
polymers

Article

Biofilm Formation on the Surface of (Poly)Ether-Ether-Ketone
and In Vitro Antimicrobial Efficacy of Photodynamic Therapy
on Peri-Implant Mucositis

Tzu-Yu Peng 1 , Dan-Jae Lin 1 , Yuichi Mine 2 , Chi-Yang Tasi 3, Po-Jung Li 1, Yin-Hwa Shih 4,
Kuo-Chou Chiu 5,*, Tong-Hong Wang 6 , Shih-Min Hsia 7 and Tzong-Ming Shieh 1,*

����������
�������

Citation: Peng, T.-Y.; Lin, D.-J.; Mine,

Y.; Tasi, C.-Y.; Li, P.-J.; Shih, Y.-H.;

Chiu, K.-C.; Wang, T.-H.; Hsia, S.-M.;

Shieh, T.-M. Biofilm Formation on the

Surface of (Poly)Ether-Ether-Ketone

and In Vitro Antimicrobial Efficacy of

Photodynamic Therapy on

Peri-Implant Mucositis. Polymers

2021, 13, 940. https://doi.org/

10.3390/polym13060940

Academic Editor:

Daniel Torres-Lagares

Received: 25 February 2021

Accepted: 16 March 2021

Published: 18 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
typ@mail.cmu.edu.tw (T.-Y.P.); djlin@mail.cmu.edu.tw (D.-J.L.); ll820731@gmail.com (P.-J.L.)

2 Department of Medical System Engineering, Graduate School of Biomedical and Health Sciences,
Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan; mine@hiroshima-u.ac.jp

3 Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan; cytsai@tmu.edu.tw
4 Department of Healthcare Administration, College of Medical and Health Science, Asia University,

Taichung 41354, Taiwan; evashih@asia.edu.tw
5 Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical

Center, Taipei 11490, Taiwan
6 Tissue Bank, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;

cellww@adm.cgmh.org.tw
7 School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;

bryanhsia@tmu.edu.tw
* Correspondence: scalinghoner@yahoo.com.tw (K.-C.C.); tmshieh@mail.cmu.edu.tw (T.-M.S.);

Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)

Abstract: Poly-ether-ether-ketone (PEEK) is an aesthetically pleasing natural material with good
biocompatibility and shock absorption characteristics. The application of PEEK as a dental implant or
abutment is expected to reduce the risk of failure and enhance aesthetics. Given that approximately
one in 15 patients have allergic reactions to antibiotics, photodynamic therapy (PDT) has been
gaining attention as an alternative treatment. Herein, the applicability of PEEK dental implants
or abutments was investigated using material analyses, biofilm formation assay, and cell viability
tests. The possible use of PDT for peri-implant mucositis was evaluated with the biofilm removal
assay. The obtained data were analyzed based on the multivariate analysis of variance, paired t-tests,
and the Pearson correlation coefficient (α = 0.05). The results revealed that PEEK was significantly
less conducive to the formation of biofilms with S. mutans and A. actinomycetemcomitan (p < 0.001)
but exhibited comparable MG-63 (human osteoblast-like) osteoblast cell viability (p > 0.05) to the
other materials. PDT had similar antimicrobial efficacy and yielded similar biofilm removal effects to
antibiotics. Altogether, these findings suggest that PEEK has attractive features and can serve as an
alternative material for dental implants or abutments. In cases where peri-implant mucositis occurs,
PDT can be used as an accessible therapeutic approach.

Keywords: dentistry; polyetheretherketone; biofilm; peri-implant mucositis; photodynamic therapy;
antimicrobial activity

1. Introduction

Given the increasing importance of aesthetic concepts in contemporary society, aes-
thetic rehabilitation is gradually becoming more prominent [1]. Correspondingly, the oral
medical system has undergone unprecedented changes. Among them, dental implantology
is one of the most eye-catching therapeutic approach choices, which not only successfully
meets aesthetic considerations, but expands the applicability of various types of dental
prostheses (i.e., all-on-four implant therapy, overdentures, etc.) [2–4].
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Titanium alloys are currently considered as the gold standard materials for dental
implants or abutments owing to their good biocompatibility [5,6]. However, the metallic
color of the titanium implant or abutment is visible through the soft peri-implant tissue,
and this results in an unpleasant aesthetic outcome [7]. The long-term existence of metal
materials in humid oral environments can easily lead to chemical corrosion [8]; additionally,
patients with metallic allergies will have a greater risk of developing allergic reactions
to metals or alloy materials [9]. Therefore, in the past decade, the choice of materials for
dental implants or abutment has gradually shifted to aesthetic materials. Evidence from
several studies pointed out that compared with titanium alloys, the aesthetic zirconia-based
ceramic materials demonstrated a low risk of inflammatory reactions and enhanced bone
apposition; correspondingly, zirconia is viewed as a new dental implant or abutment
material [10–12]. Nonetheless, the hardness characteristics will allow zirconia implants
or abutments to directly transfer the stresses or impact forces (e.g., occlusal forces) to the
surrounding bones via the implant–bone interface, and thus impose a heavy burden on the
jawbone and induce other undesirable symptoms [13,14]. Thus, the clinical applicability of
zirconia to dental implants or abutments still generates concern.

Poly-ether-ether-ketone (PEEK) materials with natural and aesthetic properties re-
cently attracted considerable attention in the field of dentistry [15]. PEEK has similar
mechanical properties to human bone; thus, when PEEK is used for implants or abutments,
it can serve as a good shock absorption material that can spread the occlusion force and
transfer the stress to the bone smoothly so as to avoid the occurrence of failure [16,17].
The literature had reported that PEEK was beneficial to prolong the implant lifespan [18].
Regarding the application of PEEK in dental practice, some scholars had proposed PEEK
frameworks veneered with composite resin as a solution for dental prostheses for pa-
tients with metal allergies [19,20]. Other reports indicated using PEEK as the framework
combined with gingival composite resin and lithium disilicate crowns to rehabilitate the
mandible dentition for edentulous patients [21]. The feasibility of the above clinical appli-
cations was based on the excellent material properties of the PEEK, e.g., lighter weight,
higher elasticity, and aesthetics. Therefore, PEEK can reduce the risk of metal allergies and
mechanical complications. Although dental implants (screw) fabricated by PEEK have not
been extensively used nowadays clinically [22], PEEK is supposed to be an alternative to
conventionally applied implant or abutment materials, such as titanium and zirconia.

The definition of success for the implant (or abutment) is not limited to implant
survival, but includes the maintenance of the health of peri-implant tissues despite the
complex microbial challenge in the oral environment [23]. Similar to titanium or zirconia,
if bacterial challenges are presented and excessive host responses are evoked when PEEKs
are used, peri-implant mucositis will occur. If peri-implant mucositis cannot be reduced,
it will lead to peri-implantitis and a series of unexpected symptoms. In light of this,
the inception and implementation of successful efforts to reduce peri-implant mucositis
are critical. The standard nonsurgical therapy for peri-implant mucositis in the dental
clinic is the administration of antibiotics [23,24]. However, according to a statistical report
from the National Health Service (NHS, UK), approximately one in 15 patients have an
allergic reaction to antibiotics [25]. Thus, the focus has recently shifted toward mechanical
therapy, such as phototherapy with laser, infrared, or other alternative light sources [7].
Photodynamic therapy (PDT) is an elegant light-based intervention technique [26]. The
PDT mechanism involves the use of a photosensitizer that is activated by exposure to light
of a specific wavelength (usually illuminated with a long wavelength of visible red light,
i.e., 620–690 nm) in the presence of oxygen [27]. The light activates the photosensitizer to
transform from a low-energy state to a high-energy state [7,27]. In aerobic conditions, this
leads to the generation of cytotoxic species, and consequently results in cell death and tissue
devastation [28]. The photosensitizer concentrates within the infected tissue. Thus, when
the light is directly focused on the lesion, it will generate reactive oxygen species that will
lead to cellular destruction [28]. Because PDT can be applied to a wide variety of different
diseases, it has recently become an alternative therapy in the medical field [27,29,30].
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Evidence from other studies indicated that PDT represents a novel therapeutic approach
in managing oral biofilms and that it can be used as an adjunct antimicrobial protocol for
peri-implant mucositis [7,27]. For this reason, this study considers PDT as a therapeutic
approach for peri-implant mucositis.

To the best of our knowledge, only a few studies have discussed the biofilm formation
and removal assays on the surface of PEEK. More trials are vital to evaluate whether PEEK
materials have lower biofilm formation ability suitable for implants or abutments, and
whether PDT can replace antibiotics as a therapeutic approach for peri-implant mucositis.
Herein, the present in vitro studies have two goals: (1) investigating the biofilm formation
abilities and MG-63 osteoblast cell viability responses of PEEK in compared with other
biomaterials, and (2) evaluating the antimicrobial efficacy of PDT.

2. Materials and Methods
2.1. Sample Preparation and Surface Treatment

Three different types of dental materials were considered: alloy material—titanium
grade 5 (Ti-6Al-4V), ceramic material—yttria-stabilized tetragonal zirconia polycrystal
(Y-TZP), and polymer material—PEEK (Figure 1). The details on the materials used in
this study are listed in Table 1. All testing samples were disk-shaped with a diameter of
10 mm and thickness of 2.5 mm. Grinding was used as the surface treatment method. All
the testing samples were ground with silicon carbide abrasive paper in the order of #600,
#1000, and #1500 to make the surface smooth, followed by ultrasonic cleaning (RUC-101,
REXMED Industries Co., Ltd., Kaohsiung, Taiwan) with air drying. All the samples were
immersed in deionized water at 37 ◦C for 24 h prior to the experiment.
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Figure 1. The chemical structure of PEEK.

Table 1. Dental materials used in this study.

Materials Abbr. Main Composition 1 Manufacturer

Alloy material

ASTM F136 Ti-6Al-4V Ti, Al, V, others Green Dentech Co. Ltd.,
Tainan, Taiwan

Ceramic material

90X10-HT Y-TZP 2 ZrO2, Y2O3, others
Aidite Technology Co.,
Ltd., Qin Huang Dao,

Mainland China
Polymer material

VESTAKEEP PEEK 3 Poly-ether-ether-ketone Evonik Japan Co.,
Tokyo, Japan

1 According to the information provided by the manufacturer. 2 Y-TZP, yttria-stabilized tetragonal zirconia
polycrystal. 3 PEEK, poly-ether-ether-ketone.

2.2. Surface Roughness and Morphologies

The surface roughness (Ra) of the samples prepared for each type of material (n = 5)
was measured as the arithmetic mean deviation of the profile obtained with the use of a
stylus profilometer (DektakXT, Bruker Taiwan Co., Ltd., Hsinchu, Taiwan). Three different
regions were evaluated in each sample to determine 3 Ra values, and the average values
were estimated to characterize the final Ra value of each sample. The representative
surfaces were observed by a thermal field emission scanning electron microscope (Thermal
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FE-SEM; JEOL JSM-7800F Prime, JEOL Ltd., Tokyo, Japan). The specimen chamber was set
at a vacuum level of 9.6 × 10−5 Pa, and the specimens were observed under an accelerating
voltage of 3.0 kV using secondary electron mode. Images were captured using the lower
electron detector of the FE-SEM system, while magnification strengths of 500× and 2000×
were used.

2.3. Hydrophilicity

The hydrophilicity of the testing samples (n = 5) was determined using a contact angle
analyzer (FTA-125, First Ten Angstroms, Portsmouth, VA, USA). A droplet of distilled
water (~10 µL) was extruded vertically from a 31G needle onto the testing samples at room
temperature, and a charge-coupled device (CCD) was triggered to allow continuous image
recordings. A non-spherical fitting approach measured the contact angle of each water drop
on the picture. Each reported contact angle was the mean of six independent measurements.

2.4. Microbial Cultures

All the microbes used in the present study were purchased from Bioresource Collection
and Research Center (BCRC) (Hsinchu, Taiwan). Streptococcus mutans (S. mutans, BCRC
number: 10793) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans, BCRC
number: 80375) were used in the study. S. mutans was cultured in tryptic soy broth,
and A. actinomycetemcomitans was cultured in brain heart infusion broth. The bacteria
were inoculated by loop transfer from frozen tubes into 3 mL nutrient broth slant and
were maintained at 37 ◦C for 24 h with constant shaking at 200 revolutions per minute
(rpm). Bacteria from these cultures were transferred in an appropriate solid medium and
incubated overnight. Selected colonies were transferred to an appropriate liquid medium
and incubated for 4–6 h to achieve log phase growth. The optical density of each culture at
600 nm (OD 600) was adjusted to 1.0 using fresh broth to obtain a standard inoculum with
1–3 × 108 colony forming units (CFU)/mL [31].

2.5. Biofilm Formation Assay

The S. mutans and A. actinomycetemcomitans (106 CFU/mL) were inoculated in all the
wells of a 24-well plate. The testing samples (Ti-6Al-4V, Y-TZP, and PEEK) were added,
mixed well, and cultured at 37 ◦C for 24, 48, and 72 h. The medium was removed, and the
wells were then washed with phosphate-buffered saline (PBS, Life Technologies Limited,
Paisley, UK) twice and air dried for 1 h. Crystal violet (150 mL of 0.1% w/v) was added
to each well, and the plate was allowed to remain at room temperature for 10–15 min.
The crystal violet was aspirated, and the plate was rinsed three to four times with water.
After water aspiration, 150 mL of 33% acetic acid was added to each well. Absorbance
was determined at 490 nm (OD 490) using 30% acetic acid in water as the blank on the
VersaMax™ ELISA microplate reader (Molecular Device, San Jose, CA, USA) [31].

2.6. Biofilm Removal Assay

S. mutans and A. actinomycetemcomitans (106 CFU/mL) were inoculated per well in a
24-well plate. The testing samples (Ti-6Al-4V, Y-TZP, and PEEK) were added, mixed well,
and cultured at 37 ◦C for 48 h. After the removal of the planktonic bacteria, the biofilms
were washed with sterile PBS once. Fifteen samples for each dental material were randomly
divided into five groups. To evaluate the removal of pre-existing biofilms, bacteria, 1 mL
of PBS containing various doses of temoporfin (0, 1.0, and 2.0 µg/mL), and 100 µg/mL
ampicillin were added to each well and incubated for 3 h. The temoporfin and ampicillin
treatments were used in conjunction with diode laser (TI-818-1, Transverse Industries Co.,
Ltd., New Taipei City, Taiwan), a red-light source with emission at 635 nm. The distance
from the light to the sample ranged from 3 to 5 cm, and the exposure time was 15 min
(10 J/cm2). After 4 h of incubation at 37 ◦C, fixation, staining, and biofilm measurements
were performed as described above.
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2.7. Cell Viability Assay

The cell viability of all tested samples (Ti-6Al-4V, Y-TZP, and PEEK) was measured
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The
human osteoblast-like (MG-63) cells (105 cells/1 mL) were inoculated and cultured for 24 h
at 37 ◦C in a humidified atmosphere of 5% CO2 in 24-well cell culture plates. To quantify
cell viability, 0.5 mL of MTT reagent (M6494, Thermo Fisher Scientific Inc., Waltham,
MA, USA) was added to each well and incubated for 4 h at 37 ◦C. The supernatant
was removed, washed with PBS, the blue formazan product was solubilized with 1 mL
of dimethylsulfoxide (DMSO, Mediatech. Inc., Manassas, VA, USA), and was finally
centrifuged at 150 rpm for 15 min (CN-15, Hsiang Tai Machinery Industry Co., Ltd., New
Taipei City, Taiwan). After solubilization, 100 µL of liquid from each well was transferred
to a 24-well plate prior to determining absorbance at 590 nm using a VersaMax™ ELISA
microplate reader; the obtained data were quantified to determine the cell viability.

2.8. Statistical Analysis

The normality of the distribution and the homogeneity of variance were analyzed
using the Shapiro-Wilk and Levene’s tests. As all the data exhibited normal distributions,
parametric tests were conducted. The comparisons of the results of Ra values and the hy-
drophilicity were conducted with one-way analysis of variance (ANOVA), and the multiple
dental material group (Ti-6Al-4V, Y-TZP, and PEEK) comparisons were analyzed based on
Scheffe’s post hoc tests. The correlation between the surface roughness, hydrophilicity, and
biofilm formation ability was obtained via Pearson correlation and linear regression. The
data obtained from independent biology experiments (biofilm formation ability, antimi-
crobial assay, and cell viability) with three replicates in each group were analyzed with
the paired t-test and one-way ANOVA with post hoc Tukey’s honest significant difference
(HSD) tests to compare replicate mean values between different dental material groups in
each condition. All statistical analyses were performed with SPSS (version 19, IBM SPSS
Statistics, IBM Corporation, New York, NY, USA) (α = 0.05).

3. Results
3.1. Morphologies, Topography, and Surface Roughness

Figure 2 shows the FE-SEM surface morphologies of all tested materials. The surface
of the Ti-6Al-4V contained scratch features caused by silicon carbide abrasive paper. These
surface characteristics have consistent directionality and are uniform. The surface of Y-
TZP also contained some scratch features; however, when compared with other testing
materials, the Y-TZP revealed relatively smooth morphologies. PEEK materials had similar
surface morphologies with those of the Ti-6Al-4V. However, those features were not as
dense as the Ti-6Al-4V, and some polymer impurities had remained on the PEEK surface
owing to the surface treatment procedures.

Polymers 2021, 13, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. The FE-SEM surface morphologies of each dental materials: the scale bar is 50 μm (magnifications of 500), and 
the width of the small, enlarged picture is equal to 2.5 μm (magnifications of 2000). 

The surface topographies of various materials (Ti-6Al-4V, Y-TZP, and PEEK) are 
summarized in Figure 3, and the microscale surface roughness (Ra) is shown at the right 
upper part of each image. The PEEK (218.59 ± 17.95 nm) and the Ti-6Al-4V (216.11 ± 18.85 
nm) had comparable Ra values (nonsignificant differences, p = 0.696). However, the Y-
TZP yielded a significantly lower Ra value (87.66 ± 7.74 nm) compared with the other 
testing materials (p < 0.01). 

Figure 2. The FE-SEM surface morphologies of each dental materials: the scale bar is 50 µm (magnifications of 500), and the
width of the small, enlarged picture is equal to 2.5 µm (magnifications of 2000).



Polymers 2021, 13, 940 6 of 12

The surface topographies of various materials (Ti-6Al-4V, Y-TZP, and PEEK) are sum-
marized in Figure 3, and the microscale surface roughness (Ra) is shown at the right upper
part of each image. The PEEK (218.59 ± 17.95 nm) and the Ti-6Al-4V (216.11 ± 18.85 nm)
had comparable Ra values (nonsignificant differences, p = 0.696). However, the Y-TZP
yielded a significantly lower Ra value (87.66 ± 7.74 nm) compared with the other testing
materials (p < 0.01).
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3.2. Hydrophilicity (Contact Angle)

The levels of hydrophilicity of different tested materials are compared in Figure 4.
The contact angles of all the PEEK materials were higher than 90◦ (90.09◦ ± 17.95◦). This
showed a significant super-hydrophobicity feature (p < 0.05) compared with the Ti-6Al-4V
materials (41.75◦ ± 18.85◦). Although the Y-TZP materials also with high hydrophobicity
(79.43◦ ± 7.74◦), the values were still significantly lower than those of PEEK materials
(p < 0.05).
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3.3. Biofilm Formation Ability

Figure 5 illustrates the biofilm formation ability of S. mutans and A. actinomycetemcomi-
tans on Ti-6Al-4V, Y-TZP, and PEEK. The biofilm formation of the Ti-6Al-4V, regardless of
the culture times (24 h, 48 h, or 72 h) or types of bacteria (S. mutans or A. actinomycetem-
comitans), was significantly higher than those of the other testing materials (p < 0.001).
Among all the materials, the biofilm is associated with a significant growth period from
24 h to 48 h (p < 0.001), but the growth was almost stationary after 48 h. It is imperative to
note that compared with the Ti-6Al-4V, neither the Y-TZP nor the PEEK were conducive
to biofilm formation. According to the Pearson’s correlation analysis, there was a strong
negative correlation between the hydrophilicity and biofilm formation ability (Pearson r
value was −0.966 for S. mutans and −0.977 for A. actinomycetemcomitans). The variables
of surface roughness and biofilm formation ability yielded a low correlation (Pearson r
value < 0.5). Thereby, a larger hydrophilicity (i.e., higher contact angle) was associated
with lower biofilm formation ability for identical bacteria.
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3.4. Biofilm Removal Efficacy

The biofilm removal assay (Figure 6) revealed that PDT has comparable or better
efficacy than that of AMS (the group using 100 µg/mL ampicillin) pertaining to the
disruption preformed on S. mutans and A. actinomycetemcomitans biofilms. In Ti-6Al-4V,
PDT with a concentration of 2.0 µg/mL temoporfin (PDT-2) and the AMS group had
obvious high-biofilm removal efficacies on S. mutans (p < 0.05). Nevertheless, PDT with a
concentration of 1.0 µg/mL temoporfin (PDT-1) did not demonstrate substantial removal
efficacy on preformed biofilms. Moreover, regardless of the therapeutic approaches, there
was no effect on the removal of the A. actinomycetemcomitan biofilms (p > 0.05). All the
Y-TZP, PDT-2, and AMS groups exhibited significantly high biofilm removal efficacy on
both S. mutans and A. actinomycetemcomitans (p < 0.05) biofilms; however, there was no
difference between the PDT-2 and AMS groups. Although PDT-1 exhibited a significant
efficacy to disrupt preformed A. actinomycetemcomitans biofilms (p < 0.05), there was no
apparent effect on S. mutans biofilms compared with the control group (CON). Regarding
the PEEK materials, the PDT-1, PDT-2, and AMS groups all showed significant well biofilm
removal efficacy on either S. mutans or A. actinomycetemcomitans biofilms (p < 0.05). Higher
temoporfin concentrations were related to better biofilm removal efficacy. Note that the
PDT-2 group exhibited the best efficacy pertaining to the disruption of the preformed
biofilms (p < 0.01).
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3.5. Cell Viability

The cell viability of MG-63 on each testing dental material (Ti-6Al-4V, Y-TZP, and
PEEK) was measured over 1-, 2-, and 3-day periods with the MTT test. The results are
shown in Figure 7. Additional comparison indicated that Ti-6Al-4V, Y-TZP, and PEEK
yielded similar cell viability outcomes at any time point (p > 0.05).
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4. Discussion

Poly-ether-ether-ketone, commonly referred to as PEEK, is a member of the poly-aryl-
ether-ketone polymers (PAEKs) family, and it is a semicrystalline, linear, high-performance
thermoplastic polymer which consists of an aromatic molecular chain backbone intercon-
nected by ketone and ether functional groups (Figure 1) [32–34]. PEEK confers outstanding
mechanical properties, chemical resistance, and an elastic modulus that closely matches
natural bone [16]. Furthermore, PEEK can absorb the occlusion force and relieve the occlu-
sion stress and is thus considered as one of the most promising materials for implants or
abutments. In this study, we used PEEKs as the target testing materials and titanium alloys
(Ti-6Al-4V) and zirconia-based ceramic (Y-TZP) as controls.

The quantitative results of the surface roughness (Ra values) obtained from the sty-
lus profilometer (Figure 3) were consistent with the surface morphology characteristics
observed via FE-SEM (Figure 2). The Y-TZP showed a relatively smooth morphology
and significantly lower (p < 0.001) Ra values after surface treatment compared with other
testing materials. This result was in accordance with the literature given that the Vickers
hardness of Y-TZP (>1100 Hv) was much higher than those of Ti-6Al-4V (≈300 Hv) and
PEEK (≈27 Hv). Thus, the effect of surface treatment was superficial to Y-TZP [13,35].
In addition, the contact angles of PEEKs were approximately 90◦ (Figure 4), which were
significantly higher than those of Ti-6Al-4V and Y-TZP (p < 0.001). This was attributed to
the fact that the nonpolar functional groups contained in PEEK structures were responsible
for the hydrophobicity.

The biofilm formation ability may be influenced by the following two factors: (a) hy-
drophobicity and hydrophilicity, and (b) surface roughness and surface free energy [36,37].
De-la-Pinta et al. suggested that hydrophilicity was more critical than surface roughness
in biofilm formation [38]. The present trial verified similar results that showed that hy-
drophilicity (Pearson r value > 0.9) was more correlated to the biofilm formation ability
than surface roughness (Pearson r value < 0.5). Subject to the same culture conditions, the
hydrophobic materials were those which had lower biofilm formation ability, regardless of
the types of bacteria (Figure 5). These findings support the fact that the biofilm formation
ability of PEEK was lower than that of Ti-6Al-4V. It is known that bacteria can attach
and become sheltered in the rougher surfaces of materials [37], thus demonstrating that
anti-adhesive action against bacteria would occur on the Y-TZP surface. Although PEEK
was significantly more hydrophobic than Y-TZP (p < 0.001), the surface roughness of Y-TZP
was significantly lower than PEEK (p < 0.001). These complex factors indicated that the
two materials have comparable biofilm formation abilities.

Gram-positive S. mutans are primary and secondary colonizers in dental plaques [39].
The microbiota species around the peri-implantitis sites are very similar to those found in
the periodontal disease site, and mainly include the Gram-negative A. actinomycetemcomi-
tans [40]. The antibiotic resistance of bacterial cells in biofilms was reported to be 1000 to
1500 times greater than the resistance of planktonic cells. The outer membrane of Gram-
negative bacteria plays an important role in relation to its resistance to many antibiotics.
Therefore, the elimination of Gram-positive bacteria with PDT is definitely much easier
to accomplish than that of Gram-negative bacteria [41]. Therefore, S. mutans were more
sensitive to A. actinomycetemcomitan in both PDT and AMS treatments. In this study, the
biofilm formation abilities of Y-TZP and PEEK were lower than that of Ti-6Al-4V; therefore,
the sensitivities to PDT and AMS were higher, and the biofilm removal abilities were also
conspicuous (Figure 6). The results of the PEEK in the present study also indicated that S.
mutans was more effective than A. actinomycetemcomitan. Among all the samples, Y-TZP
exhibited the smoothest surface. However, the attachment of the A. actinomycetemcomi-
tan dental plaque needs to rely on other strains. Herein, A. actinomycetemcomitan was
difficult to directly attach on the Y-TZP surface. Thus, the biofilm removal ability of A.
actinomycetemcomitan through either PDT or AMS was better than that of S. mutans in the
Y-TZP group.
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The merits of PEEK, such as hydrophobicity and chemical inertness, may prove as
disadvantages for the application of PEEK to dental implantology. These points would
negatively impact cell adhesive effects, bone attachment, and osseointegration. The hu-
man osteoblast-like (MG-63) cells are commonly used osteoblastic models that are used
to study bone cell viability, adhesion, and proliferation on the surfaces of load-bearing
biomaterials [6]. Ti-6Al-4V and its compounds are gold standard materials for implants or
abutments owing to their excellent mechanical strength, chemical stability, biocompatibility,
and high osseointegration ability [6,12]. Martins et al. found that the bone response to
Y-TZP implants is comparable with that observed around Ti-6Al-4V implants [12]. The
present study did not conduct in vivo experimentation, but the analysis of the cell viability
(MTT test) of the PEEK and MG-63 cells in this study (Figure 7) suggested that PEEK
yields equivalent cell viability responses to those of Ti-6Al-4V or Y-TZP (p > 0.05). These
findings indicate that PEEK also possesses good biocompatibility for MG-63 cells. With
the combination of the verification results from this study and the data reported in the
literature [42,43], it can be summarized that PEEK has anti-adhesive bacterial properties.
With comparable MG-63 cell viability to Ti-6Al-4V and Y-TZP, PEEK is a suitable material
for dental implants or abutment from a microbiological aspect.

The PAEK family has been increasingly employed as biomaterials for orthopedic,
trauma, and spinal implants. In addition to PEEK, other PAEK family members, such as
poly-ether-ketones or poly-ether-ketone-ketone (PEKK), are considered for dental implant
or abutment materials [34]. Our previous study had investigated the bonding properties
of two PAEKs materials (i.e., PEEK and PEKK) [44]. Within the experiment, the surface
roughness, morphology, and hydrophilicity of the two PAEK materials were measurement
and compared [44]. The results indicated that no significant difference could be found
between the surface roughness and hydrophilicity of the two PAEK materials after process
grinding surface pre-treatment. Yuan et al. [45] compared the osteointegration property
between PEKK and PEEK; the report indicated that the other ketone group in PEKK
increases the ability of surface chemical modification. This might affect the cell behavior
and osteointegration of PEKK. Additionally, the PEEK material used in this work can be
processed via various digital workflow like computer-aided design and computer-aided
manufacture or additive manufacture system; nonetheless, commercial PEKK materials
can only process via the former. However, in future dental practice, dental implants or
abutments are urgently needed to be manufactured through customization; therefore, only
PEEK materials were discussed in this work.

The present study showed that the cell viability of MG-63 on PEEK is similar to those
of other materials (Ti-6Al-4V and Y-TZP). As mentioned previously, the biofilm formation
ability was related to hydrophilicity, surface roughness, and surface free energy. Although
the present in vitro study did not consider PEKK, according to the previous report [42,43] it
can be predicted that PEKK will have similar biological characteristics as PEEK. However,
whether PEEK affects osteoblasts and their differentiation needs additional investigation.
In the future, it is important to increase the bacterial photosensitizer absorption rates and
penetrating abilities and to develop better light sources for PDT to reduce exposure time
and to make it more convenient for use in treatments in the dental clinic.

5. Conclusions

Poly-ether-ether-ketone (PEEK) was significantly less conducive to biofilm formation
compared with titanium alloys (Ti-6Al-4V) and had comparable MG-63 osteoblast cell
viability to the Ti-6Al-4V and zirconia-based ceramic materials (Y-TZP). Photodynamic
therapy (PDT) had similar antimicrobial efficacy and exerted biofilm removal effects to
antibiotics. Therefore, it is inferred to be an effective and substitute therapeutic approach
for peri-implant mucositis. A comprehensive consideration of the results obtained from
this in vitro study indicates that PEEK is a possible alternative material for dental implants
or abutments. When peri-implant mucositis occurs, PDT may be a suitable therapeutic
approach, especially for patients with allergic reactions to antibiotics.
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