Table 1. Values of <teq(max)> for solutions of the studied polymer stars. 

Polymer teq(max), s 
NaCl N-PTS 

CPh6-PEtOz 4500 3800 
CPh6-PiPrOz 8800 8000 
CPh6-PEtOx 3600 4200 
CPh6-PiPrOx 7500 8500 

On heating, a structural-phase transition was observed in solutions of star-shaped 
CPh6-PAlOz and CPh6-PAlOx. Phase separation temperatures were measured by 
turbidimetry and light scattering methods (Figure 8). The temperature of its onset T1 was 
determined as the beginning of the sharp decrease in optical transmittance I* and a rapid 
increase in the light scattering intensity I. At the temperature T2, which reflects the 
finishing of phase separation, the optical transmission becomes zero. At this temperature, 
for most of the studied solutions, the intensity I reaches maximum value. Note, that for 
the CPh6-PEtOx and CPh6-PEtOz solutions at low salt concentration (csalt < 0.005 M), the 
temperature T2 could not be determined because it was too high (>85 °C). 

Figure 7. Dependences of relative light scattering intensity I/I0 (1, 3, 5, and 7; closed symbols)
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Figure 8. Dependences of relative light scattering intensity I/I21 (1, 3, 5, and 7; closed symbols) and
optical transmission I*/I*21 (2, 4, 6, and 8; open symbols) on temperature T for water–salt solutions of
investigated polymer stars. Left panel: CPh6-PEtOz solutions at NaCl concentration csalt = 0.00674 M
(1 and 2) and at N-PTS concentration csalt = 0.00892 M (3 and 4). Right panel: CPh6-PEtOx solutions at
NaCl concentration csalt = 0.00730 M (5 and 6) and at N-PTS concentration csalt = 0.00824 M (7 and 8).
The vertical lines indicate the temperatures of the onset T1 and the end of the T2 phase transition for
a given solution. I21 and I*21 are values of light scattering intensity and optical transmission at 21 ◦C,
respectively.
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Figure 9. Dependences of hydrodynamic radii Rm (closed symbols) and Rs (closed symbols) on
temperature T for CPh6-PEtOz solutions at NaCl concentration csalt = 0.00674 M and at N-PTS
concentration csalt = 0.00892 M and for CPh6-PEtOx solutions at NaCl concentration csalt = 0.00730 M
and at N-PTS concentration csalt = 0.00824 M.

Table 1. Values of <teq
(max)> for solutions of the studied polymer stars.

Polymer teq
(max), s

NaCl N-PTS

CPh6-PEtOz 4500 3800
CPh6-PiPrOz 8800 8000
CPh6-PEtOx 3600 4200
CPh6-PiPrOx 7500 8500

On heating, a structural-phase transition was observed in solutions of star-shaped
CPh6-PAlOz and CPh6-PAlOx. Phase separation temperatures were measured by tur-
bidimetry and light scattering methods (Figure 8). The temperature of its onset T1 was
determined as the beginning of the sharp decrease in optical transmittance I* and a rapid
increase in the light scattering intensity I. At the temperature T2, which reflects the fin-
ishing of phase separation, the optical transmission becomes zero. At this temperature,
for most of the studied solutions, the intensity I reaches maximum value. Note, that for
the CPh6-PEtOx and CPh6-PEtOz solutions at low salt concentration (csalt < 0.005 M), the
temperature T2 could not be determined because it was too high (>85 ◦C).

As seen in Figure 8, with heating, the light scattering intensity began to change at
relatively low temperatures. For example, for CPh6-PEtOx in NaCl solutions, a reliably
measurable increase in I was observed at 45 ◦C. At this temperature, the I value exceeds the
value of light scattering intensity I at 21 ◦C (I21) by 10%, i.e., I/I21 = 1.1. A further increase
in T leads to a slow increase in the I value up to a temperature of onset of phase separation
T1 (for discussed solution, 70 ◦C according to turbidimetry data), at which I/I21 = 3.3.
Above T1, the rate of change in the light scattering intensity on heating increases by an
order of magnitude. The dependence of I on T is caused by the increase in the size Rs of
large aggregates on heating, while the values of Rf and Rm do not change with temperature.
(Figure 9). The change in Rs is not high, but it is detected rather reliably. Therefore, at
T < T1, the dominant process in the solutions of the studied star-shaped polymers was
aggregation as a result of an increase in the dehydration degree of arms with temperature
and the formation of intermolecular hydrogen bonds.

At T > T1, a sharp increase in the size of large aggregates was observed, and at
the temperature of the phase separation finishing, the Rs values reached hundreds of
nanometers and even microns. Above T2, the radii of large aggregates slightly decreased,
which reflects the macromolecule compaction. Note that, in the studied temperature
range, the sizes of micelle-like structures did not depend on temperature, and in the phase
transition (near T1) these particles ceased to be detected by the dynamic light scattering.
Therefore, they joined with large aggregates or formed new supramolecular structures.
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3.3. Influence of Salt Content on Phase Separation Temperatures

Figure 10 shows the dependences of the phase separation temperature T1 on the salt
concentration csalt for water–salt solutions of CPh6-PAlOz and CPh6-PAlOx. It is clearly
seen that the NaCl and N-PTS affect the behavior of the investigated star-shaped pseudo-
polypeptoids in different ways. For NaCl solutions, an increase in csalt leads to a monotonic
decrease in T1, the rate of which decreases in the region of high values of csalt. Similar
dependences were observed earlier for PAlOx of different architectures [69,83–87], as well
as linear and star-shaped PEtOz [60]. In the case of N-PTS solutions, for all polymers, the
phase separation temperatures decline very quickly in the region of low salt content. At a
concentration csalt corresponding to approximately one N-PTS molecule per one arm of
polymer star, the decrease in T1 slows down, the phase separation temperature reaches a
minimum value T1

(min), and then the T1 value begins to rise with increasing N-PTS content.
Thus, for the studied polymer stars, at a low content in solution, N-PTS manifests itself
as a kosmotropic agent, and at high csalt, N-PTS exerts chaotropic activity. What agent,
chaotropic or kosmotropic, is a particular salt is a complex problem and its analysis, in
particular the study of the interaction of thermoresponsive polymers with salt, has been
devoted to a large number of works [66,67,71,72,88–90]. Analyzing the effect of salt on the
behavior of polymer solution, it is necessary to take into account not only the chemical
structure of the polymer and salt, but also their concentration in solution, ionic strength,
temperature, etc.
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Figure 10. Dependencies of the phase separation temperature T1 on salt concentration csalt for
star-shaped CPh6-PAlOz and CPh6-PAlOx in NaCl and N-PTS solutions.

The effect of NaCl and N-PTS on the behavior of CPh6-PAlOz and CPh6-PAlOx
solutions depends on the arm structure. It is convenient to analyze the effect of the
chemical structure of arms on the characteristics of water–salt solutions of the studied stars,
comparing not only the dependences of the phase separation temperatures on the salt
content (Figure 10), but also the dependences ∆T1 = T1

(0) − T1
(c) on csalt (Figure 11), where

T1
(0) is the temperature of onset of phase separation at csalt = 0 and T1

(c) is this temperature
at a given csalt. The ∆T1 value determines the change in the phase separation temperature
upon salt addition. As can be seen in Figure 10, for both salts in the studied range of
csalt, the phase separation temperatures decrease in the series CPh6-PEtOx–CPh6-PEtOz–
CPh6-PiPrOx–CPh6-PiPrOz. Therefore, in water–salt solutions, a regularity, which is valid
for solutions of CPh6-PAlOz and CPh6-PAlOx in water, is preserved. The ∆T1 values in
NaCl solutions change in the same way (Figure 11). In solutions containing N-PTS, this
sequence occurs only at low csalt concentrations (Figure 11). At csalt > 0.02 M, the ∆T1 value
for CPh6-PEtOz becomes lower than the corresponding characteristic for CPh6-PiPrOx.
This is due to the fact that after reaching the minimum value T1

(min), the phase separation
temperature for stars containing side ethyl and isopropyl groups in the arms increases with
different rates. For CPh6-PEtOz and CPh6-PEtOx, the temperature T1 at high csalt exceeded
the value T1

(min) by 29 and 18 ◦C, respectively. For CPh6-PiPrOx and CPh6-PiPrOz, the
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increase in T1 in the region of high N-PTS content was smoother, and the change in T1 did
not exceed 4 ◦C (Figure 11).
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As is known, with the same structure of side groups, PAlOz are more hydrophobic
than PAlOx. Accordingly, at the given concentration and molar mass of the polymer, the
phase separation temperatures for aqueous solutions of PAlOz are lower than for the
corresponding PAlOx [14,43,91]. This regularity is observed for water–salt solutions of
the studied star-shaped polymers, namely, at all salt concentrations csalt; in N-PTS and
NaCl solutions, the temperature T1 decreased with passage from CPh6-PAlOx to CPh6-
PAlOz. Note that the molar masses of the CPh6-PAlOz samples are higher than the MM
of CPh6-PAlOx. An increase in the MM usually leads to a growth in the phase separation
temperatures [85,92–94]. Consequently, some contribution to the observed difference in
the T1 values for water–salt solutions star-shaped of CPh6-PAlOz and CPh6-PAlOx can be
made by changing MM.

As seen in Figure 11, for the star-shaped CPh6-PEtOz, the maximum change in the
phase separation temperature ∆T1 is approximately the same in both water–salt solvents:
The maximum ∆T1 value is around 45 ◦C. For CPh6-PiPrOz, the maximum ∆T1 values are
noticeably lower (∆T1 ~ 10 ◦C), but they also coincide in different solvents. In the case of
CPh6-PAlOx, a similar behavior was detected for CPh6-PiPrOx, while for CPh6-PEtOx, the
maximum ∆T1 values in NaCl and N-PTS solutions differed by 10 ◦C.

Comparison of the obtained results with the literature data for other star-shaped
pseudo-polypeptoids shows that their behavior in water–salt solutions depends on the core
structure. For example, for water–salt solutions of eight-arm star-shaped poly-2-isopropyl-
2-oxazoline with calix [8] arene core (at polymer concentration c = 0.0050 g·cm−3), the
dependence of the phase separation temperature on the N-PTS content was monotonic [70],
and the decrease in T1 in the csalt range from 0–0.06 M was about 4 ◦C. Note that for the
CPh6-PiPrOx studied in this work, the ∆T1 value exceeded 20 ◦C.

Figure 12 compares the dependences of ∆T1 on csalt for the six-arm CPh6-PEtOz
and CPh6-PiPrOx studied in this work, four-arm PEtOz with a calix [4] arene core (C4A-
PEtOz) [60], and eight-arm PiPrOx with calix [8] arene core (C8A-PiPrOx) [69]. For six- and
four-arm PEtOz, the considered dependences differ insignificantly, and only in the region
of high NaCl content, the ∆T1 value for CPh6-PEtOz is noticeably higher than ∆T1 for
C4A-PEtOz. For star-shaped PiPrOx at all concentrations, the ∆T1 value for the polymer
with CPh6 core is higher than for the star with C8A. These facts suggest that star-shaped
pseudo-polypeptoids with a hexaaza[26]orthoparacyclophane core are more sensitive to
the presence of NaCl than similar stars with a calix[n]arene core. However, it should be
remembered that the compared polymers differed not only in the structure of the branching
center, but also in the number and length of arms. The values of the latter characteristics de-
termine the intramolecular density of the macromolecule, and, accordingly, the accessibility
of the core for solvent molecules and molecules of low molecular weight salts.
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Figure 12. Dependencies ∆T1 on NaCl concentration csalt for CPh6-PEtOz, CPh6-PiPrOx, C4A-PEtOz,
and C8A-PiPrOx at c = 0.0050 g·cm−2.

4. Conclusions

The effect of NaCl and N-PTS on the self-organization in aqueous solutions of six-
arm star-shaped CPh6-PAlOz and CPh6-PAlOx and on phase separation temperatures
were investigated. It was shown that in the case of CPh6-PAlOx at low temperatures, the
addition of salts does not lead to significant changes in the solution characteristics. A
different situation took place for CPh6-PAlOz, in solutions of which, with a salt content
corresponding to approximately one salt molecule per arm of star, the set of scattering
objects changed. At this concentration, the micelle-like structures appeared in solutions,
and isolated molecules ceased to be detected by dynamic light scattering. The observed
effect depended on the arm structure. In CPh6-PEtOz solutions, micelle-like aggregates
appeared with the addition of both salts, while in CPh6-PiPrOz solutions they formed
only with N-PTS addition. In NaCl solutions of CPh6-PiPrOz, macromolecules and large
aggregates were present in solutions at all studied salt concentrations. The effect of the salt
structure was traced in the fact that in most N-PTS solutions the sizes of the aggregates
were constant, while in NaCl solutions they increased with growth of salt concentration.

On heating, a phase transition with the formation of supramolecular micron-sized
structures was observed in all the studied water–salt solutions of the star-shaped CPh6-
PAlOz and CPh6-PAlOx. As well as in aqueous solutions, in both used solvents, at the
same salt concentration, the phase separation temperature decreased in the series CPh6-
PEtOx–CPh6-PEtOz–CPh6-PiPrOx–CPh6-PiPrOz. This is caused by an increase in the
hydrophobicity of the polymers both with growth of the size of the side radical in the arms
and with an elongation of the monomer unit by one –CH2– group.

The effect of the structure of salt and polymer on the phase separation temperature
T1 was found. For all the stars studied, the temperature T1 monotonically decreased with
increase in NaCl content in solution from csalt = 0 to 0.154 M. This reduction for CPh6-PEtOz
and CPh6-PEtOx polymers reached 49 and 37 ◦C, respectively. For more hydrophobic stars
with isopropyl side groups, the discussed change was much smaller, 23 ◦C for CPh6-PiPrOx
and 11 ◦C for CPh6-PiPrOz. In N-PTS solutions for all polymers, the dependence of the
phase separation temperature on the salt concentration was non-monotonic. In the region
of low salt content, T1 decreased sharply, reaching a minimum value at concentration csalt
corresponding to approximately one N-PTS molecule per one arm of a polymer star. Above
this concentration, an increase in the phase separation temperature was observed. As well
as in NaCl solutions, in solutions with the addition of N-PTS, the maximum change in T1
was greater for polymers with ethyl side radicals. Comparison of the obtained results with
the literature data for star-shaped pseudo-polypeptoids with a calix[n]arene branching
center showed that PAlOz and PAlOx stars with a hexaaza[26]orthoparacyclophane core
are more sensitive to the presence of salt in solution.
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